Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Установки газовых смесей

    Исчерпывающее поглощение окислов азота является основным требованием техники безопасности и может быть проведено на установке, показанной на рис. 125. Газовая смесь, содержащая окислы азота (N0 и N0.2), нагнетается воздушным эжектором или вентилятором / в керамическую (или изготовленную из кислотостойкой стали) абсорбционную колонну 3, заполненную насадкой. [c.241]


    В факельной установке должно постоянно гореть дежурное пламя, которым в любой момент можно поджечь газовую смесь, поступающую на факел. Для зажигания дежурного пламени при пуске факельной установки илп после погасания предусматривается запальное устройство. [c.228]

    Газ, отходящий с установки Клауса, нагревают до температуры реакции (300°С) смешением с горячими продуктами сгорания топливного газа с недостатком воздуха. Обогащенная смесь сжигания выполняет две функции осуществляет предварительный нагрев отходящего газа для гидрирования и дает дополнительное количество водорода и СО. Нагретую газовую смесь пропускают через слой кобальт-молибденового катализатора, где и протекает реакция гидрирования. Гидрированный газовый поток охлаждают и направляют в секцию удаления H2S в процессе Стретфорд . [c.194]

    Динамические методы применяются как при лабораторных исследованиях, так и при испытаниях на производственных установках. Газовую смесь с определенной скоростью пропускают через аппарат, в котором находится поглотитель. Количество поглощенного газа определяют, анализируя газ перед входом в аппарат и после выхода из него, а также по анализам жидкости. [c.60]

    Установка конверсии представляет собой трубчатую печь (радиантная секция печи состоит из 92 труб с внутренним диаметром 120 мм). При температуре 482° С в печь подают газовую смесь и в присутствии катализатора при температуре до 704° С проводят конверсию [c.116]

    Б одном из исследовательских институтов США разработана более совершенная схема пиролиза углеводородов с подогревом пара на установке твердым движущимся теплоносителем [63]. По новой схеме в нижнюю часть реакционной зоны установки с движущимся теплоносителем подают пар низкого давления. За счет тепла насадки пар нагревается приблизительно до 1100°. Сырье (этан) подают непосредственно в перегретый пар и выдерживают в смеси с паром в реакционной зоне в течение необходимого времени, после чего паро-газовая смесь подвергается закалке орошением ее водой. [c.52]

    В 1971 г. в СССР была введена в эксплуатацию 5-ступенчатая адиабатная опреснительная установка (рис. 15) [41]. Подкисление воды в установке осуществлялось серной кислотой, дегазация — в испарительной камере 5-й ступени. Неконденсируемые газы с помощью перфорированных трубок через перемычки с регулирующими вентилями перепускались из ступени в ступень, а из последней ступени паро-газовая смесь отсасывалась паро-эжекторным блоком. [c.36]


    На основании приведенных данных были сделаны расчеты промышленной установки полимеризации исходной смеси, содержащей 80 объемн. % ацетилена и 20 объемн. % инертных веществ. Расчеты показали, что непрерывный процесс должен осуществляться в пяти одинаковых параллельно работающих реакторах типа трубчатых печей (в каждом по 37 трубок длиной Зли диаметром 0,05 л). Процесс необходимо проводить при давлении 20 ат я такой температуре, чтобы реакцию можно было рассматривать как протекающую изотермически при 550° С. При указанных рабочих параметрах общая нагрузка печей по исходному газу должна составлять 0,196 л /се/с. При расчетах пренебрегали перепадом давления на входе в реакторы и выходе из них и считали, что газовая смесь подчиняется законам идеальных газов. [c.129]

    ЮТ путем охлаждения выходящих газов и подачи их в башню, орошаемую кислотой. Это выгодно для смеш,ения равновесия и благоприятно изменяет кинетику реакции в последуюш,их слоях катализатора, перед которыми газовую смесь нагревают. Выходящие газы охлаждают и направляют в абсорбер 50з. В большинстве развитых стран сейчас имеются стандарты на допустимые загрязнения воздуха, соблюдение которых требует использования или установок с двойной абсорбцией, или дополнительных скрубберов в установках с одинарной абсорбцией. [c.240]

    Между трубками и верхней решеткой имеются концентрические зазоры, через которые паро-газовая смесь попадает в слой катализатора. Опытная установка под повышенным давлением принципиально не отличается от установки под атмосферным давлением. Внутренняя часть контактного аппарата [c.189]

    Пример 10. в опытном трубчатом реакторе, в котором находится 2 г (1 см ) катализатора, производится исследование кинетики газовой каталитической реакции А- Н. Исходную газовую смесь, содержащую различные количества продуктов реакции, пропускают через установку, замеряя концентрацию вещества А до контакта с катализатором и после него. Результаты анализов следующие  [c.126]

    Установка для окисления сернистого ангидрида во взвешенном слое катализатора (рис. 122) аналогична установке, изображенной на рис. 119, но здесь газовую смесь заданного состава подают в контактный аппарат снизу вверх со скоростью, необходимой для приведения слоя катализатора во взвешенное состояние. [c.291]

    Разделение в одноступенчатых установках осуществляют в тех случаях, когда требуется выделить из газового потока основную массу целевого компонента. Газовая смесь, подаваемая на разделение, должна иметь относительно высокое давление содержание извлекаемого компонента в ретанте, как правило, строго не ограничивается. В отношении технологии (и экономии) промышленного применения одноступенчатое разделение наиболее привлекательно, причем экономика процесса сильно зависит от производительности и селективности мембран. [c.195]

    Ацетилен извлекали из газовой смеси отмывкой водой под давлением (см. раздел 4) выделенный из водного раствора ацетилен содержал 30% углекислоты. Газовую смесь, оставшуюся после выделения ацетилена, подвергали вторичному сожжению в кислороде, чтобы избавиться от метана. В результате получался газ, состоящий только из окиси углерода и водорода его использовали как обычный газ синтеза (гл. 3). Подробное описание установки, конструкции форсунок и данные о расходных коэффициентах приведены в отчете, на который сделана ссылка. [c.279]

    Блок-схема хроматографической установки, используемой для определения удельной поверхности адсорбентов методом тепловой десорбции, представлена на рнс 13. Потоки гелия и азота нз баллонов 1 и 2 подаются в определенном соотношении в смеситель <3, и которого газовая смесь поступает в сравнительную камеру детектора 6 и далее в колонку 8 с исследуемым адсорбентом, в которой прн охлаждении происходит адсорбция азота. Из колонки газоиая смес[1 поступает в измерительную камеру детектора 7. Детектор фиксирует изменение состава газовой смеси в результате адсорбции. Сигнал детектора Iосту-нает на самопишущий потенциометр 5. [c.50]

    Пример однородной системы — гомогенный раствор, в котором протекает химическая реакция. Традиционный пример прерывной системы связан с установкой для изучения термомолекулярной разности давлений. В этом случае два сосуда соединены малым отверстием (или капилляром) и заполнены газом, температура в сосудах различна и поддерживается постоянной в каждом из сосудов с помощью своего термостата. Пример непрерывной системы —газовая смесь, или раствор, температура, состав или давление в которых непрерывно изменяются от точки к точке. Вообще говоря, непрерывные системы включают в себя однородные и прерывные как частный случай, в котором общие уравнения принимают более простой вид. [c.129]

    Схема промышленной установки аммиака приведена на рис. 8.2. Смесь азота и водорода при помощи компрессора / сжимается до необходимого давления. Затем она очищается, проходя через фильтр 2, и поступает в контактный аппарат 3, где находится катализатор. Из контактного аппарата выходит газовая смесь, содержа- [c.149]


    Пары о-ксилола из обогреваемого водяным наром испарителя поступают в смеситель, где смешиваются с предварительно фильтрованным воздухом, сжатым до необходимого давления и подог эетым (рис. 169). Полученная таким образом газовая смесь подается в реакционную печь. Катализатор п печи находится в трубчатом коллекторе, окруженном соляной ванной для отвода тепла. Соляной раствор непрерывно циркулирует через холодильник. Выходящие из печи газы поступают в котел, где отдают свое тепло для генерации водяного пара, а затем направляются в конденсатор, где происходит полная конденсация их. Отсюда твердый продукт периодически отбирают в плавильную установку, где он освобождается от влаги. В заключение продукт подвергают перегонке, отбирая в качестве главной фракции фталевый ангидрид. [c.263]

    Схема установки для получения этана показана на рис. 103. Два потока газов — водорода из баллона / и этилена из баллона 2 проходят отдельно через маностаты 3, реометры 4, колонки 5 с плавленым едким кали или едким натром (для высушивания и удаления двуокиси углерода), затем через обогреваемые колонки 6 с активной медью (для удаления следов кислорода) и поступают в смеситель 7. Отсюда газовая смесь поступает в реакционную трубку 8 (диаметр 2 см, длина рабочей части 50 см) с никелевым катализатором, которая помещена в электропечь 9. Для измерения температуры служит Термопара 10. [c.311]

    В Германии также пытались получать формальдегид окислением метана, содержащегося в газах гидрирования ил и в ко ксовых газах. Были разработаны два процесса процесс фир-мы Гутекофнунгсхютте [16] и процесс фирмы Хиберниа [17]. По первому процессу, по-видимому, продолжают еще получать формальдегид с весьма удовлетворительным результатом. На этой установке метан окисляется при высокой температуре и атмосферном давлении в присутствии небольших количеств двуокиси азота как катализатора. Метан и воздух в отношении 1 3,7 добавляют порознь к циркулирующему в системе метану после его выхода из водяного скруббера, работающего под давлением. На каждые 9 объемов циркулирующего метана вводят 1 объем свежей метано-воздушной смеси. Газовая смесь подогревается до 400° в теплообменнике, через который проходят выходящие из печи газы. Окислы аэота прибавляют в количестве 0,08% от свежей метано-воздушной смеси их получают непосредственно перед вводом в реакционную зону сжиганием аммиака с воздухом над платиновым катализатором. [c.438]

    По закону действия масс для сдвига равновесия реакции синтеза аммиака вправо необходимо в равновесной газовой смеси увеличить концентрацию азота и водорода или уменьшить концентрацию аммиака. Для этого в промышленных установках газовую смесь, как только из нее образовалось некоторое количество аммиака, выводят из колонны синтеза и освобождают целиком или частично от аммиака. Затем к газовой смеси добавляют свежие азот и водород и вновь пропускают ее через колонну синтеза. Повторяя этот процесс непрерывно, добиваются почти полного использования азотоводородной смеси. [c.59]

    Исключительно важным для разделения практически равнокипящих олефинов и парафинов является способ экстрактивной фракционировки. При этом газовая смесь приводится в контакт с движущейся ей навстречу экстракционной средой, причем олефиповая составная часть поглощается этой средой, парафины же не абсорбируются п удаляются из установки. Этот процесс играет также большую роль в получении чистого бутадиена дегидрированием бутапа. [c.70]

    Схема работы нри винилировании представлена на рис. 154. Спирт и 1% щелочи насосом подают в нагретый до 150—180° реактор нод давлением, равным давлению в реакторе. Одновременно в реактор поступает разбавленный азотом ацетилен. Выходящая из верха реактора газовая смесь захватывает с собой эфир, кипящий при значительно более низкой температуре, чем спирт (этилвиниловый эфир кинит при 35°, метилвиниловый эфир нри 8°). Путем глубокого охлаждения гаа освобождается от эфира и возвращается в реактор. Эфир очищается нерегопкой. Небольшая часть газов циркуляции постоянно отводится из установки и заменяется свежим газом. [c.249]

    В настоящее время эти вентиляторы успешно работают на Соликамском магниевом заводе в системе отсоса воздуха, поступающего с установки газоочистки и нейтрализации. Они перемещают газовую смесь с температурой 15—35° С, содержащую до 0,5 г/м хлора, до 0,02 г/м соляной кислоты, 10—25 г/м воды с примесями ТЮС12 и 510012. [c.196]

    При абсорбционном методе можно использовать более низкое давление и более высокие температуры. Газовая смесь под давлением в противотоке контактирует с поглотительным маслом, в котором растворяются все углеводороды, имеющие 2 и более атомов углерода. Метан и водород при этом не абсорбируются и выводятся с установки. Затем газообразные углеводороды выделяются из поглотительного масла и разделяются ректификацией, что после удаления водорода и метана не представляет значительных трудностей. Освобожденное от газообразных углеводородов поглотительное масло возвращается на установку. Выделение газов из поглотительного масла можно провести таким образом, что при этом уже будет иметь место разделение на фракции с определенным числом атомов углерода. Дальнейшее разделение на отдельные компоненты путем перегонки не представляет труда. Часто получаемая при фракционировании чистота уже достаточна для последующей переработки. Абсорбционный метод обладает большими достоинствами для концентрпрования газов с небольшим содержанием олефиновых углеводородов. [c.45]

    Прореагировавшая газовая смесь с температурой около 400°С отводится из нижней части колонны синтеза 14 в котел-утилизатор //на охлаждение до 200°С. Дальнейшее охлаждение газовой смеси до 20°С происходит в теплообменнике 10, водянохм холодильнике первичной конденсации и холодном газовом теплообменнике 5. По выходе из теплообменника 5 циркуляционная (прореагировавшая) газовая смесь смешивается со свежей азотоводородной смесью, и цикл повторяется. Жидкий аммиак выделяется в первичном 8 и вторичном 6 сепараторах, проходит магнитные фильтры 7 и направляется в сборники жидкого Эхммиака 12 и 13. При понижении давления до 2—2,5 МПа из жидкого аммиака выделяются растворенные газы, которые называют танковыми. В установке улавливания паров аммиака из танковых газов получают аммиачную воду. Жидкий аммиак из промежуточного сборника поступает на склад. [c.62]

    Газовая смесь (СО + Н2, СН4, С2Н4) поступает на установку 18, где вначале выделяется этилен, потом метан и фракция СО-ЬНг. Все газы проходят теплообменники И, 12, 14. Метан возвращается в реактор 2, фракция СО + Н2 направляется на синтез метанола. [c.19]

    Необходимые для построения математической модели уравнения кинетики процесса были первоначально записаны исходя из общих теоретических закономерностей, а затем проверены с помощью кинетических кривых, полученных на экспериментальной установке. Эксперимент был организован следующим образом в реактор подавались определенные количества этилена и инертного газа-раз-бавителя, присутствие которого предотвращает возможность образования взрывоопасных концентраций. Газовая смесь на выходе из реактора охлаждалась водой, затем вода и газ разделялись в газожидкостном сепараторе. Пробы газа для химического и масс-спек-трального анализа отбирались после сепаратора. Температура в реакционной зоне и в нескольких точках наружных стенок реактора измерялась с помощью термопар. [c.196]

    Мембранная установка включает 12 мембранных аппаратов, каждый из которых имеет внутренний диаметр 0,1 м и длину 3,0 м, и смонтирована на площади около 60 М-. Продувочные газы, содержащие после стадии синтеза и конденсации около 2% (об.) аммиака, под давлением 14 МПа направляют в скруббер водной промывки для окончательного улавливания КНз. Газовая смесь, очищенная от аммиака и содержащая 62,3% (об.) водорода, 20,9% (об.) азота, 10,4%, (об.) метана и 6,4% (об.) аргона, проходит через 8 последовательно установленных аппаратов I ступени очистки. Пермеат I ступени, содержащий 87,3% (об.) водорода, под давлением 7,0 МПа подают на вторую ступень компрессора свежей азотоводородной смеси и возвращают в производство. Ретант после I ступени разделения направляют на 4 последовательно расположенных мембранных аппарата П ступени. Обогащенный до 84,8% (об.) по водороду газовый поток под давлением 2,5 МПа возвращают на I ступень компрессора свежего газа и далее в цикл. Суммарная степень выделения водорода—87,6%. Обедненный водородом [г=20,8% (об.) И,] ретант после И ступени установки сжигают в трубчатой печи конверсии углеводородов. Работу установки хорошо иллюстрирует табл, 8.4. [c.278]

    На рис. Х.1 дана схема циркуляционной установки для изучения кинетики газофазных каталитических реакций под давлением до 100 ат [10]. Через штуцер 3 шприцем либо другим способом подается заданное количество жидкого реагента, который тут же испаряется реакционный газ дозируется по парциальному давлению. Приготовленную реакционную паро-газовую смесь прокачивают циркуляционным па-н хропатогрцф сосом через слой катали- [c.406]

    Установка для сушки распылением состоит из воздуходувки, нагревателя осушающего газа, распылительного устройства, сушильной камеры, узла для выгрузки высушенного продукта и пылеулавливающих аппаратов. Распылительные сушилки различают по способу подвода сушильного агента, по конструкции распылителя и методу разгрузки материала. Принципиальная схема прямоточной сушильной установки представлена на рис. 85. Линейная скорость газа, рассчитанная на сечение камеры, составляет, как правило, не менее 0,15 м/с. При контактировании сушильного агента и суспензии, диспергированной в виде микрокапель, с поверхности последних происходит интенсивное испарение жидкости. Паро-газовую смесь отсасывают вентилятором 7. При прохождении через циклон 8 (или другие пылеулавливающие устройства) происходит отделение унесенных частиц и их или возвращают в камеру по трубопроводу 6 или подают на последующую обработку. Высушенный до заданной конечной влажности продукт отводят через разгрузочный штуцер 9. [c.234]

    Разделяемая газовая смесь в мембранном аппарате под давлением поступает в напорный канал, где в результате различной проницаемости компонентов через мембрану происходит изменение состава смеси легкопроникающие компоненты смеси (пермеат) после прохождения через селективный слой мембраны выводятся с установки через дренажный канал, а смесь, обогащенная труднопроникающими компонентами (ретант) и не способная проникать через слой мембраны, выводится из разделительного аппарата. [c.74]

    Установки платформинга низкого давления состоят из трех или четырех последовательно соединенных реакторов с неподвижным слоем катализатора. Перед каждым реактором установлен нагреватель. В процессе работы иногда приходится использовать резервный реактор. Делается это следующим образом. Все реакторы снабжены вентилями, позволяющими отсоединить тот или иной реактор от системы и провести регенерацию дезактивировавшегося катализатора. Этот реактор становится резервным, а взамен него в работающую систему подключают реактор со свежерегенерированным катализатором. Реактор, проработавший наибольшее время после регенерации, включают в начало системы, а реактор со свежерегенерированным катализатором - в конец. При таком способе подключения газовая смесь с минимальной концентрацией реагентов взаимодействует с наиболее активным катализатором. [c.89]

    Если для отделения метана и водорода использовать абсорбционный метод, можно ограничиться более низкими давлениями и значительно более высокими температурами. Абсорбциоппый метод заключается в том, что газовую смесь приводят в соприкосновение с поглощающим маслом, движущимся противотоком к газу. Абсорбцию проводят под давлением в условиях, прп которых в масло растворяются углеводороды с двумя и больше атомами углерода, тогда как метан и водород не поглощаются и покидают установку в виде остаточного газа. После этого из поглощающего масла отгоняют углеводороды, которые затем разделяют ректификацией. Поскольку метан и водород удалены, эту ректификацию осуществить гораздо легче. После отпарки углеводородов поглощающее масло возвращают на абсорбционную установку. Газы можно отпаривать от масла и таким образом, чтобы одновременно происходило разделение углеводородов на фракции по числу атомов углерода это облегчает дальнейшее выделение индивидуальных углеводородов ректификацией. [c.149]

    Технологическая схема синтеза углеводородов при атмосферном давлении в газовой фазе представлена на рис. 7.1. Очищенный синтез-газ нагревается в подогревателе (2) и поступает в реактор (1). После реактора парогазовая смесь охлаждается в оросительном холодильнике 4 оборотной водой. При охлаждении выделяется конденсатное масло, которое в смеси с водой выводится снизу холодильника. После отделения масла газовая смесь проходит установку адсорбции (5), где активным углем извлекают газовый бензин и газоль (смесь углеводородов СрСе с небольшим количеством СО, СОз, NS, Нг). Адсорбер периодически продувается паром получаемым с сепараторе (3). Парогазовая смесь направляется на разделение. Синтез-газ после адсорбера (5) проходит подогреватель (6) и поступает в реактор второй ступени (7). Далее процесс аналогичен первой ступени. [c.108]

    Полученную газовую смесь, не требующую сероочистки, конвертируют в бензин и другие продукты над псевдоожиженным катализатором, получаемым из дешевых железных руд (лимонит, гематит, пирит, магнетит), а также из окалины или плавленого железа. В качестве активирующей добавки применяют К2СО3 (0,5—1,5%). Процесс ведут при 300—350° и 25—30 ат в больших цилиндрических конверторах, в которых железный катализатор во взвешенном состоянии реагирует с реакционной смесью, причем охлаждается водой, циркулирующей в трубах. Схема такой установки показана на рис. 72. Газ, полученный из метана с кислородом в генераторе 1 (СО+2Н2), охлаждается в холодильнике 2 и направляется в нижнюю [c.698]

    Жидкие продукты из сепаратора высокого давления 5 дросселируются в сепаратор среднего даапения 7, из которого в виде газовой фазы отбираются легкие углеводороды 1- 4, а также сероводород и аммиак. Эта газовая смесь очищается от сероводорода в абсорбере моноэтаноламином (на схеме не показано) и направляется на установку разделения углеводородных газов на сухой газ (С1-С2) и сжиженный газ — углеводороды С3-С4. [c.282]

    Облегченная паро-газовая смесь с верха колонн 9 проходит конденсатор-холодильник 10 охладивпшсь до 30-35 С, разделяется в сепараторе И на газ пиролиза, направляемый на компрессию и далее на газоразделение, и обводненный конденсат легкого масла, которое отделяют от воды в отстойнике 12. Легкое масло частично подают на верх колонн 9, а балансовое количество легкого масла после отпаривания в колонне 14 откачивают с установки. [c.48]

    По нааначанию циклы охлаждения можно подразделить на рефрижераторные, ожижительные и газоразделительные. Рефрижераторные циклы предназначены для охлаждения и термостатирования различных объектов при низких температурах. Ожижительные установки находят применение в процессах получения жидких кислорода, азота, водорода, метана и других газов. Гаэоразделительные установки используют для выделения, например, из воздуха или природного газа их компонентов. Иногда подвергают ректификации предварительно ожиженную газовую смесь. [c.59]

    Когда в реакционной трубке 4 установится требуемая температура. 290—300°С, через установку пропускают газовую смесь из газометра ео скоростью 0,6 л/ч. Бели работают по первому варианту схемы, то вначале омесь вьшускают через кран III под тягу, пока е будет удален весь азот. Затем подают прореагировавшую газовую смесь в конденсаторы метана. Скон-денсировавш ийся метан очищают от примесей СО, На и N2, как описано на стр. 59—76, 308, 313. [c.308]

    Схема лабораторной установки термоокисления пека приведена на рис. I. Исходный пек или другое сырье загружают в стеклянный реактор 10 и нагревают электрическим нагревателем П. Регулируя микрокомпрессор 3, если окисление ведут воздухом, или редукторы баллонов с кислородом / и инертным газом 2, если окисление осуществляют газовой смесью с переменным содержанием кислорода, устанавливают необходимый расход окислителя. Количественные измерения и контроль расхода газа-окислителя осуществляют с помощью реометров 4ц газовых часов 5. Газовая смесь после смесителя 6 обязательно проходит через осушительную склянку 7. Содержание кислорода в исходной и отходящей газовых смесях определяют с помощью хроматографа. [c.28]


Смотреть страницы где упоминается термин Установки газовых смесей: [c.48]    [c.90]    [c.78]    [c.269]    [c.68]    [c.578]    [c.53]    [c.35]   
Справочник по разделению газовых смесей методом глубокого охлаждения (1963) -- [ c.363 , c.364 ]




ПОИСК





Смотрите так же термины и статьи:

Аппараты и установки для разделения жидких и газовых смесей

Газосмесительная установка для приготовления стандартных газовых смесей фтористых соединений и разработка методики их определения повышенной точности. А. Н. Бужин

Прил ожение 3. Некоторые требования, которые необходимо соблюдать при установке мокрых газгольдеров для ацетилена и газовых смесей, содержащих ацетилен или аммиак

Туркельтауб и А. А. Жуховицкий. Новые хроматографические газоанализаторы и установки для анализа сложных газовых смесей

Установка мембранного разделения газовых смесей

Установка приготовления стандартных газовых смесей

Установка с движущимся слоем активного угля, для разделения газовой смеси на три фракци

Установки для криогенной очистки и разделения ряда других газовых смесей

Установки для разделения газовых смесей

Установки для разделения жидких и газовых смесей с помощью мембран

Установки смесей



© 2025 chem21.info Реклама на сайте