Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород поверхностное натяжение

    Влияние к на физико-механические характеристики, состав покрытия и его микроструктуру рассмотрено в работе 1681. Применен электролит состава (г/л) никель сульфаминовокислый 490, никель хлористый 50, борная кислота 30. Условия осаждения pH = 4,0 к = 16 А/дм а = 16 А/дм 4 49 С аноды деполяризованы кислородом поверхностное натяжение 45 мН/м. В табл. 57 приведены физико-механические свойства, в табл. 58 — состав осадков при различной катодной плотности тока. [c.90]


    Испытания трансформаторных масел, помимо побочных показателей (температура вспышки и застывания, вязкость, диэлектрические свойства [112] и т. д.), включают в себя ускоренную пробу на окисление с целью определить вероятный срок эксплуатации масла. Для проведения этой пробы был предложен целый ряд методов [113—115]. Почти все они предусматривают нагревание масла в воздухе или кислороде при температуре около 120° обычно в присутствии меди в качестве катализатора окисления. При этом наблюдается изменение цвета, поверхностного натяжения [116, 117], кислотности, коэффициента мош,ности, образование осадка и воды [118—123]. [c.567]

    Присадки к маслам классифицируются по их способности улучшать какое-либо определенное свойство масел. Различают присадки 1) вязкостные, повышающие вязкость масел и улучшающие ив вязкостно-температурные свойства 2) депрессорные, понижающие температуру застывания масел 3) антиокислительные, повышающие стабильность масел против окисляющего воздействия кислорода воздуха 4) противокоррозионные, снижающие коррозионную агрессивность масел 5) противоизносные, улучшающие смазочные свойства масел и предохраняющие трущиеся детали двигателей и механизмов от износа 6) противопенные, понижающие поверхностное натяжение масел и тем самым не допускающие образования в маслах пены 7) моющие, не допускающие образования на деталях двигателей каких-либо отложений типа нагаров, лаков или осадков 8) многофункциональные, обладающие одновременно способностью положительно воздействовать на два или несколько эксплуатационных показателей- масел. [c.566]

    Полярограммы могут быть искажены за счет полярографических максимумов — резкого возрастания тока выше предельного значения его с последующим спадом. Причины возникновения максимумов различны, и могут быть связаны с неравномерной поляризацией ртутной капли и тангенциальным движением ее поверхности, что приводит к дополнительному перемешиванию раствора. Такого рода максимумы можно устранить введением в полярографируемый раствор ПАВ красителей (метиловый красный, фуксин и др.), высокомолекулярных соединений (агар-агар, желатин). ПАВ адсорбируются на поверхности ртутной капли, изменяют ее поверхностное натяжение, устраняя неравномерное движение приповерхностных слоев. Кроме того на полярограммах возникают кислородные максимумы растворенный в анализируемом растворе кислород восстанавливается на ртутном электроде в две стадии  [c.142]

    Сочетанием дробного осаждения, адсорбции и последующего вытеснения компонентов растворителями с возрастающей полярностью смолы были разделены на фракции. В табл. 64 приведены данные, характеризующие химический состав и свойства фракций смол нескольких нефтей, и показано, в какой степени присутствие равных количеств смолистых веществ понижает поверхностное натяжение бензола на границе с водой при 20° С. Эти данные показывают, что в результате разделения смол получены фракции, значительно различающиеся по химическому составу, причем с увеличением полярности вытесняющего растворителя во фракциях смол возрастает суммарное содержание серы и кислорода, повышается кислотное число смол и растет поверхностная активность последних. [c.193]


    Процесс пропитывания характеризуется в значительной степени поверхностными свойствами углерода (поверхностной энергией) и пеков (краевым углом смачивания, поверхностным натяжением). Поверхностные свойства углерода зависят от энергетической неоднородности поверхности, наличия на ней разорванных связей, концентрации различных кислород-, серосодержащих и других групп, удельной поверхности, температуры и других факторов все они влияют на взаимодействие газов и жидкостей с твердой поверхностью, приводящее к образованию граничных слоев (поверхностных в случае газов и полимолекулярных в случае жидкостей). [c.66]

    Различие в растворимости газов связано с поверхностным натяжением жидкости чем ниже поверхностное натяжение, тем выше растворимость кислорода [2]. [c.209]

    Например, сродство к кислороду того или иного элемента препятствует протеканию технологических процессов восстановительного свойства сцепление частиц материала препятствует его деформации силы поверхностного натяжения препятствуют дроблению жидкости и т. д. Для преодоления указанных сил должна быть совершена работа с затратой того или иного количества энергии. Ту энергию, которая непосредственно совершает работу по преодолению сил, препятствующих протеканию данного технологического процесса, удобно называть рабочим видом энергии. В промышленности в качестве рабочего вида энергии наиболее часто используются тепло и механическая энергия. Так, например, при обработке металла на токарном станке непосредственно затрачивается механическая энергия, при обработке металлов давлением на прокатном стане и кузнечном молоте затрачивается также механическая энергия, но для того чтобы перевести металл в удобное для обработки давлением пластическое состояние, нужно его нагреть до той или иной температуры, затратив тепло. Тепло нужно затратить для того, чтобы расплавить материал, осуществить процесс сушки или возгонки, восстановить руду до металла и т. п. [c.7]

    Электрохимическое обезжиривание производится на катоде или на аноде в щелочных растворах примерно того же состава, что и при химическом обезжиривании. Эффективность электрохимического способа обезжиривания в некоторых случаях во много раз выше химического. Механизм процесса также сводится к пони жению поверхностного натяжения на границе масло — раствор и увеличению смачиваемости металла раствором, которая при наложении тока значительно возрастает. В данном случае роль эмульгатора вьшолняют пузырьки выделяющегося газа - (водорода или кислорода), которые, адсорбируясь на поверхности капелек масла (на границе масло — раствор), настолько уменьшают краевые углы капелек (рис. ХП-1), что последние отрываются и всплывают на поверхность раствора [7, с. 23]. [c.370]

    ПАВ увеличиваются окисляемость и биохимическая потребность в кислороде, а поверхностное натяжение на границе нефть — вода понижается от 0,02— 0,025 до 0,005—0,010 Н м. [c.152]

    На концентрацию растворенного в культуральной жидкости кислорода и в целом на кинетику роста микроорганизмов значительное влияние оказывают физико-химические характеристики среды (pH среды, еН среды, температура) [43, 44]. В то же время в процессе жизнедеятельности микроорганизмы, выделяя в среду продукты клеточного метаболизма, изменяют ее вязкость, поверхностное натяжение, растворимость кислорода, углеродсодержащего субстрата, условия сегрегации клеток, реологические характери- [c.86]

    Для удаления отложений с деталей двигателя и топливной аппаратуры в топлива вводят моющие присадки, которые представляют собой топливно-растворимые поверхностно-активные вещества, углеводородная часть которых состоит из парафиновых, нафтеновых или ароматических радикалов различного строения и углеводородной массы. В качестве полярных групп они включают кислород-, азот-, серу- или фосфорсодержащие фрагменты. Механизм действия моющих присадок заключается в их способности при абсорбции на поверхности раздела фаз радикально изменять ее свойства за счет значительного снижения поверхностного натяжения. Полярные группы в молекулах присадок обусловливают их способность к абсорбции на твердых поверхностях и полярных частицах смолистых отложений, а достаточно массивные углеводородные радикалы — растворимость в топливах. Маслорастворимые поверхностно-активные присадки в малополярных углеводородных средах (топливах) обладают мицеллярной растворимо- [c.370]

    Большинство перфторированных гетероциклических соединений являются жидкостями, обладающими низким поверхностным натяжением, хорошо растворяют газы, в частности кислород, и с этой точки зрения удовлетворяют требованиям, предъявляемым к переносчикам кислорода. Эти вещества легко удаляются из организма с выдыхаемым воздухом. Как правило, такие соединения легко эмульгируются, давая устойчивые эмульсии, что важно для кровезаменителей. Ожидается, что эмульсии этого типа будут применяться для трансфузии и промывки органов при операциях у людей [19]. [c.296]


    Полярные адгезионно активные функциональные группы клея улучшают совместимость поверхности склеиваемых материалов и клеевого слоя. Водородные связи — причина большой силы сцепления воды (высокое поверхностное натяжение) они определяют способность воды прилипать (смачивать) к различным веществам. Смачивание связано с образованием водородных связей между молекулами воды и атомами кислорода твердого тела. Поэтому у неорганических клеев в качестве затворителей или растворителей наиболее распространены вода и водные растворы, хотя, в принципе, можно использовать и неводные растворители. [c.38]

    Наблюдая с помощью ионного микроскопа соотношение между поверхностями различных граней, можно получить также некоторую информацию об относительных поверхностных натяжениях различных плоскостей кристалла. В заключение следует также отметить работу Бреннера [121], в которой показано, что при адсорбции кислорода на иридии снижается преимущественно поверхностная энергия наиболее выступающих на поверхности иридия граней (ПО) и (ИЗ). [c.235]

    Больщинство экспериментальных результатов по измерению адсорбции и поверхностного натяжения получены для двойных систем. В то же время с практической точки зрения именно многокомпонентные системы представляют первостепенную важность. Кроме того, часто невозможно избежать загрязнения поверхности многими растворенными компонентами. Например, практически невозможно удалить кислород и серу из расплавленного железа при их содержании на уровне 10 ppm, хотя даже при такой концентрации влиянием этих элементов на а пренебрегать нельзя. [c.377]

    Н/м при 1253 К и 0,890 Н/м при 1381 К. Было определено также влияние кислорода на поверхностное натяжение жидкого серебра и подсчитано, что i q= = 1750 и 550 при 1253 и 1381 К соответственно. [c.393]

Рис. 14.19. Влияние кислорода на поверхностное натяжение расплавов Ag - Аи при 1108°С (Рд измерено в мм рт.ст.) Рис. 14.19. <a href="/info/71685">Влияние кислорода</a> на <a href="/info/363720">поверхностное натяжение расплавов</a> Ag - Аи при 1108°С (Рд измерено в мм рт.ст.)
    Редиспергирование платины, нанесённой на А12О3, можно объяснить исходя из того, что чистые металлы имеют значительно большее поверхностное натяжение, чем их оксиды. Поэтому кристаллы металла не смачивают поверхность носителя, но при окислении металла смачивание на границе раздела сильно увеличивается и Pt02 "растекается" по поверхности носителя, образуя дисперсную фазу. Однако, только мелкие кристаллиты платины (1-3 нм) способны окисляться кислородом при 500°С. Так как при 600°С образуются крупные кристаллиты, редиспергировать их трудно. [c.60]

    Поверхностное натяжение асфальтенов такое же, как и смол [109]. Величина диэлектрической проницаемости асфальто-смо-листых структур тяжелых нефтяных остатков характеризует степень их полярности. Этот показатель повышается с увеличением содержания в остатках серы, кислорода, азота, кислых и нейтральных омыляемых компонентов, т. е. полярных групп. Некоторые сераорганические соединения бензиновых и керосиновых фракций изучены [183, 184]. Но надежных методик для детального исследования структуры серусодержащих соединений высокомолекулярной части еще нет. Пока установлерп тг. общее содержание, сепаорганических соединений возрастает с повышением молекулярного веса фракций. В мазутах их сосре-доточено до 70 — 90% от общего содержания в нефти. [c.13]

    Вязкость — один из важнейших показателей качества топлива. От вязкости зависит надежность работы и долговечность топливной аппаратуры, возможность использования топлива при низких температурах, нротивоизносные свойства, процесс испарения и сгорания топлива. Так, топливо, обладающее малой вязкостью и низким поверхностным натяжением, может переобогащать горючую смесь в отдельных зонах, что приводит к уменьшению химической полноты его сгорания из-за недостатка кислорода. При повышении вязкости и поверхностного натяжения топлива может возрасти физическая неполнота сгорания вследствие невозможности полного испарения крупнораспыленного топлива на всем протяжении камеры сгорания [19]. [c.34]

    Теоретически установлено, что нефть в источнике залегания может образовываться из полярных компонентов, содержащих азот, серу, кислород, металлы, а также углеводороды с широким диапазоном изменения молекулярных масс, включая ароматические, нафтеновые, парафиновые вещества. Во время миграции нефти те компоненты, которые являются более полярными или более поляризующими, адсорбируются в первую очередь. Например, компоненты, содержащие аминовые нитрогены, порфирины, могут вести себя как катионы и адсорбироваться ria глинах. Это — одна из-причин формирования весьма неровных границ раздела нефть—вода, особенно в породах, содержащих небольшое количество глин. Концентрация активных компонентов вблизи первоначального водонефтяного контакта приводит к образованию более низких поверхностных натяжений между нефтью и водой, чем в точках, более отдаленных от водонефтяного раздела. Возможно также, что вода вблизи области залегания нефти может иметь-растворенные органические компоненты, такие, как нафтеновые-кислоты или их соли, которые в условиях неоднородного коллектора могут изменить поверхностное натяжение между нефтью-и водой в ту или иную сторону. Кроме того, на характеристику смачиваемости коллекторов заметное влияние оказывает их неоднородность по минералогическому составу, степень шероховатости , чистоты отдельных минеральных зерен, их окатанность, структура кристаллической решетки. Одни минеральные частицы обладают лучшей смачиваемостью, другие— худшей в зависимости от их химического состава и строения кристаллической решетки. [c.207]

    Механизм действия моющих присадок заключается в их способности при абсорбции на поверхности раздела фаз радикально изменять ее свойства за счет значительного снижения поверхностного натяжения. Моющие присадки представляют собой масло- или масловодорастворимые поверхностно-активные вещества, углеводородная часть которых состоит из парафиновых, нафтеновых или ароматических радикалов различного строения и углеводородной массы. В качестве полярных групп они включают кислород-, азот-, серу- или фосфорсодержащие фрагменты. [c.365]

    Кислород воздуха, а также другие коррозионно-активные агенты, содержащиеся в атмосфере (особенно SO3 и окислы азота), играют важную роль в процессах атмосферной коррозии. Атмосферная коррозия протекает в тонких пленках электролитов, возникающих при адсорбции или конденсации воды на поверхности металлических конструкций. Диффузия кислорода и других газов через тонкие слои относится к быстрым процессам (см. 44), которые к тому же ускоряются из-за саморазмешивания слоев, вызванного градиентами поверхностного натяжения и температуры. [c.374]

    Наряду с кремнекислородными комплексами в расплавах силикатов существуют области, обогащенные катионами металлов и анионами кислорода это создает микрогетерогенность расплава. Если в расплаве имеется несколько металлов, то микрогетерогенность будет связана и с неравномерным распределением анионов кислорода между более сильными и более слабыми катионами. При достаточно сильном взаимодействии катионов металла с анионами кислорода могут возникать катионкислородные области, обедненные кремнекислородными комплексами. Возникновение микрообластей химически индивидуальных жидкостей может приводить к ликвации — расслоению расплава на две жидкости, имеющие четкую границу раздела. Например, клинкерная жидкая фаза относится к малоассоциированным высокоосновным алюмоферросиликатным расплавам. Незначительная степень полимеризации обусловлена низкой вязкостью расплава (0,1—0,3 Па-с), о ионной природе которого свидетельствуют результаты исследования электрической проводимости и поверхностного натяжения. [c.101]

    Теплоносители, используемые в области криогенных температур (гелий, аргон, криптон, азот, кислород), обладают низкими значениями скрытой теплоты фазового перехода и поверхностного натяжения. В связи с этим криогенные тепловоды характеризуются низкой теплопередающей способностью. [c.250]

    Имеется сходство между последовательностями изменения величин . и многих других свойств водных растворов электролитов. В классической коллоидной химии (см. например, [32]) это ряды Гофмейстера, которые характеризуют высаливающее действие электролитов на ряд белков. Как показал Траубе [33], в таком же порядке изменяется влияние солей на сжимаемость и поверхностное натяжение воды, а также на многие другие свойства, представляющие биологический интерес. Траубе назвал этот порядок порядком давления сцепления раствора (другие использовали термины внутреннее давление или эффективное давление ). Развитый Тамманном [34] и Гибсоном [35] метод его определения основан на том факте, что сжимаемость раствора соли при низком давлении равна сжимаемости воды при более высоком давлении и аналогичным образом зависит от изменения давления. Дополнительное давление, которое следует приложить к воде, чтобы сделать ее сжимаемость равной сжимаемости раствора соли при более низком давлении, Гибсон назвал эффективным давлением соли Р . Лонг и Мак-Дивит установили, что величины dPJd , где — концентрация соли, изменяются параллельно величинам и, характеризующим влияние различных солей на коэффициенты активности бензола, кислорода и водорода в водных растворах. [c.268]

    Одним из наиболее важных соединений фтора является фтористый водород, Подобно тому, как вода является одним из наиболее важных соединений кислорода. Жвдкий фтористый водород во многих отношениях более напоминает воду, чем хлористый водород. Фтористый водород представляет собой прекрасный ионизирующий растворитель, обладает сравнительно высоким удельным весом [20], высокой диэлектрической постоянной, имеет довольно высокую температуру кипения по сравнению со своим молекулярным весом и т. д. Считалось, что эти свойства воды, фтористого водорода и других жидкостей обусловлены ассоциацией молекул благодаря водородной связи. Фтористый водород, однако, сильно отличается от воды по некоторым свойствам, например по поверхностному натяжению [20] и вязкости [21]. Удовлетворительное объяснение этих фактов до настоящего времени отсутствует. В результате изучения жидкой воды и ее растворов было сделано много ценных научных выводов. Исследование жидкого аммиака, родственного соединения, способствовало детальному изучению растворителей такого типа. Изучение фтористого водорода в еще большей степени будет способствовать изучению растворителей, так как ЫНз, НгО и НР являются водородными соединениями трех соседних электроотрицательных соединений первого ряда периодической системы и представляют [c.24]

    Изучение характеристик пузырьков воздуха при дросселировании жидкости сопровождалось контролем баланса воздуха. Начальное содержание растворенного в воде воздуха (до дросселирования) во всех опытах было равно 63 мг/л. Определение его концентрации производилось электрохимически. анализатором кислорода. Полученные в опытах результаты показаны на рис. 4.6. Как видно нз графика, в воде после дросселирования образуется пересыщенный раствор газов. Степень пересыщения зависит от перепада давления при дросселировании. С возрастанием скорости потока в диафрагме увеличивается удельная поворх[юсть газовой фазы, что способствует более полному выделению растворенных газов. По достижении неко-торы.х значений перепада давления (более 500 кПа) пузырьки становятся очень. малыми и начинают себя прояв.чять силы поверхностного натяжения, т. е. появляется добавочное (ланла-совское) давление. При этом замедляется газовыделение и несколько возрастает остаточное пересыщение [43]. [c.88]

    Максимумы первого рода, вызывающие вихри, связаны с аномалиями, которые наблюдал Кучера [1] на электрокапиллярных кривых, когда за меру поверхностного натяжения поляризованной ртути он принимал вес ее капель. В некоторых растворах вес поляризованной капли на положительной ветви электрокапиллярной кривой возрастает, а при потенциале электрокапиллярного нуля резко уменьшается, достигая значения, соответствующего электрокапиллярной кривой (см. гл. I). Гейровский и Шиму-нек [2] нашли, что эта так называемая аномалия Кучеры наблюдается лишь в разбавленных растворах электролитов в присутствии кислорода, причем появляется она в той же области потенциалов, что и максимум кислорода на полярографических кривых (рис. 202). Гейровский и сотр. [3—6 обнаружили, что острый максимум на полярографических кривых образуется не только в случае восстановления кислорода, но также на волнах восстановления некоторых других деполяризаторов. [c.402]

    Поверхность пигментов относится к высокоэнергетическим, имеющим поверхностное натяжение на границе с воздухом от 100 до 1000 мДж/м Эта энергия распределена на поверхности неравномерно благодаря физической и химической неоднородности частичек пигмента Так, (точечные дефекты кристаллической структуры приводят к иестехиометричиости соединения как в -объеме, так и иа поверхности Например, для диоксида титана содержание кислорода в решетке меньше, чем в соответствии с формулой TiOj Для цинковых белил, наоборот, кислород содержится в избытке по сравнению с формулой ZnO Присутствие посторонних иоиов в кристаллической решетке приводит к ее деформации Обычно такие дефекты концентрируются у по- верхности что и приводит к появлению участков с повышенной поверхностной энергией Даже в случае идеальной поверхности ионы, расположенные иа ребрах кристаллов и в его вершинах, являются координацнонно-ненасы-"Щенными и вызывают энергетическую неоднородность поверхности [c.256]

    Явление гидродинамической неустойчивости поверхности контакта фаз в настоящее время еще изучено мало [79—81]. При экспериментальном изучении кинетики массопередачи гидродинами- ческая неустойчивость поверхности контакта фаз и межфазовая турбулентность наблюдались в системе кислород — азот [82] когда кислород переходил в жидкую фазу, коэффициенты массопередачи были больше, чем при переходе его в газ, так как в первом случае происходило снижение поверхностного натяжения жидкости у поверхности раздела фаз, а во втором — увеличение ее. Аналогичная зависимость эффективности массопередачи была получена в работе [83]. [c.106]

    Уравнение (111-125) подтверждено обширным экспериментальным материалом, полутенным при ректификации разбавленных растворов на основе воды, органических растворителей и молекулирного кислорода. Значении коэффициентов ж уравнений (111-125) и2(1П-126) приведены в табл. Ш-6. Уравнения (111-124)—(1Ц-130) имеют один общий недостаток — в них отсутствует параметр, учитывающий влияние поверхностного натяжения на эффективность массообмена. [c.105]

    На поверхности каждого носителя имеются активные силы различной природы 1) притягивающие молекулы одну к другой и обусловливающие поверхностное натяжение [216, 275] 2) электрические, распределяющ 1е электричество между соприкасающимися слоями отдельных фаз определенным образом и вызывающие электрокапиллярные явления, контактное электричество и пр. и 3) химические, действующие в соприкасаюпрхся слоях двух фаз и вызывающие положительную или отрицательную адсорбцию. Уголь и силикагель являются превосходными адсорбентами, их адсорбционная способность зависит, главным образом, от величины поверхности, и их пористость имеет ббльшее значение, чем другие факторы. Чтобы иметь высокую активность, поверхность угля одновременно с пористостью должна иметь некоторые группы атомов. Например, для того, чтобы она могла переносить кислород воздуха на легко окисляемые вещества, нужны группы, содержащие азот или кислород. [c.475]

    В последние годы в основном в связи с разработкой топливного элемшта значительное внимание уделялось проблеме адсорбции на твердых электродах, таких, как платина и другие благородные металлы. Вопросы, возникающие при рассмотрении твердых электродов, значительно отличаются от аналогичных вопросов в случае ртути. Например, для твердых электродов нельзя пользоваться классическим термодинамическим методом вычисления поверхностного избытка вещества, поскольку здесь трудно измерить поверхностное натяжение и потенциал нулевого заряда В этих системах адсорбцию изучают методами, упоминавшимися в разд. III, Г,2, с применением разнообразной кулонометрической техники. Адсорбция атомарного водорода вблизи обратимого водородного потенциала, а также образование окиси платины (или адсорбция кислорода) при более положительных потенциалах еще более осложняет работу на платиновом электроде. Обратимость реакции выделения водорода на платине ограничивает область идеальной поляризуемости в кислых растворах приблизительно в пределах от 0,3 до 0,8 В (относительно обратимого водородного электрода). Потенциал нулевого заряда ртути относительно стандартного водородного электрода в водных растворах в отсутствие спеди-фической адсорбции составляет около -0,2 В. Поэтому адсорбцию на платине изучают в области потенциалов, не совпадайщей с рабочей областью на ртути (с анодной стороны). Далее, адсорбция на платине [c.135]

    Рассмотрим возможное влияние М ррга кислорода при определении поверхностной активности кремния (или у ) в жидком железе при 1550 °С. I + + 1)Х = 2500 -(-15 -н 1)- 1,7 10" -6 (5 . неизвестен), тогда как для приводится величина 2,9. Этот пример поясняет трудности точного измерения поверхностного натяжения. [c.385]


Смотреть страницы где упоминается термин Кислород поверхностное натяжение: [c.393]    [c.89]    [c.444]    [c.357]    [c.357]    [c.357]    [c.426]    [c.458]    [c.114]    [c.392]    [c.499]   
Справочник по разделению газовых смесей методом глубокого охлаждения (1963) -- [ c.132 ]

Справочник по разделению газовых смесей (1953) -- [ c.106 ]




ПОИСК







© 2025 chem21.info Реклама на сайте