Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография колонки разделительная способност

    Разделительная способность хроматографической колонки в значительной степени зависит от значения удельной поверхности сорбента. Поэтому в распределительной хроматографии неподвижную [c.179]

    Разделительная способность как адсорбционной, так и распределительной хроматографической колонки в значительной степени зависит от развития удельной поверхности сорбента. Поэтому в распределительной хроматографии неподвижную жидкость наносят на твердые зерненые носители с большой удельной поверхностью. Однако следует учитывать, что наряду с растворением компонентов разделяемой смеси в этой жидкости может иметь место также и адсорбция на поверхности носителя при недостаточном покрытии жидкостью. Кроме того, возможны адсорбционные процессы на границах газ — жидкая пленка и жидкость — твердый носитель. Это особенно относится к хроматографии на модифицированном сорбенте. Этот метод является промежуточным между газо-жидкостной и газо-твердой хроматографией. Он основан на том, что твердый адсорбент, являющийся неподвижной фазой, покрыт (модифицирован) небольшим количеством жидкости. В этом случае разделение обусловлено как адсорбцией на поверхности раздела газ — твердое тело, так и абсорбцией в жидкости. [c.17]


    По своей разделительной способности газовая хроматография — наиболее эффективный из всех известных методов хроматографического анализа С появлением капиллярных колонок разделительная способность газовой [c.520]

    Известно, что в последние десятилетия основная масса традиционных химических и инструментальных методов анализа смесей органических веществ полностью вытеснена бурно прогрессирующей хроматографией. С учетом того, что разделительная способность хроматографических колонок (аналогия с ректификацией ) достигает тысяч теоретических тарелок, причем относительная летучесть анализируемых веществ может целенаправленно варьироваться в широких пределах применением селективных стационарных фаз, хроматография практически не имеет ограничений, связанных с близостью и сходством физико-химических свойств анализируемых веществ. По существу единственным условием применимости метода газожидкостной хроматографий является способность компонентов заданной смеси испаряться при нагревании в токе инертного газа для разделения и анализа термически нестабильных веществ эффективно используются методы тонкослойной и распределительной колоночной хроматографии. Однако применение хроматографических методов осложняется в случаях, когда анализируемые вещества характеризуются способностью к взаимодействию с электростатически неоднородным сорбционным полем твердых носителей, особо высокой реакционной способностью и т. д. Всеми этими свойствами, к сожалению, отличается и формальдегид, и сопутствующие ему обычно вещества — вода, метанол и в особенности муравьиная кислота. Без преувеличения можно сказать, что хроматографирование перечисленных веществ, за исключением, может быть, метанола, в течение долгого времени представляло задачу, решение которой потребовало разработ- [c.128]

    Блок хроматографических колонок. Колонка является наиболее важной частью любой хроматографической системы, поскольку независимо от других элементов хроматографической схемы характеристики хроматографа определяются в первую очередь разделительной способностью хроматографической колонки. [c.47]

    Прогресс в газовой хроматографии был достигнут с помощью высокоэффективных хроматографических колонок. Очень трудные задачи разделения компонентов, весьма сходных по свойствам, возможны лишь на высокоэффективных хроматографических колонках. Однако для многих целей использование хроматографических колонок с максимальной разделительной способностью либо не является необходимым, либо нецелесообразно, так как процесс приготовления такой колонки оказывается слишком трудоемким, а продолжительность анализа слишком велика. Если принять во внимание это обстоятельство, то прежде всего следует иметь в виду цели применения хроматографической колонки. [c.67]


    НИЗКОКИПЯЩИХ компонентов разделительная способность хуже. Такая зависимость проявляется тем отчетливее, чем выше температура колонки она определяет границы применимости хроматографических колонок в изотермических условиях. Чтобы увеличить разделительную способность колонки по отношению к каждому компоненту, целесообразно применять хроматографию с программированием температуры, которая будет обсуждена ниже. [c.71]

    Размер пор твердого носителя имеет большое значение для разделительной способности колонки (Бейкер, Ли и Уолл, 1961). В настоящее время оптимальная величина пор не установлена, но уже можно сказать, что носители, обладающие большим числом тонких пор с диаметром от 0,5-10" до 1,5 10 мм, наиболее подходящи для газовой хроматографии. При нанесении неподвижной фазы большая часть ее попадает в эти тонкие поры и лишь тонкая пленка покрывает остальную поверхность, так что внешне материал остается сухим при этом достигается высокая эффективность разделения. Она значительно ухудшается, если большинство пор имеет диаметр больше 1,5 -10" мм или если наносится слишком большое количество неподвижной фазы, так что заполняются также крупные поры. Эти большие лужицы масла вследствие их глубины обладают меньшим отношением поверхности к объему, чем тонкие поры, ввиду чего растворенное (в неподвижной фазе) анализируемое вещество задерживается в жидкости более долгое время, чем в тонких порах. Вследствие этого полосы расширяются и эффективность разделения ухудшается. На твердые носители, поверхность которых содержит преимущественно большие поры, следует поэтому наносить лишь малые количества неподвижной фазы. С другой стороны, мелкопористый материал, например силикагель, мало пригоден в качестве твердого носителя, так как при этом слишком длинные тонкие поры (диаметр 0,25-10" —1,0 10" мм) заполняются неподвижной фазой и отношение к объему тоже слишком мало, так что обмен веществ замедляется и разделительная способность ухудшается. Путем соответствующей обработки (см. разд. 1.7) можно, однако, расширить поры силикагеля (Киселев и Щербакова, 1961). [c.78]

    Аналитическая практика ставила перед газовой хроматографией все более сложные проблемы разделения, решение которых требовало применения высокоэффективных хроматографических колонок. Чешир и Скот (1958), используя известные к тому времени теоретические закономерности, подобрали сорбент, размеры хроматографических колонок и рабочие условия таким образом, что была достигнута высокая разделительная способность, соответствующая 30 ООО теоретических тарелок. На этих колонках впервые было тогда проведено газохроматографическое разделение и- и м-ксилолов. Одновременно эти опыты выявили возможные границы дальнейшего повышения эффективности. [c.311]

    Кроме высокоэффективных и экстремально быстрых анализов с помощью капиллярных колонок можно проводить анализ широких фракций. Варьирование рабочих условий при работе на капиллярных колонках очень скоро показало, насколько уменьшается эффективность разделения при увеличении области температур кипения разделяемых компонентов. Примером этого может служить анализ семи к-алканов (рис. 31) при хорошем разделении изомеров. При еще более широкой области температур кипения, охватывающей примерно 12—15 членов гомологического ряда, разделение, конечно, значительно ухудшается. В то время как на заполненных колонках могут быть разделены все члены гомологического ряда, содержащиеся в таких пробах, капиллярная газовая хроматография при значении критерия разделения для гомологов К = 2—6 обладает такой разделительной способностью, что может отделять, кроме того, отдельные изомеры. [c.349]

    Программирование температуры может быть с успехом применено в капиллярной хроматографии. Если при выборе оптимальных условий опыта учитываются особенности метода, разделительная способность практически не уменьшается и высокая эффективность капиллярных колонок сочетается с преимуществами программирования температуры. [c.412]

    Приведенные уравнения показывают, что разделительная способность хроматографической колонки является функцией большого числа параметров, влияющих на эффективность проведения анализа. Умение управлять этими параметрами позволяет экспериментатору расширить возможности применения газовой хроматографии для решения различных специальных задач, в том числе задач, связанных с изучением и совершенствованием процессов горения. [c.99]

    Элюция белков с колонки. Скорость протекания элюента по колонке при ионообменной хроматографии сказывается на результатах разделения. При медленном токе жидкости, например порядка 8 мл/см -ч, разделение лучше, чем при токе жидкости через ту же колонку со скоростью 20 мл/см -ч. На разделительной способности колонки сказывается и крутизна создаваемого градиента элюции чем круче градиент, тем острее пики на кривой элюции, однако лучшему разделению способствует более пологий градиент. [c.111]


    Первоначально в качестве носителя был использован силикагель [58, 591. Его основной недостаток — нежелательная адсорбция, вызывающая размазывание веществ по колонке и значительные потери. Аналогичное явление наблюдают иногда и при хроматографировании на бумаге. О путях преодоления этих недостатков будет сказано ниже. Теперь же рассмотрим случаи, когда адсорбция, наоборот, способствует разделению веществ. На столбике крахмала с закрепленной на нем водой при использовании бутанола в качестве подвижной фазы аланин хорошо отделяется от глицина. Судя по коэффициентам распределения этих веществ, рассматриваемый случай относится к категории распределительной хроматографии. Однако оказалось, что аланин также хорошо отделяется от глицина при промывании колонки не бутанолом, а водой (рис. 412, а) [16]. Аналогичное явление было обнаружено и в случае другой пары веществ — лейцина и фенилаланина (рис. 412, б) [16]. Даже замена воды 0,1 н. соляной кислотой не ухудшала разделения. Таким образом, в данном случае разделительная способность столбика крахмала в значительной степени обусловлена адсорбцией. [c.449]

    Достоинства распределительной газовой хроматографии, получившей в последние годы наиболее широкое применение, заключаются в быстроте проведения анализа, высокой разделительной способности, возможности проводить многократное разделение на одной и той же колонке, возможности работы в микромасштабе и т. д. Преимуществом этого метода является также возможность широкого выбора неподвижных фаз. Неподвижная [c.514]

    Возможности этого метода Мартин [1811 обсуждал еще в 1956 г. Другие исследователи [117, 2061 описали различные устройства для циркуляционной газовой хроматографии. В этом случае газовая смесь, выходящая из хроматографической колонки, снова возвращается в нее, и эта операция продолжается до тех пор, пока не будет достигнуто заданное разделение смеси. Колонку обычно составляют из двух полукругов, круговой ток газа-носителя осуществляется при помощи насоса. Этот способ позволяет использовать короткие колонки, повышать нх разделительную способность, а также работать с летучими неподвижными фазами. [c.519]

    Комбинация хроматографии и масс спектрометрии накладывает ограничения и на условия работы хроматографической части системы Выбор неподвижной фазы в ГХ—МС играет очень большую роль помимо ее разделительной способности необходимо принимать во внимание такие факторы как вынос фазы и ее разложение с образованием летучих продуктов, которые, попадая в масс спектрометр, образуют фоновый масс-спектр, мешающий идентификации компонентов анализируемой смеси По этой же причине температура работы колонки в ГХ — МС обычно выбирается ниже, чем в обычной ГХ с той же неподвижной фазой [c.126]

    Хроматографирование сырых нефтей необходимо проводить на хроматографах с применением пламенно-ионизационного детектора при следующих условиях колонка — медный капилляр диаметром 0,25 мм, длина колонки 25 м, эффективность 20 тыс. теоретических тарелок, неподвижная фаза — апиезон Ь. Предварительно была экспериментально проверена разделительная способность нескольких жидких фаз (апиезон Ь, ОУ-101, 5Е-30). Лучшие результаты получены при использовании в качестве неподвижной фазы апиезона Е. Г аз-носитель — водород давление водорода на входе в колонку 0,8 кгс/см линейное программирование температуры — 4 °С/мин включение программы — после ввода пробы. Температура программирования от 100 до 320 °С. [c.404]

    В последнее время начали применять капиллярную хроматографию (см. ниже), в которой анализируемую смесь и газ-носитель пропускают через длинный узкий капилляр (из стекла, нейлона или иного материала), покрытый внутри тонким слоем растворителя. Подобные капиллярные колонки обладают особенно высокой разделительной способностью. [c.258]

    Для упрощений состава исследуемой смеси сульфидов часть ее (80 мл) была разогнана на стеклянной колонке разделительной способностью, эквивалентной 25теоретическим тарелкам, при остаточном давлении 50 ммрт. ст. на фракции объемом по 1—2 мл, каждая из которых была подвергнута газожидкостной хроматографии. Из Полученных узких фракций были выделены препаративно отдельные сульфиды, образующие на хроматограмме исходной смеси большие четкие. пики. Для этой цели использовалась хроматографическая колонка длиной 450 см  [c.158]

    На рис. 3 показаны результаты, нолученные на трех колонках (сходных во всех отношениях, за исключением природы жидкой неподвижно фазы) для трехкомпонентной смеси. В случае, обозначенном цифрой 1, максимумы компонентов ясно разделяются, но колонка очень неэффективна, если судить по величине ВЭТТ. В случае, обозначенном цифрой 2, применена другая неподвижная фаза, которая дает очень высокую эффективность колонки, в соответствии с небольшой величиной ВЭТТ, но на этой жидкости нельзя разделить три компонента. В случае, обозначенном цифрой 3, высокая эффективность колонки и разделительная способность дополняют друг друга, чем достигается полное разделение компонентов, хотя максимумы отстоят друг от друга не дальше, чем в первом случае. Ясно, что для полной оценки результатов, полученных методом газовой хроматографии, нужно учитывать оба свойства колонки — разделительную способность и эффективность. [c.63]

    Если разделение на таких ионообменниках проводится методом жидкостной хроматографии при высоких лав 1сниях. ю прежде всего следует обратить внимание на следующую зависимость когда давление превысит некоторое определенное значение, линейная скорость элюента перестает расти с увеличением перепада давления на колонке. В таких случаях давление превышает прочность матрищ. . При этом часто ухудшается также разделительная способность колонки. Уменьшение давления не обязательно приведет к восстановлению первоначальных свойств разделительной колонки (разделительная способность, проницаемость и др.). [c.189]

    Самым эффективным из современных методов исследования состава слоншых смесей и структуры присутствующих в них компонентов можно считать хроматомасс-снектрометрию, сочетающую огромную разделительную способность газовой хроматографии с высокой чувствительностью и идентификационной мощью масс-снектрометрии (метод ГХ — МС). Для создания этого метода потребовалось решить две главные технические задачи разработать быстродействующие масс-спектрометры с очень большой скоростью развертки спектров (за время, меньшее времени элюирования любого соединения из ГХ колонки) и специальных сепарирующих устройств для концентрирования элюатов. Современные масс-спектрометры позволяют получить спектр вещества в интервале массовых чисел 50—500 за время, меньшее 1 с, при разрешении т/Ът= 500 и более [328, 329]. Отделение большей части (80— 90%) газа-носителя от элюирующихся органических соединений, необходимое для поддержания в масс-спектрометре низких остаточных давлений, возможно с помощью молекулярных сепараторов различных типов струйных [330, 331], эффузионных с тонконорис-тыми стеклянными трубками [332] или металлическими мембранами [333, 334], сепараторов с полупроницаемыми полимерными мембранами (тефлоновой [335], силиконовой [336]) и др. [c.40]

    А. Мартин, М. Голей, Р. Скотт и Д. Дести в Англии разработали в 1957—1960 гг. метод капиллярной хроматографии. Вместо колонки с адсорбентом в этом случае применяется длинный капилляр из стекла или из меди, внутренний диаметр которого составляет 0,2 мм. Стенки этого узкого канала покрыты тонким слоем органического растворителя, нанример сквалана (углеводород СзоНаг)- Длина капилляра, свернутого в спирали, составляет несколько десятков метров. Наибольшей разделительной способностью обладают очень [c.225]

    Для разделительной способности колонки большое значение имеет размер пор твердого носителя. Носители с порами диаметром от 0,5-10-2 дд 1,5.10-3 наиболее пригодны для газо-жид-костной хроматографии. При нанесении жидкости на такие носители большая часть жидкости попадает в поры и лишь тонкая пленка покрывает остальную поверхность. При этом достигаётся высокая эффективность разделения. При размерах пор более 1,5-10-3 эффективность разделения уменьшается вследствие заполнения крупных пор жидкостью. Эти места поверхности обладают меньшим отношением поверхности к объему, чем тонкие поры, поэтому растворяющееся вещество задерживается в жидкости, что вызывает дополнительное размывание. [c.72]

    Сущность и особенности физико-химических процессоь в газо-жидкостной хроматографии. Факторы, определяющие разделительную способность газожидкостной колонки. Сравнение с аналитической дистилляцией. [c.297]

    Широко используются различные известные варианты хроматографии, в том числе и наиболее распространенный — жидкостноадсорбционный. На рис. 63, U—г изображены схемы аппаратурного оформления колоночной хроматографии. Отношение диаметра колонки к ее высоте составляет 1 10, 1 15, а количество сорбента берут в 50 100 раз больше, чем количество разделяемой смеси. В качестве неподвижной фазы в жидкостно-адсорбционном варианте чаще всего применяют оксид алюминия различной активности или силикагель с размером гранул 100—150 или 150—200 мкм. С уменьшением размеров гранул разделительная способность сорбента возрастает, однако одновременно возрастает и гидродинамическое сопротивление всей колонки. Для ускорения хроматографического процесса элюент подают под давлением (рис. 63, д). [c.59]

    При разделении газовых смесей методом гйзо-адсорбционяой хроматографии иопользуют различие в шособности компонентов смеси адсорбирораться на сорбенте. В колонку, наполненную адсорбентом, вводят газовую смесь и пропускают через колонку газ-носитель. При этом скорость движения компонентов разделяемой смеси через слой адсорбента различна, она больше для компонентов, которые трудно сорбируются, и меньше для легко сорбируемых компонентов. В результате происходит разделение компонентов газовой смеси, и они вымываются из колонки газом-носителем в определенной последовательности. И в данном случае высокая разделительная способность хромате- [c.60]

    Оптимальным вариантом между крупным зернением (преимущества которого — равномерность заполнения, небольшое сопротивление потоку газа и малая величина времени удерживания) и возможно меньшей величиной р и, следовательно, А является зернение 0,05—0,8 мм, причем особенно в интервале 0,15—0,30 мм. Чтобы повысить разделительную способность колонки, можно из этих фракций путем дальнейшего фракционирования получить фракции 0,15—0,18 0,18—0,25 и 0,25—0,30 мм. Каждая из этих фракций дает хорошие результаты разделения последняя фракция, по данным Бекера, Ли и Уолла (1961), имеет особые преимущества при больших скоростях потока газа (более 100 мл1мин). Эти величины, рекомендуемые для аналитических колонок, совпадают с данными исследований, проведенных для препаративной газовой хроматографии с целью изучения соотношений между максимальной производительностью и минимальным временем удерживания. Битей (1962) нашел, в частности, что самое короткое время удерживания, исправленное с учетом перепада давления, получают тогда, когда отношение диаметра колонки к диаметру частиц составляет около 25. Для обычно применяемых в аналитических целях колонок диаметром 6 мм это соответствует величине зерна 0,24 мм. [c.77]

    Вскоре, однако, оказалось, что разделительная способность капиллярных колонок не соответствовала столь высокому числу теоретических тарелок. Пернелл дал этому явлению первое объяснение и предостерег от переоценки возможностей капиллярных колонок. Многочисленные практические применения и подробные исследования (см. также Штруппе, 1962) убедительно показали, что капиллярная газовая хроматография все же позволяет повысить эффективность разделения. Несмотря на экспериментальные трудности, капиллярная газовая хроматография нашла вскоре широкое применение, и в 1961 г. появилось сообш ение о ее использовании для количественного анализа (Халас и Шнейдер). [c.312]

    Наилучшими свойствами для эксклюзионной хроматографии биополимеров обладают TSK-гели типа SW. Поверхность этих материалов покрыта гидрофильными ОН-грутопами по особой технологии, обеспечивающей исключительную инертность сорбента, практически не уступающую сефадексу. Поэтому эксклюзионное разделение, как правило, не осложняется побочными сорбционными процессами. ТЗК-гели SW выпускают с тремя размерами пор и они перекрывают диапазон молекулярных масс от 5 10 до 4 10 (по декстрану) или до 10 (по глобулярным белкам). За счет большого объема пор колонки, с этими гелями характеризуются высокой разделительной способностью, а их гарантированная эффективность составляет 16 тыс.т.т./м. Калибровочные кривые для некоторых модифицированных жестких сорбентов приведены на рис. 4.11. [c.109]

    В качестве маностата используют редукционные вентили, тонкие игольчатые вентили, ртутные маностаты различных конструкций, дрос-селируюш.ие капилляры и т. д. Сопротивление колонки, как правило, выражают в миллиметрах ртутного столба. При аналитической хроматографии чащ,е всего применяют избыточное давление, так как колонка, работаюш.ая при уменьшенном давлении, обычно обладает меньшей разделительной способностью. При препаративной хроматографии иногда используют вакуум, что дает возможность понизить температуру тем самым устраняют опасность конденсации фракций до поступления их в приемник. [c.494]

    ГО разделяемого материала крайне необходима в промышленных процессах. Но использование метода ЖХ для разделения больших количеств сопряжено с определенными трудностями. Довольно ограниченная емкость хроматографических сорбентов означает, что чрезмерное увеличение нагрузки колонки ухудшает ее разделительную способность. В то же время размеры хроматографической колонки нельзя увеличивать до бесконечности, поскольку это приводит к возникновению других проблем, таких как проблема нанесения пробы, появление нежелательных мертвых объемов и т. д. В хроматографии всегда необходимо находить компромиссные решения. Изложенная ситуация часто изображается схемой, приведенной на рис. 9.1. Этот треугольник показывает, что если мы хотим увеличить емкость, то жертвуем скоростью и(или) разрешением. В общем случае, для того чтобы работать в линейной области изотермы сорбции, количество вещества, вводимого на колонку с обычной емкостью, не должно превышать 1 мг на 1 г сорбента. Следовательно, на препаративной колонке, содержащей 1 кг сорбента, можно разделить без заметного ухудшения ее разделительной способности пробу, масса которой не превышает 1 г. Вводимое количество можно увеличить, но только до такого уровня, при котором эффективность колонки и ее разрешение еще обеспечивают необходимый выход продукта желаемой оптической чистоты. Табл. 9.1 дает представление о величине пробы для колонок различных размеров. [c.226]

    Адсорбционная способность, а следовательно, и размывание хроматограф ческих пиков существенно меньше, чем на огнеупорных кирпичах, однако бел1 носители обладают и меньшей разделительной способностью. Носители П-типа рекомендуются для разделения полярных веществ. Зерна белых носител более хрупки, чем зерна огнеупорных кирпичей, но вместе с тем из-за более одн родной формы зерен белые носители обеспечивают меньшие потери давления п прохождении газа через колонки. [c.244]

    Газовая хроматография (ГХ) представляет собой метод разделения, в котором в качестве подвижной фазы используется газ. Компоненты образца, анализируемого этим методом, должны образовывать с подвижной фазой, так называемым газом-носителем, газовую смесь. С помощью газовой хроматографии можно анализировать вещества, парциальное давление которых при температуре хроматографической колонки составляет не меньше 1 мм рт. ст. Вещества должны быть химически устойчивыми и термостабильньши. В настоящее время газовая хроматография является одним из цаиболее распространенных аналитических методов. Этот метод нашел широкое применение в фармации и клинической биохимии. К достоинствам ГХ относится высокая разделительная способность, чувствительность и быстрота анализа. ГХ можно использовать и в препаративных целях для выделения индивидуальных веществ. [c.142]

    Автором настоящей книги в 1957 г. было предложено проводить разделение газовых смесей для аналитических целей, используя разницу в вязкости и применяя длинные капилляры внутренним диаметром около 0,2 мм. Были проведены некоторые опыты, подтвердившие возможность такого разделения [89]. В 1957 г. Мартин, а затем Голей выдвинули предложение применять длинные капи.л-ляры (несколько десятков метров) для газо-жидкостной хроматографии, покрывая внутреннюю поверхность капилляра тем или иным растворителем. Таким путем возникла аналитическая капиллярная хроматография, при помощи которой удается разделять очень сложные смеси веществ (см. главу 6). Разделительная способность такой хроматографической капиллярной колонки может быть очень высокой (сотни тысяч теоретических тарелок). При подобном аналитическом разделении в длинной капиллярной хроматографической колонке вязкость компонентов и коэффициенты их трения о стенки капилляра, по-видимому, также играют определенную роль. [c.233]

    Принципиальная схема газовых потоков прибора приведена на рис. 3. Анализатор содержит термостат для двух плоских спиралеобразных колонок, систему переключения, детекторы, регулятор потока газа и расходомер. Колонки прижимаются к термостатированной алюминиевой пластинке. Температура пластинки измеряется платиновым термометром сопротивления и регулируется электронным регулятором. Система переключения с мембранными клапанами и детекторы вмонтированы в один латунный блок, который термостатируется вместе с колонками. Латунным блоком соединены также впускные отверстия для обеих колонок и сборник фракций. Система переключения дает возможность использовать для разделения первую, вторую или последовательно обе колонки. Кроме того, можно использовать первую колонку для предварительного разделения, а вторую колонку для разделения некоторой узкой фракции, даже отдельного пика, полученного из первой колонки. Как показали опыты, такая возможность сильно повышает разделительную способность хроматографа. Конечно, колонки должны иметь различное заполнение, например, первая содержит силиконовое масло, а вторая — дифенилформамид. В таком случае анализ отдельных фракций первой колонки на второй колонке дает результаты намного лучшие, чем при простом последовательном подключении этих двух колонок. Во всех перечисленных режимах можно работать со сборником фракции или пропускать газ мимо, сборника. Переключатель потока имеет всего 9 положений. [c.375]


Смотреть страницы где упоминается термин Хроматография колонки разделительная способност: [c.94]    [c.57]    [c.22]    [c.312]    [c.60]    [c.446]    [c.446]    [c.8]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.2 , c.9 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.2 , c.9 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимосвязь эффективности колонки и разделительной способности в газовой хроматографии. С. С. Обер (пер. Б. И. Анваер, ред. М. И. Яновский)

Колонки разделительные

Хроматография разделительный



© 2025 chem21.info Реклама на сайте