Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термический статистические

    Вычислите константу равновесия Кр реакции термической диссоциации иода Ig = 21 при 1274 К и 1,0133 10 Па, если А// реакции равен 148,766 10 Дж/моль, частота колебания молекулы 1 (Ое = 214,25 10 м-1, момент инерции 750, 1-10" кг м. Статистический вес нулевого электронного уровня атома иода 4, а нулевого электронного уровня молекулы 1 единица. [c.282]


    В этой связи представляет интерес то, что второе из уравнений (21.30) представляет собой ранее упоминавшееся термическое уравнение состояния (20.28). В старой литературе свободную энергию Гельмгольца многократно привлекали для рассмотрения конденсированных фаз. Объясняется это тем, что вначале интересовались зависимостью от температуры и, принимая во внимание очень слабую зависимость от давления (в области давлений, доступных для обычных методов измерения), пренебрегали различием между постоянным объемом и постоянным давлением. Современное значение свободной энергии Гельмгольца основано прежде всего на том, что этот термодинамический потенциал особенно подходит для расчетов методом статистической термодинамики. [c.107]

    Циклический характер работы реакционных аппаратов, связанный с довольно частыми изменениями давления, быстрым нагревом и резким охлаждением, вызывает значительные механические нагрузки и термические напряжения в металле. Образование трещин в местах приварки корпуса к опоре аппарата и деформация фланца нижней горловины наблюдаются практически на всех установках. В табл. 17 приведены статистические данные по дефектам в коксовых камерах в тече- [c.126]

    Термодинамика позволила создать рациональный метод расчета равновесий. Однако формальность построения термодинамики ограничивает область ее применения. Термодинамика не может описать скорости процессов. Предсказания положений равновесия в термодинамике носят абсолютный характер. Между тем из приведенной в гл. II статистической трактовки энтропии ясно, что состояния с меньшими значениями энтропии возможны, хотя и менее вероятны. Эти отклонения от равновесных состояний (флуктуации) также не описываются термодинамикой. Наконец, в рамках термодинамики не вскрывается механизм процессов, связь между макроскопическими свойствами тел (термические и калорические коэффициенты) и микроскопическими характеристиками молекул. [c.201]

    Статистическая механика вскрыла механизм процессов и позволила свести термические (теплота, теплоемкость и др.), термодинамические (энтропия, свободная энергия и др.) и кинетические (коэффициенты диффузии, вязкости и др.) характеристики к микроскопическим (радиусы молекул, частоты колебаний, энергии связей и др.). Однако эти микроскопические характеристики не являются первичными и могут быть сведены к характеристикам элементарных частиц, из которых состоят атомы и молекулы. При решении подобных задач обычно осуш,ествляются следующие стадии. [c.421]


    Таким образом, квантовая механика в отличие от классической описывает не простую динамическую связь, а статистические закономерности. Эти закономерности в термических явлениях представляются вполне естественными. Они возникают в результате наличия большого числа динамических связей, которые, накапливаясь, приводят к статистическим соотношениям. Эти динамические связи весьма трудно, а часто и нерационально рассматривать, но они являются первичными. [c.430]

    Чтобы подчеркнуть статистический характер понятия электронейтральность плазмы и пригодность его для значительных объемов и достаточно больших промежутков времени, вместо термина нейтральность часто применяют термин квазинейтральность плазмы. Квазинейтральность — характерное свойство термической плазмы. Электронейтральность плазмы может быть нарушена под действием внешних электрических полей. Если в плазму вводится заряженное тело, то вблизи его происходит поляризация плазмы. Она сводится к притяжению зарядов противоположного знака и к отталкиванию зарядов одинакового знака от этого тела. При этом поле введенного тела экранируется. Расстояние экранирования равно дебаевскому радиусу. [c.248]

    В лекциях 9—11 была дана количественная интерпретация на основе молекулярно-статистической теории адсорбции и полуэмпирической теории межмолекулярных взаимодействий адсорбат — адсорбент термодинамических характеристик адсорбции при нулевом заполнении поверхности. Перейдем теперь к большим заполнениям поверхности, при которых проявляются также и межмолекулярные взаимодействия адсорбат — адсорбат, т. е. к интерпретации изотермы адсорбции и состояния адсорбированного вещества при малых п средних заполнениях, ограничиваясь адсорбцией на однородной поверхности инертного адсорбента. Адсорбция различных адсорбатов даже на однородной плоской поверхности графитированной термической сажи (см. лекции 1, 7—10) зависит от природы адсорбата и адсорбента, характера межмолекулярных взаимодействий адсорбат — адсорбент и адсорбат — адсорбат. На рис. 12.1 сопоставлены зависимости дифференциальной теплоты адсорбции д от адсорбции Г, а на рис. 12.2 — соответствующие изотермы адсорбции паров воды, этанола, бензола и н-пентана на поверхности ГТС при комнатной температуре (см. также рис. 1.4, 1.5, 7.4, 7.6, 8.8, 8.9). Межмолекулярное взаимодействие с ГТС неспецифическое, поэтому способность молекул воды, этанола и бензола к специфическим межмолекулярным взаимодействиям, в частности к образованию водородных связей, при взаимодействии с ГТС не реализуется. [c.222]

    Вычислить константу равновесия реакции термической диссоциации иода Кр 12 = 21 при 7 = 1274 К и 1,0133-10 н/м , если А(АЯо°) реакции 148,766-10 дж/кмоль, частота колебания в молекуле иода (1)0 ==214,25-102 момент инерции вращения молекулы иода / = 750,1 кг-м . Статический вес нулевого электронного уровня атома иода равен 4, статистический вес нулевого электронного уровня Ь равен единице. [c.245]

    Химия изучает вещества и их превращения. Свойства веществ опреде.пя-ются атомным составом и строением молекул или кристаллов. Химические превращения сводятся к изменению атомного состава и строения молекул. Поэтому понимание химических процессов невозможно без знания основ теории строения молекул и химической связи. Число известных химических соединенш имеег порядок миллиона и непрерывно возрастает. Число же возможных реакций между известными веществами настолько велико, что вряд ли можно надеяться на описание их всех в обозримом будущем. Поэтому так важно знание общих закономерностей химических процессов. Термодинамика позволяет предсказать направление процессов, если известны термические характеристик, веществ — теплоты образования и теплоемкости. Для многих веществ этих данных нет, но они могут быть с высокой точностью оценены, если известно строение молекул или кристаллов, если известна связь между термодинамическими и структурными характеристиками веществ. С другой стороны, статистическая термодинамика позволяет рассчитывать химическое равновесие по молекулярным постоянным частотам колебаний, моментам инерции, энергиям диссоциации молекул и др. Все эти постоянные могут быть найдены спектральными и другими физически.ми методами или рассчитаны на основе теоретических представлений, но для этого надо знать основные законы, управляющие движением электронов в атомах и молекулах, и строение молекул. Это одна из важных причин, почему мы должны изучать строение молекул и кристаллов, теорию химической связи. [c.5]

    Статистическим методом выведите термическое уравнение состояния идеального газа. [c.49]

    Статистическим методом рассчитайте для аргона при стандартных условиях а) молекулярную статсумму Q б) стандартную энтропию в) энергию термического возбуждения [c.58]


    I. в основе расчета энтропии вещества по термическим данным лежит тепловой закон Нернста или постулат Планка, согласно которым энтропия твердых чистых кристаллических веществ при абсолютном нуле равна нулю 5о=0 (см. разд. I. 10). Это положение не следует из первого и второго начал термодинамики, а является самостоятельной закономерностью, базирующейся на экспериментальных данных и представлениях статистической механики. Подробное изучение энтропий при низких температурах показало, что постулат Планка соблюдается далеко не для всех веществ, т. е. энтропия многих из них при абсолютном нуле имеет некоторое небольшое значение (порядка 3—4 Дж/моль-К). Однако, поскольку для расчета равновесий нужны значения энтропии не самих веществ, участвующих в реакции, а их алгебраическая сумма, то значение Д5о оказывается в большинстве случаев очень малым, что и позволяет произвести вычисления с достаточной точностью, если ею пренебречь. Ввиду того, что вблизи абсолютного нуля все вещества находятся в твердом состоянии, постулат Планка позволяет рассчитать энтропии при любой заданной температуре. [c.378]

    В теории жидкостей, как и в теории газов, термическому уравнению состояния уделяется существенное внимание, и нередко термодинамические функции жидкости рассчитывают, опираясь именно на это уравнение. В таком случае уравнение состояния выступает как результат молекулярно-статистического рассмотрения, а другие термодинамические функции находят с помощью чисто феноменологических соотношений. Путь расчета аналогичен описанному ранее для реальных газов. Приведенные в гл. XI, 2 дифференциальные соотношения, очевидно, могут быть применены и к жидкостям они могут быть проинтегрированы от нулевой плотности до плотности, соответствующей исследуемой жидкой системе, если для всего этого интервала плотностей известно термическое уравнение состояния (таким образом, требуется уравнение для областей как жидкого, так и газообразного состоянии). Учитывая, что при нулевой плотности вза- [c.377]

    Для определения зависимости свойств твердых остатков термической деструкции от конечной температуры и скорости иагрева, крупности исходного кускового угля в лабораторных условиях было проведено исследование с применением математико-статистических методов планирования эксперимента. [c.172]

    В настоящей работе объектом исследования была взята смола пиролиза бензина с Ново-Полоцкого нефтеперерабатывающего завода. Термическая обработка сырья проводилась в кварцевом реакторе при температуре 420 °С, атмосферном давлении, времени выдержки от 0,5 до 4 часов. Продукты различной степени карбонизации анализировались по показателям температура размягчения, молекулярная масса, групповой химический состав, содержание непредельных углеводородов. При изучении химических превращений смолы пиролиза был использован спектраль-но-статистический метод определения структурно-группового состава. [c.131]

    Рассмотрены статистические методы планирования эксперимента в применении к исследованию и оптимизации различных процессов термической обработки, химико-термической обработки, порошковой металлургии, напыления покрытий, прокатки, резки и получения новых материалов в металловедении и в смежных областях. Особое внимание уделено интерпретации и эвристическим возможностям полученных моделей с целью совершенствования рассматриваемых процессов. [c.319]

    Число термически возбужденных электронов определяется статистическими законами (точнее говоря, так называемой статистикой Ферми— Дирака), однако наиболее важный критерий состоит в том, что их число будет значительным, только если энергетическая щель порядка или менее кТ к — постоянная Больцмана). [c.234]

    С увеличением температуры реакции длина кинетической цепи реакции деполимеризации ПИБ 2 уменьшается, в то время как константа скорости деполимеризации ПИБ возрастает. Это связано с ростом вклада термической составляющей, увеличивающей вероятность статистической (по закону случая) деградации макромолекул, а также реакций передачи и обрыва цепи. [c.242]

    На основании данных, полученных в результате исследований, предложена кинетическая модель и выявлены кинетические закономерности процесса пиролиза. Составление кинетической модели, основанной на истинном механизме радикально - цепных реакций, весьма сложно даже для термического пиролиза, не говоря уже о термоконтактном и каталитическом пиролизе, где значительную роль играют процессы, связанные с поверхностью катализатора (внешняя и внутренняя диффузия). В связи с этим во многих работах, связанных с составлением кинетических моделей, для обработки экспериментальных данных предлагается использовать вероятностно - статистические методы. На основании данного метода содержание 1-го компонента в системе определялось по формуле [c.9]

    Термическая деструкция — это процесс разрушения макромолекул под влиянием повышенных температур. При термической деструкции одни полимеры разрушаются с образованием коротких цепей различного строения (полиэтилен, полипропилен), другие— с образованием мономера (полиметилметакрилат, полиизобутилен, поли-а-метилстирол). Деструкция первых протекает по закону случая (статистически)  [c.67]

    Разрушение нативной глобулы — денатурация белка — отличай от перехода глобула — клубок, описанного в 3.5. Гетеро-полимерный статистический клубок является лишь конечным, отдаленным результатом денатурации. Белковая цепь сравнительно коротка, глобула не имеет флуктуирующей опушки . Превращение такой глобулы в клубок должно быть фазовым переходом второго рода. Однако при термической денатурации белка наблюдаются разрывы, энтальпии и энтропии — АЯ и AS. Характерные значения для разностей АН и TAS порядка 400 кДж/моль. [c.117]

    Рассмотрению мономолекулярных реакций посвящено большое количество работ. Банкером [220] были подробно сформулированы задачи теории мономолекулярных реакций, которые могут быть решены методом классических траекторий. Одной из таких задач является вычисление функции распределения f (т) по временам т спонтанного распада молекулы. Статистическая теория J>PКМ [164] предполагает экспоненциальный вид этой функции на временах, больших среднего периода колебания термически активированной молекулы. Проверка справедливости такого предположения и вычисление f (т) для конкретной молекулы в зависимости от характера активации и параметров потенциала являются одной из основных задач теории мономолекулярного распада, которая может быть успешно решена с помощью расчета классических траекторий. Очень тесно сюда примыкает вопрос о применимости моделей слабосвязанных гармоничес ких осцилляторов и свободного перераспределения энергии между нормальными модами. [c.123]

    Скорость коррозии в кислотах зависит и от состава, и от структуры стали и увеличивается с возрастанием содержания как углерода, так и азота. Степень увеличения зависит главным образом от предшествующей термической обработки (см. разд. 6.2.4), и она больше для нагартованной стали (см. рис. 7.3). Для исследования влияния малых добавок легирующих элементов на коррозию промышленной углеродистой и низколегированных сталей в 0,1 н. H2SO4 при 30 °С были использованы статистические методы [33]. Для изученных сталей скорость коррозии увеличи- [c.124]

    Следствием нормального распределения компонентно-фракционного состава по свободным энергиям образования является аналогичное распределение состава по стандартным температурам кипения, теплотам фазовых переходов, молекулярным массам, геометрическим характеристикам компонентов и фракций и т.д., рис 2.1. Уравнение (2.2) означает, что различные компоненты МСС связаны в единую энергетическую систему, и выступают, как единый статистический объект. Индивидуальность компонентов отходит на второй план. В э той ситуации различные по химическому составу системы в различных процессах, при условии совпадения средних значений энергии Г иббса, проявляют близкие химические и физические свойства. Такие системы будем рассматривать как изоэнергетические или изореакционные. Например, нами установлено, что совершенно различные нефтяные фракции и индивидуальные углеводороды с точки зрения кинетики процесса пиролиза ведут себя одинаково в условиях высоких температур, независимо от химичекой природы сырья и от того, каталитический этот процесс или термический. Так, были изучены различные системы от индивидуальных углеводородов до высокомолекулярных нефтяных фракций и наГще-на универсальная зависимость фактора жесткости процесса пиролиза, которая характеризует отношение суммарной массы пиролиза до Сз включительно, к массе пропилена (глава 3). На рисунке 2.2 [Ш, 11] представлена зависимость фактора [c.50]

    Канонический ансамбль соответствует закрытой изотермической системе, которая характеризуется значениями V, N и Т. Такая система находится в термическом равновесии с окружающей средой и может обмениваться с ним энергией. Каноническйи ансамбль оказался наиболее удобным для целей статистической термодинамики. [c.180]

    Для отдельных поворотных изомеров К имеет наибольшее зна- чеЕие для вытянутых транс-форм молекул, особенно при низких температурах, а наименьшее—для изомеров с наиболее свернутыми молекулами. Статистические средние значения для адсорбции н-бутана, н-пентана и н-гексана близки к соответствующим опытным значениям, полученным из газохроматографнческих измерений удерживаемых объемов Уад на графитированной термической саже. Это говорит о возможности переноса исправленных с помощью 1пк, опытных данных для этана и пропана атом-атомных потенциалов (9.42) и [c.173]

    Для С2Н4 при 1000 К статистическим методом рассчитайте теплоемкость и энтальпию термического возбуждения. [c.57]

    Как видно из соотношений (II. 120) и (II. 121), обусловленный межмолекулярными взаимодействиями вклад в термодинамические функции полностью определяется конфигурационным интегралом, и нахождение конф(Т,У,М) представляет основную проблему молекулярно-статистической теории реальных систем. Заметим, что конфигурационным интегралом задается, в частности, термическое уравнение состояния системы. Действительно, из сомножителей правой части выражения (11. 118) только 2конф зависит от объема  [c.127]

    Для исследования колебаний химического состава, твердости, ударной вязкости и относительной износостойкости стали 45 были взяты образцы из 40 плавок Кузнецкого металлургического завода. Образцы из каждой плавки подвергались двум стандартным режимам термической обработки нормализации и термоулучшению. Для каждого вида термообработки проводились самостоятельные исследования. Статистическая обработка результатов испытаний сводилась к построению кривых нормального распределения и расчету их параметров. Критерием оценки соответствия полученных результатов закону нормального распределения выбран критерий Пирсона Р у ) [6]. [c.152]

    Собственная полуширина рентгеновской линии составляет около 2 эВ. Налример, для Ка-излучения марганца (5,898 кэВ) полуширина равна приблизительно 2,3 эВ, что составляет около 0,039% от энергии максимума. Полуширина линии Мпх , полученная в 51 (Ь1)-спектрометре, увеличивается обычно до 150 эВ или до 2,5% от энергии максимума. Такое увеличение ширины линии является следствием, во-лервых, статистического разброса числа носителей заряда, создаваемых захваченными моноэнергетическими фотонами из-за дискретной природы процесса во-вторых, неопределенности, вводимой термическими шумами в процессе усиления. Распределение числа носителей заряда для моноэнергетического фотона хорошо олисывается гауссовой кривой (рис. 5.19). Полуширину этого распределения можно рассчитать геометр ическим квадратурным сложением при учете двух источников шума (объяснение этого приводится в гл. 2 )по уравнению [c.216]

    При синтезе низкомолекулярного ПИБ вследствие кинетических особенностей процесса катионной полимеризации изобутилена обычно получается продукт с широким ММР МуМ > 5-6), что, как правило, при регламентированной среднечисловой молекулярной массе приводит к возрастанию кинематической вязкости полимерного продукта. Поскольку вязкость определяет эксплуатационные свойства олигоизобутиленов, в современном производстве после стадии сушки готовый продукт подается на колонну четкой ректификации, где по высоте колонны отбираются фракции олигоизобутиленов соответствуюш их марок, при этом улучшается качество продукта по ширине ММР, образуется меньшее количество технологических отходов. При статистической деструкции в процессе термического воздействия на ПИБ (550-650 К), также сужается ММР полимера (МУМ,, > 2). [c.299]

    Микроструктуру сополиимидов на основе полиамидокислот можно регулировать варьированием условий циклизации. Было установлено, что при циклизации под действием химических агентов, протекающей в мягких условиях и не осложненной деструктивными или обменными реакциями, образующийся сополиимид по микрогетерогенности идентичен соответствующей полиамидокислоте. В результате же термической циклизации, сопровождающейся обменными реакциями как из блок-, так и из статистических сополиамидокислот, получаются преимущественно статистические сополиимиды. [c.75]

    Например, среди сополиэфиров, полученных на основе метилгидрохинона и дихлораигидридов терефталевой и л<-карборандикарбоновой кислот, взятых в мольном соотношении 1,0 0,4 0,6, способностью перехода в ЖК-расплав обладает только сополимер блочного строения с К = 0,69, = 0,06 (табл. 3.5). Для сополимеров, имеющих строение полимерной цепи, близкое к статистическому (К = = 1,06- 1,14, = 0,32- -0,40), способность перехода в ЖК-состояние определяется, как видно, прежде всего соотношением в их структуре остатков дикарбоновых кислот. С уменьшением содержания звеньев л<-карборандикарбоновой кислоты возрастает склонность полимеров к кристаллизации и образованию ЖК-расплава, увеличивается температура перехода в ЖК-состояние, сужается температурный интервал мезофазы, верхний предел которого ограничивается температурой начала интенсивной термической деструкции сополиэфиров. [c.185]

    Выше 906 °С сталь представляет собой немагнитный твердый раствор углерода в -железе (аустенит). Строение этого твердого раствора характеризуется простым статистическим распределением атомов углерода (поскольку их количество недостаточно для образования упорядоченной структуры). Надежно установлено, что в аустените атомы углерода занимают октаэдрические пустоты в структуре у-железа. При медленном охлаждении аустенита сначала проис.ходит выделение избытка углерода в виде цементнта, 1ак как пастворимос ь углерода падает при 690" С до 0,9%. Ниже этой температуры а-Ре станов]ггся неустойчивым и твердый раствор углерода в у-Ре превращается в эвтектоидную смесь феррита и цементнта. Феррит представляет собой фазу почти чистого а-железа, содержащую в вк, о твердого раствора лишь 0,06% углерода. Освободившийся углерод входит в состав цементита. Эта эвтектоидная смесь, называемая перлитом, имеет тонкозернистую полосчатую структуру, обладает перламутровым блеском и очень низкой твердостью. Другой крайний случай термической обработки состоит в закаливании аустенита до температуры ниже 150 °С, в результате чего образуется мартенсит, являющийся пересыщенным твердым раствором углерода в а-железе и содержащий до 1,6% С. Он характеризуется высокой твердостью, и именно его присутствием объясняется твердость закаленной стали. (Исходная -< трук-тура твердого раствора может сохраниться при закаливании лишь при наличии в стали других металлов, о чем сказано выше.) Твердую и хрупкую сталь, получающуюся в результате [c.501]


Смотреть страницы где упоминается термин Термический статистические: [c.98]    [c.402]    [c.76]    [c.218]    [c.329]    [c.750]    [c.366]    [c.210]    [c.411]    [c.386]    [c.463]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.2 , c.171 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.2 , c.171 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ статистический термический



© 2024 chem21.info Реклама на сайте