Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Относительный вес Пентан

Таблица 3.1. Относительная стоимость изомеризата пентан-гексановой фракции, полученного в процессе низкотемпературной изомеризации, в зависимости от его октанового числа Таблица 3.1. <a href="/info/69240">Относительная стоимость</a> изомеризата <a href="/info/1577687">пентан-гексановой фракции</a>, полученного в <a href="/info/28405">процессе низкотемпературной</a> изомеризации, в зависимости от его октанового числа

Рис. 1. Зависимость логарифма относительного объема удерживания от температуры кипения (для определения коэффициентов селективности) (Байер, 1959). Неподвижная фаза — гексатриаконтан. 1 — к-парафины 2 — ароматические углеводороды 3 — циклопарафины. Объемы удерживания отнесены к н-пентану. Рис. 1. <a href="/info/301103">Зависимость логарифма</a> относительного объема удерживания от <a href="/info/6377">температуры кипения</a> (для <a href="/info/1431858">определения коэффициентов селективности</a>) (Байер, 1959). <a href="/info/5671">Неподвижная фаза</a> — гексатриаконтан. 1 — к-парафины 2 — <a href="/info/7163">ароматические углеводороды</a> 3 — циклопарафины. Объемы удерживания отнесены к н-пентану.
    Константы равновесия изомеризации, как скелетной, так и структурной, также слабо меняются с температурой (для них малы не только теплоты, но и изменения энтропии), и это приводит к относительной стабильности состава равновесной смеси в довольно щироком диапазоне температур. Содержание изопрена в равновесной смеси трех изомеров при 300 К составляет 37%, а при 700 К — 30%. Если в равновесной смеси при изомеризации присутствуют только один структурный изомер и ИЗ "-прен (это гипотетический случай), содержание последнего может быть повышено до 50—59%. Таким образом, изомеризация пипериленов в изопрен в проточном реакторе затронет не больше трети сырья и потребует значительной рециркуляции. Учитывая, что изомеризация скелета диенов сопровождается интенсивными побочными реакциями перераспределения водорода, представляется более целесообразным (по технологическим, а не термодинамическим соображениям) превращать пиперилены в н-пентан или н-пентен, изомеризация которых реализуется в промышленности. В ряде работ, в том числе и нашей [39], предложены каталитические системы для гидрирования пипериленов. [c.214]

    В случае пропана и н-бутана мононитрозамещенные образуются практически в таком же отношении, в каком и изомерные хлорпроиэ-водные при хлорировании этих парафинов. Процессы нитрования изобутана и пентанов протекают запутаннее, так как относительно высокие температуры способствуют появлению побочных реакций. В результате хотя и образуются все теоретически возможные изомеры нитропарафинов, но не Б тех соотношениях, как при галоидировании. [c.561]

    При добавлении 0,4 г/кг ТЭС приемистость составляет для тяжелых ароматизированных фракций (выше 145—150 °С) и для бензина каталитического крекинга (установка 1А/1м)—3—7 для прямогонного бензина и фракции выше 140°С (установка 22/4) — 32 для пентан-амиленовой фракции термокрекинга — 24. Как уже отмечалось, приемистость существенно снижается в случае присутствия соединений серы — относительное понижение приемистости пропорционально концентрации соединений серы в степени [c.207]


    Задание. Определить относительные удерживаемые объемы на полярной и неполярной жидких фазах 1) н-парафинов — пентана, гексана, гептана, октана, нонана (в качестве внутреннего стандарта использовать пентан) 2) ароматических углеводородов — бензола, толуола, м- п о-ксилола, мезитилена (внутренний стандарт — пентан). [c.123]

    Суть этого механизма сводилась к тому, что гидрогенолиз циклопентана на Pt/ является типичной дублетной реакцией при реберной двухточечной адсорбции углеводорода на поверхности платины. Согласно предложенному механизму, на поверхности катализатора происходит последовательная адсорбция двух соседних атомов углерода. При этом вероятность адсорбции каждого из них пропорциональна числу связанных с ним Н-атомов. Исходя из этого, вероятности адсорбции первичного, вторичного и третичного атомов углерода равны соответственно 3, 2 и 1. Таким путем с помощью предложенной схемы предпринята попытка объяснить разные относительные скорости гидрогенолиза различных связей кольца. Однако эта схема не объясняла, почему на Pt/ не подвергаются гидрогенолизу н-пентан или циклогексан, которые могут адсорбироваться на поверхности платины совершенно таким же способом и, казалось, могли бы реагировать по тому же дублетному механизму. [c.124]

    Механизм. Литература по изомеризации пентанов содержит некоторые предположения относительно возможных механизмов реакции. Имеющихся в настоящее время доказательств, по-видимому, недостаточно, чтобы дать определенное объяснение всем наблюдаемым фактам. Однако появились некоторые положения, которые заслуживают обсуждения. [c.25]

    Термодинамически — процесс изомеризации низкотемпературный, причем низкие температуры способствуют образованию более разветвленных и соответственно более высокооктановых изомеров. Однако для увеличения скорости превращения изомеризацию ведут при относительно высокой температуре 380—400°С. Используют катализаторы, содержащие платину, палладий, нанесенные на оксид алюминия или цеолит. Промышленный отечественный катализатор ИП-62 содержит около 0,5% на оксиде алюминия активация катализатора проводится фтором. Позднее были разработаны и другие, более эффективные, катализаторы — НИП-66 (алюмоплатиновый, 0,6% Р1, промотированный хлором), ИЦК-2 (0,8% Рс1 на цеолите СаУ) [20]. В присутствии катализатора НИП-66 процесс проводят при низкой температуре (до> 130—140°С). Так, при 150°С, объемной скорости подачи н-пентана 1,5 и давлении 3 МПа в катализате получали около 65% изопентана. На промышленном катализаторе ИП-62 при 380— 450 °С выход изопентана за однократный пропуск сырья составил 50—55% для повышения выхода целевого продукта процесс проводят с рециркуляцией непревращенного н-пентана, в итоге выход изопентана достигает 96—98% (на н-пентан), т. е. близко к теоретическому. [c.76]

    Примечание х—молярная доля, % —количество извлекаемой жидкости молекулярная масса пентанов + высшие 95 кг/моль относительная плотность 0,769. [c.69]

    При переходе компонента из газовой фазы в жидкость выделяется определенное количество энергии, известной под названием теплоты абсорбции. По величине она несколько больше, чем скрытая теплота конденсации. Эта теплота поглощается абсорбентом и газом, поэтому температура их на выходе из абсорбера должна повышаться. Общее количество выделяющегося тенла пропорционально количеству поглощенных углеводородов, так как теплота абсорбции легких углеводородов мало зависит от их строения. В некоторых случаях (когда желательно вести процесс нри определенной температуре) абсорбент перед подачей в абсорбер охлаждают до необходимой температуры. В зависимости от температуры перерабатываемого газа в качестве абсорбента применяются масла с относительной молекулярной массой, равной 100—200. При температуре около —17° С применяются масла с относительной молекулярной массой 120—140, при 37,8° С — 180—200. В отрегенерирован-ном масле на выходе из выпарной колонны допускается небольшое содержание более легких, чем пентан, компонентов. Для уменьшения потерь масла от испарения при выборе его необходимо учитывать температуру абсорбции. [c.130]

    Последовательность процесса стабилизации. Общепринято считать, что стабильность углеводородов снижается с уменьшением относительной молекулярной массы. Метан, например, является наименее химически активным соединением во всем классе парафинов. По уменьшению термической стабильности (увеличению реакционной способности) углеводороды располагаются в следующем порядке метан, этан, пропан, изобутан, нормальный бутан, неопентан, нормальный пентан, изопентан, нормальный гексан, 2-метилпентан. [c.37]

    Составляют колонку с выбранным соотношением длин секций со скваланом и адипонитрилом. Общая длина колонки должна быть 600 см. Проводят анализ бутан-бутиленовой фракции на составной колонке в указанных условиях. Результаты определений относительных удерживаемых объемов, найденных экспериментально, а также рассчитанных по рис. УП1,3 и уравнению <УП1.15), сводят в таблицу (стандарт — пентан)  [c.213]


    Алкилирование пропилена изобутаном проводили при 400 °С под давлением 280—1050 кгс/см в присутствии 1,2,3-трихлорпро-пана и 1,2-дихлорпропана [10]. В результате получались 2,2-диметил-пентан и 2-метилгексан. С повышением давления образуется больше 2-метилгексана, что свидетельствует об уменьшении относительной скорости реакции третичного атома углерода. Другими катализаторами термического алкилирования под давлением являются тетраэтилсвинец [И] и перекиси (например, перекись бензоила [12], перекись третп-бутила [13]). [c.253]

    Ход работы. Получают у преподавателя контрольную смесь н-парафинов и ароматических углеводородов. Хроматографируют их на двух готовых колонках с неполярной и полярной НЖФ. Определяют для них удерживаемые объемы на неполярной и полярной жидких фазах. Затем рассчитывают относительные удерживаемые объемы, используя в качестве внутреннего стандарта пентан. [c.222]

    Объем удерживания компонентов остается постоянным лишь при одинаковых условиях анализа, к которым относятся температура колонки и сорбционные свойства наполнителя (имеется в виду, что и газ-носитель тот же). Чтобы и время выхода осталось то же, должен быть одинаковым и расход газа-носителя. Практически перечисленные условия опыта в силу разных причин могут в какой-то степени измениться. Поэтому целесообразнее пользоваться не абсолютными значениями объемов удерживания, а относительными. Для этого объем удерживания (или время выхода) какого-либо компонента (например, н-бутана) условно принимается за единицу по отношению к его объему удерживания в тех же условиях опыта определяют относительный объем удерживания других компонентов. Предположим, что н-бутан выделяется на шестой минуте, н-пентан на девятой, а пропан на третьей. В этом случае относительное время выхода (или относительное время удерживания) у н-пентана 9 6 = 1,5, а у пропана 3 6 = 0,5. [c.73]

    При хлорировании обоих изомерных пентанов, содержащихся в технических пентановых фракциях, можно ожидать образования следующих изомерных монохлорпроизводных. Относительные количества этих изомеров определяются скоростями реакции атомов водорода различных типов (см. главу IX Закономерности реакций замещения пара-4)ииовых углеводородов , стр. 548). [c.178]

    Пример 11.3. Нагретая до температуры начала кипения (при заданном давлении) четырехкомпонентная смесь пропан, изобутан, н-бутан и н-пентан подается в полную ректификационную колонну с целью получения практически чистого н-пентана в качестве нижнего продукта. Состав сырья и летучесть его компонентов приведены в табл. 11.3. Для упрощения техники расчета вместо констант фазового равновесия использовались усредненные коэффициенты относительных летучестей компонентов, взятые согласно уравнению (11.119) по отношению к наиболее тяжелому компоненту — к-пентану. [c.369]

    Относительную летучесть изопентана (по отношению к нормальному пентану) найдем как среднее геометрическое от летучестей в верхней и нижней частях колонны (см. табл. 11,20) [c.105]

    Имеются данные об относительной силе растворителей для разных адсорбентов. Для 8102 сила растворителей увеличивается в ряду пентан (0) < [c.309]

    По одному из способов сульфохлориды переводят в сульфофториды, которые в отличие от них обладают исключительной термической устойчивостью. В результате моно- и дисульфофториды с успехом отделяются друг от друга ректификацией. Сульфофториды получают из сульфохло-Р Идов относительно легко и с хорошими выходами при нагревании последних с концентрированными водными растворами фтористого калия [145]. В основу второго способа разделения моно- и дисульфохлоридов положено наблюдение, что вследствие более высокого содержания кислорода ди- и полисульфохлориды уже не растворяютс , в пентане. Поэтому ди- И полисульфохлориды от продуктов монозамещения можно отделить, добавив к их смеси относительно большое количество пентана и перемещав все вместе при охлаждении до —30°. В этих условиях моносульфохлориды растворяются еще легко, в то время как ди- и полисульфохлориды полностью не растворимы [146]. [c.598]

    Продолжительность этих периодов времени недостаточна, чтобы произошли заметные изменения состава насыщенных углеводородных масел, вызываемые одним нагреванием при температурах, полученных при измерениях на забое скважин, что подтверждается расчетами Сейера, а также Мак-Нэба с сотрудниками, упомянутыми выше. На это указывает и тот факт, что состав нефтей не соответствует термическому равновесию смесей при температурах, наблюдаемых в нефтяных пластах. Относительное содержание углеводородов в нефтях определяется, с одной стороны, стерическими факторами, а с другой стороны, факторами, связанными с природой промежуточного карбоний-иона (см. ниже) в реакциях образования углеводородов. Так, неопентан не образуется в алкилатах и очень редко находится в нефтях и притом только в очень малых количествах, хотя при низких температурах он является наиболее устойчивым из пентанов. Катализаторы, принимая участие во многих химических реакциях, могут также оказывать влияние на природу образующихся углеводородов, как, например, в процессе Фишера-Тропша в присутствии кобальтового катализатора получается бензин, содержащий высокий процент нормальных углеводородов и обладающий октановым числом 40, в то время как в присутствии железного катализатора при прочих равных условиях получается бензин с малым содержанием нормальных парафиновых углеводородов и обладающий октановым числом порядка 75 и выше. [c.87]

    Уббелоде получил измеримые количества продуктов, кипящих выше температур кипения карбонильных соединений от С до С4 при окислении н-пентана при атмосферном давлении. Он проводил окисление в системе с циркуляцией при температурах от 320 до 350° С, отделяя к-пентан и низкокипящие продукты от конденсата и возвращая их в реактор [63]. Во фракции конденсата 65—95° С он выделил 2-метилтетрагидрофуран и обнаружил несколько ненасыщенных соединений, вероятно, дигидро-пиранов. Предположение Уббелоде относительно образования циклической окиси путем внутренней дегидратаций гидроперекиси является, по-видимому, наиболее удовлетворительным объяснением из всех, которые могут быть предложены. [c.339]

    Циклопентан. Циклопентан подвергается гидрогенолизу в пентан над платиной при 300° в присутствии водорода с образованием небольших количеств побочного продукта [70, 85, 169, 170]. В присутствии двуокиси углерода циклонентановое кольцо не разрушается. Относительная легкость, с какой циклопентан подвергается гидрогенолизу, не может быть [c.255]

    Основными горючими компонентами нефтяных паров являются предельные углеводороды метан, этан, пропан, бутан (с изомером), пентан (с изомером), гексан (с изомерами). Углеродород- ный состав нефтяных паров сильно зависит от степени подготовки лефти. Так, в парах сырых нефтей, а также после сепарации/газа и обессоливания довольно велико содержание метана и этана, шричем относительное содержание компонентов в паровой фазе сильно изменяется после каждого захода нефти в дышащие резерв- -вуары на пути движения с промыслов. Однако после стабилизации нефти колебания состава паров становятся менее значитель- ными, в парах почти полностью исчезает метан, уменьшается содержание этана, возрастает содержание пентана и гексана, а юсновную массу паров многих стабилизированных нефтей составляют пропан и бутан. Такие особенности углеводородного состава [c.18]

    Основное различие в продуктах реакции состояло в том, что алкилат в реакции с фтористым изопропилом содержал больше октанов и меньше гептанов. Количество вошедшего в реакцию изобутана в первом случае составляло 1,19 моляна 1 моль пропилена, авовтором—1,29 моля на1 моль фтористого изонропила. Относительные выходы (от теоретического) различных продуктов реакции соответственно составляли пропана 25 и 34,5%, пентанов (главным образом изопен аны) 2,5 и 7,1%, гексанов (в основном 2,3-диметилбутаны) 4 и 7,2%, 2,3-диметилпентана 37,7 и 24,3 %, 2,4-диметилпентана 18,6 и 17,2 %, метилгексанов 1,3 и 0,5%, три- [c.334]

    В связи с тем, что для вычисления истинного объема удерживания требуется вводить ряд поправок на сопротивление колонки потоку газа-носителя, на объем удерживания несорбируюхцихся компонентов газа и др. обычно на практике используют понятие относительного объема удерживания Уд отн- Его определяют по отношению к какому-либо стандартному вещ еству, объем удерживания которого условно принят равным единице. В качестве стандартного вещества может быть принят один из компонентов анализируемой смеси. Для этой цели при анализе газов наиболее шкроков распространение получили и-бутан и н,-пентан. [c.94]

    Составить колонку из выбраиногосоотношения длин секций сорбентов со скваланом и адипонитрилом. Общая длина колонки 600 см. Провести анализ бутан-бутиленовой фракции на составной колонке в указанных выше условиях. Результаты определений относительных удерживаемых объемов, найденных экспериментально, а также рассчитанных по рис. 43 и уравнению (V. 12), свести в таблицу по следующей форме (стандарт — пентан)  [c.117]

    Первый способ — идентификация по относительному удерживаемому объему Уг(отн). Относительный удерживаемый объем (отю представляет собой отношение V, анализируемого вещества к У стандарта в одних и тех же условиях. Относительный удерживаемый объем стандарта принимается за единицу. Международной комиссией по номенклатуре (на I симпозиуме по газовой хроматографии, Лондон, 1956 г.) был предложен ряд стандартных веществ. В качестве стандартов наибольшее распространение получили пентан (для углеводородов), масляная кислота (для жирных кислот), метиловый эфир миристиновой кислоты (для эфиров высших жирных кислот), Внутри одного класса соединений график зависимости lg Уг(отн) обычно представляет собой прямую линию. [c.117]

    Добываемая из недр земли нефть содержит некоторое количество растворенных в ней газов, главным образом метана и его гомологов. Конпептрация таких углеводородов в нефти тем больше, чем выше давление в пласте, чем ниже темнература и удельный вес нефти. По мере движения нефти из забоя скважины до нефтезаводских хранилищ низкомолекуляршле метан, этан и пропан, улетучиваясь, увлекают с собой бутан, пентан и другие более тяжелые углеводороды, являющиеся ценнейшими компонентами авиабензинов. Относительная величина потерь весьма велика и доходит до 4% (см. табл. 55). [c.209]

    Алканы можно алкилировать, обрабатывая их растворами устойчивых карбокатионов [162] (см. т. 1, разд. 5.2). Как правило, при этом получается смесь продуктов, поэтому реакцию не использовали в препаративных целях. В типичном эксперименте при обработке пропана изопропилгексафтороантимонатом (МегС+ЗЬРб ) получается 26 % 2,3-диметилбутана, 28 % 2-ме-тилпентана, 14 % 3-метилпентана и 32 % -гексана, а также некоторое количество бутанов, пентанов (образующихся по реакции 12-46) и высших алканов. Отчасти смесь образуется благодаря межмолекулярному обмену водорода (КН-]-К +ч= К+-Ь + К Н), который намного быстрее алкилирования, так что продуктами алкилирования оказываются также производные новых алканов и карбокатионов, образующихся при реакции обмена. Кроме того, присутствующие в реакционной смеси карбокатионы подвержены перегруппировке (см. т. 4, гл. 18), в результате которой возникают новые карбокатионы. Таким образом получается смесь продуктов, представляющих собой сочетание всех имеющихся Б системе углеводородов и всех карбанионов. Как и следует ожидать на основании относительной устойчивости, [c.441]

    В нижней части пласта выявлена нефть. Состав газа Лугинецкого месторождения характеризуется относительно небольшим содержанием этана, около 3,5%, повышенным относительно этана содержанием пропана до 3%, бутанов около 1,5%, до 1% пентанов и более высокомолекулярных углеводородов. [c.92]

    Исследованы [10,12 ] высокомолекулярные АО нефтей Сургутского свода Имилорского, Салымского и Верхнесалымского месторождений, а также самотлорской нефти, общая характеристика которых представлена в табл. 3. АО осаждали из сырых нефтей газообразным НС1. Выделенные пз солей концентраты АО разделяли на растворимые и нерастворимые в к-пентане фракции (табл. 10). Принятым методом [10, 12] удалось осадить 76—88% АО нефтей. Относительное содержание АО изменяется симбатно с содержанием смолисто-асфальтеновых веществ. Поскольку в верхне-салымской нефти АО концентрировались слабо, их нарабатывали из предварительно выделенных деасфальтизатов. [c.17]

    Катализатор. Для изомеризации бутанов, пентанов, гексанов и смешанных фракций С5—Се используется один и тот же катализатор, состоящий из раствора хлористого алюминия в хлористой сурьме, промотированного безводным хлористым водородом. Катализатор остается низковязок и при условиях процесса 60—100°С и давлении 21 ат изб. Относительные концентрации компонентов катализатора изменяются в зависимости от изомеризуемого сырья. [c.151]

    Температура 100 °С выбрана из соображений, чтобы самый легкокинящий пз нормальных парафиновых углеводородов (и-пентан) оставался адсорбированным и не улетучивался в течение I0 мин десорбция нормальных иарафинов в указанных температурных условиях начинает проявляться ири относительных давлениях ниже 0,01. После того, как определено суммарное содержание нормальных парафинов и олефипов, из образца химическими методами удаляют олефипы и ароматические углеводороды и в оставшейся смеси нафтенов п нормальных парафинов определяют содержание последних, пересчитывая их в последующем на исходный образец, Концентрация олефиновых углеводородов вычисляется как разность первого н второго определений. Продолжительность анализа около 1 ч, точность определения ио оценке авторов 5%. [c.493]

    Это объясняется тем, что разделяемые компоненты смеси (изопентан и н -пентан) имеют очень близкие температуры кипения и, следовательно, мало отличаются по относительной летучести. Поэтому, если в изопентановой колонне температура куба ниже, то изопентан уходит с кубовым продуктом и в дистилляте его содержание незначительно, то есть отбор изопентана от потенциала, а, следовательно, и выход изопентановой фракции малы. В случае же завышения температуры куба происходит повышение содержания н-пентана в дистилляте и уменьшается чистота целевой изопентановой фракции. Таким же образом, если в дебутанизаторе температура низа ниже, то в кубовый продукт, являющийся сырьем изопентановой колонны попадает большое количество бутанов, которые затем оказываются в изопентановой фракции и понижают ее чистоту. Если температура в кубе дебутанизатора выше, то значительные количества изопентана уходят с пропан - бутановой фракцией и его содержание в целевой изопентановой фракции уменьшается. В работе [13] изучено влияние температуры куба предтоварной колонны на качество и энергоемкость ректификации действующей установки разделения алкилата в производстве изопропилбензола и найдено, что повышение температуры куба от 164 до 165 °С приводит к 2 - х кратному росту энергозатрат в кипятильнике и сокращению потока ИПБ - сырца от 6000 до 3500 кг/ч. [c.211]


Смотреть страницы где упоминается термин Относительный вес Пентан: [c.353]    [c.540]    [c.280]    [c.71]    [c.68]    [c.94]    [c.157]    [c.24]    [c.59]    [c.7]    [c.19]    [c.105]   
Справочник по разделению газовых смесей (1953) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Паули принцип запрет Пентан, относительная реакционная способность С связей при

Пентан

Пентан нормальный относительные объемы

Удерживаемые объемы углеводородов относительно я-пентана



© 2025 chem21.info Реклама на сайте