Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рекомбинация и диспропорционирование радикалов

    Элементарная реакция, при которой радикалы образуются из молекулы (при мономолекулярном распаде) или молекул (при бимолекулярном диспропорционировании молекул на радикалы), называется реакцией инициирования цепи. Реакции превращения одних радикалов в другие, при которых расходуется исходное вещество, называются реакциями продолжения цепи. Реакции, при которых радикалы гибнут, превращаясь в стабильные молекулы в результате рекомбинации или диспропорционирования, называются реакциями обрыва цепи. Если реакция радикала с молекулой приводит к образованию малоактивного радикала, который практически вступает только в реакции диспропорционирования и рекомбинации, то реакцией обрыва цепи является реакция образования этого радикала. При рекомбинации и диспропорционировании радикалов скорость реакции обрыва цепи пропорциональна квадрату концентрации радикалов, и такой обрыв цепей называется квадратичным. При обрыве цепей в результате образования малоактивных радикалов, не способных к реакциям продолжения цепи, скорость пропорциональна концентрации радикалов в первой степени, и такой обрыв называется линейным. [c.50]


Рис. 5.5. Вид распределений Шульца (У) и Флори (2), характерных для радикальной полимеризации при обрыве путем рекомбинации и диспропорционирования радикалов Рис. 5.5. Вид <a href="/info/460756">распределений Шульца</a> (У) и Флори (2), характерных для <a href="/info/724">радикальной полимеризации</a> при обрыве <a href="/info/351722">путем рекомбинации</a> и диспропорционирования радикалов
    В1 связи с особой ролью реакций олефинов с радикалами в процессе глубокого крекинга в монографии рассмотрен вопрос о вычислении стерических факторов реакций присоединения и замещения радикалов с олефинами, алканами и другими молекулами, а также реакций рекомбинации и диспропорционирования радикалов. [c.8]

    В монографии рассмотрены применения третьего закона термодинамики и приближенных следствий из него к расчету констант равновесия радикальных реакций присоединения и замещения, рекомбинации и диспропорционирования радикалов, реакций молекулярного диспропорционирования алканов и алкенов и реакций изомеризации радикалов, наряду с параллельным расчетом равновесий этих реакций по кинетическому методу. [c.8]

    С повышением температуры увеличивается доля процессов непосредственной молекулярной деструкции в крекинге и уменьщается эффект самоторможения и торможения. Это находится в согласии с предсказанием цепной теории, требующей уменьшения роли цепных реакций с повышением температуры (длина цепи сильно уменьшается с увеличением температуры), и экспериментальными данными о влиянии температуры на действие ингибиторов [68]. Уменьшение эффектов торможения и самоторможения с увеличением температуры сопряжено не с тем, что резко уменьшается адсорбция ингибиторов на стенках [121], но в первую очередь с тем, что сильно замедляются реакции развития цепей, а также реакция обрыва цепей на ингибиторах вследствие уменьшения стерических факторов этих реакций с повышением температуры (см. главу IV). Вторичные реакции, с которыми связано образование конденсированных продуктов и кокса, протекают и при высоких температурах (900—1000°) с участием радикалов. Однако при еще более высокой температуре идут уже реакции распада с образованием водорода, сажи и ацетилена, ускоряемые кристаллическими зародышами углерода [121]. Хотя высокие температуры сильно способствуют диссоциации на радикалы, при высоких концентрациях радикалов резко усиливаются реакции рекомбинации и диспропорционирования радикалов, в результате чего снижается цепной эффект. [c.59]


    В радикальных (не цепных) реакциях скорости реакций рекомбинации и диспропорционирования радикалов в дан ных условиях будут определять положение равновесий диссоциации молекул на радикалы и степень разложения исходных молекул алканов на молекулы более простых алкана п алкена. В самом общем случае можно представить, что распад достаточно сложной молекулы алкана на две молекулы алкана и алкена происходит по радикальному механизму в две стадии в первой стадии возникают радикалы, которые путем диспропорционирования дают конечные продукты. [c.210]

    Из простых термодинамических соображений можно показать, что повышение температуры способствует увеличению стабильности продуктов диспропорционирования, н наоборот. Для этого надо только вычислить разность свободных энергий продуктов, определяющую термодинамическую стабильность последних. Существует критическая температура, при которой продукты, образующиеся в результате диспропорционирования и рекомбинации, имеют одинаковую стабильность. При температурах выше критической увеличивается стабильность продуктов диспропорционирования. Значения разностей энтальпий, энтропий и свободных энергий, вычисленные при 25°С и давлении радикалов 10 - агл , позволяют предсказать изменения отношения процессов диспропорционирования и рекомбинации в соответствии с опытом. При расчетах предполагалось, что обе реакции диспропорционирования этильных и пропильных радикалов эквивалентны. Согласие расчетов и экспериментов показывает, что при реакциях рекомбинации и диспропорционирования радикалов успевают установиться равновесные соотношения между исходными радикалами и продуктами. [c.232]

    Здесь и гЮд— скорости реакций развития цепи и суммарные скорости рекомбинации и диспропорционирования радикалов, которые могут быть измерены на опыте. Правая часть, соотношения (159) характеризует относительное значение константы скорости реакции развития цепи. [c.258]

    В крекинг-процессе, как и во многих других радикально-цепных превращениях, реакции рекомбинации и диспропорционирования радикалов могут обрывать цепной процесс либо, если иметь в виду обратные стадии, генерировать его. Кинетические и термодинамические исследования этих радикальных реакций и реакций развития цепи, рассматриваемых в гл. II—VI, позволяют перейти к количественному описанию сложных процессов, протекающих по радикально-цепному механизму, и определению его важнейших кинетических параметров (порядка процесса, эффективной энергии активации и других). [c.71]

    НЕКОТОРЫЕ ОСОБЕННОСТИ ЭКСПЕРИМЕНТАЛЬНОГО ИЗУЧЕНИЯ КИНЕТИКИ РЕАКЦИЙ РЕКОМБИНАЦИИ И ДИСПРОПОРЦИОНИРОВАНИЯ РАДИКАЛОВ [c.73]

    Доказательством радикального и радикально-цепного механизма окислительного присоединения является образование свободных радикалов К (рекомбинация и диспропорционирование радикалов К ), возможность инициирования и ингибирования реакции. [c.554]

    Если сравнить экспериментальные значения констант скорости реакции рекомбинации и диспропорционирования радикалов с частотой столкновений тех же радикалов, то можно сделать вывод о весьма высокой эффективности этих процессов по сравнению с дру гими бимолекулярными радикальными реакциями. Такая легкость протекания реакций рекомбинации и диспропорционирования при малом времени жизни радикалов приводит к определенным экспериментальным трудностям изучения кинетики как этих, так и других радикальных реакций. Например, при исследовании скорости реакции перехода атома Н от исходного вещества М [c.73]

    ТЕРМОДИНАМИКА РЕАКЦИИ РЕКОМБИНАЦИИ И ДИСПРОПОРЦИОНИРОВАНИЯ РАДИКАЛОВ [c.112]

    Пиролиз углеводородов — сложный процесс термических превращений, протекающих при высокой температуре. Согласно радикально-цепному механизму [79—84], реакция пиролиза состоит из нескольких элементарных стадий, в которых принимают участие промежуточные активные частицы — свободные радикалы. В качестве основных элементарных стадий рассматриваются реакции (рис. 1-5) инициирования, замещения, распада радикалов, присоединения и конденсации, рекомбинации и диспропорционирования радикалов. [c.20]

    Так как в условиях инициированного крекинга скорость распада изопропильных радикалов сильно уменьшается, должна создаваться повышенная концентрация зо--СзН, (это относится частично и к [н- СзН ]), увеличивающаяся вследствие уменьшения скорости распада этих радикалов. Накопление изопропильных радикалов должно привести к усилению процессов рекомбинации и диспропорционирования радикалов между собой или с другими радикалами, т. е. к усилению процессов синтеза. Это и наблюдается в опытах по инициированному крекингу пропан-бутановых смесей при 425— 450 °С [351], в условиях которого накапливается бутан и, вероятно, образуются пентаны и гексаны. [c.204]

    Рекомбинация и диспропорционирование радикалов [c.257]

    Рекомбинация (и диспропорционирование) радикалов а. также [c.115]

    Могут также происходить следующие реакции рекомбинации и диспропорционирования радикалов  [c.66]


    Образующиеся при этом мелкие радикалы снова реагируют с исходными- молекулами. Развивается цепной процесс. Обрыв цепи происходит путем рекомбинации и диспропорционирования радикалов. [c.291]

    Рекомбинация (и диспропорционирование) радикалов R(A 4), а также реакции перекрестного обрыва цепи (к ) изучены гораздо меньше, чем реакция рекомбинации радикалов ROj. [c.115]

    Скорости реакций, которые происходят практически при каждом столкновении в газовой фазе (т. е. рекомбинация и диспропорционирование радикалов, тушение флуоресценции, разрешенные реакции переноса энергии, D(ri) + A( 5o)- ]3(i5o) + A(ri), и некоторые реакции между ионами в растворах), определяются в жидкой фазе диффузией реагентов. В этом случае константу скорости реакции, контролируемой диффузией, часто можно оценить из уравнения Дебая [105]  [c.506]

    Изменения соотношений между реакциями рекомбинации и диспропорционирования радикалов свидетельствуют о том, что активность радикалов определяется не только строением самого радикала, но и условиями окружения. Абсолютная активность радикалов может быть оценена лишь в таких условиях, когда у радикалов нет возможности реагировать со средой или передавать ей энергию. Эти условия могут быть осуществлены лишь в высоком вакууме, когда длина свободного пробега радикалов велика и соударения происходят в основном с такими же радикалами. При этом время жизни радикала будет определяться его устойчивостью в возбужденном метаста- [c.100]

    Теперь вернемся к вопросу эффективности инициатора — величине / в уравнениях (16) и (17). Если подобрать инициатор, скорость разложения которого можно точно измерить (например, путем выделения азота из динитрила азоизомасляной кислоты или титрованием перекисей), то его эффективность можно определить тремя методами. Первый метод основан па сравнении скорости разложения инициатора и скорости образования полимерных молекул. Таким образом, если каждая молекула инициатора дает два радикала, которые могут начать цепи, и все цепи при /=1 заканчиваются рекомбинацией радикалов, то каждая распавшаяся молекула инициатора дает одну молекулу полимера. При этом меньшее число образовавшихся молекул показывает на меньшую эффективность инициатора. Эта методика требует точного измерения среднего молекулярного веса полимера, а также знания сравнительной степени рекомбинации и диспропорционирования радикалов в про- [c.62]

Таблица 10.1. Термодинамические параметры Д// (в кДж-моль" ), AS (в Дж моль К ) и gf p реакций рекомбинации и диспропорционирования радикалов Таблица 10.1. <a href="/info/6170">Термодинамические параметры</a> Д// (в кДж-моль" ), AS (в Дж моль К ) и gf p <a href="/info/3091">реакций рекомбинации</a> и диспропорционирования радикалов
    Во второй части четвертой главы рассмотрены термодинамика и кинетика элементарных реакций присоединения и замещения радикалов с простейщими непредельными и предельными углеводородами, а также реакций рекомбинации и диспропорционирования радикалов и молекул алканов и алкенов и реакций изомеризации радикалов. Эти реакции играют важную роль не только в термическом радикально-цеп-ном крекинге и пиролизе, но и во многих других цепных реакциях органических веществ, протекающих в газовой фазе. Рассмотренные реакции относятся к основным реакциям химии радикалов вообще, а решаемые вопросы — к проблеме реакционной способности частиц в радикальных реакциях. [c.11]

    При последующем изучении реакций рекомбинации и диспропорционирования этильных радикалов [289] в различных условиях было показано, что при низких давлениях начинают играть заметную роль реакции радикалов на стенках, а при высоких давлениях —тримолекулярные реакции в объеме. На отношение констант скорости реакций рекомбинации и диспропорционирования радикалов оказывает влияние избыток энергии, с которым радикалы вступают в эти реакции, как предполагалось еще в более ранних работах [279[. В этих работах для анализа продуктов применялась масспектрометрическая методика, а радикалы получались путем фотодиссоциации молекул Н2 в присутствии этилена. С целью исключения влияния реакции непосредственного соединения радикалов Н и С2Н5, проводились параллельные опыты с СгНй-радикалами, полученными путем фотолиза диэтилртути [289]. [c.227]

    Дополнительный интерес к изучению реакций неодинаковых радикалов вызван наблюдением о том, что различные полимерные радикалы реагируют с более высокими скоростями, чем идентичные радикалы [295, 296]. Были исследованы конкурентные отношения атомов Н с этиленом и пропиленом и в связи с этим рассмотрены реакции рекомбинации и диспропорционирования радикалов СгНз и С3Н7. [c.231]

    Реакции распада алканов на радикалы, взаимодействия последних с молекулами алканов и алкенов, распада сложных радикалов на более простые радикалы и молекулы алкенов, а также реакции рекомбинации и диспропорционирования радикалов составляют основу радикально-цепного крекинга алканов и других превращений органических соединений, которые происходят по цепному механизму. Знание скоростей всех этих реакций и термодинамических пределов, до которых они могут происходпть в заданных условиях, имеет первостепенное значение для решения вопроса о механизме сложного химического процесса, промежуточными стадиями которого являются радикальные реакции. [c.245]

    Как уже подчеркивалось, изучение температурной зависимости величины, стоящей справа (159), дает нам относительную энергию активации реакции продолжения цепи и относительное значение стерического фактора этой реакции. Если для сравнения между собой однотипных реакций с участием одного и того же радикала Можно удовлетвориться относительным значением динамических параметров реакции, то для вычисления абсолютной величины к р необходимо знание констант скоростей реакций рекомбинации и диспропорционирования. Кроме того, знание величин последних позволяет определить концентрацию радикалов, принимающих участие в процессе и, следовательно, вычислить абсо -лютные величины скоростей радикальных реакций. Однако экспериментальное определение констант скоростей реакций рекомбинации и диспропорционирования радикалов требует постановки независимых опытов и является в экспериментальном отношении очень сложным. Поэтому до сих пор для реакции рекомбинации было принято считать, что эти реакции происходят при каждом столкновении радикалов. Поименно это предположение в свете выше изложенных результатов расчета стерических факторов реакций рекомбина- ции кажется неверным, хотя энергии активации дей Стви-тельно малы. То же самое относится и к реакциям диспропорционирования, как будет пока-адно в следующем разделе. [c.258]

    При диспропорционировании изомерных радикалов в соответствии с продуктами, найденными масспектрометрическим и хроматографическим анализами, предполагалось, что миграция атома Н снижает симметрию активированного комплекса по сравнению с активированным комплексом реакций рекомбинации тех же радикалов, когда принималось, что а совпадет с числом симметрии продуктов рекомбинации. Если не учитывать числа симметрии активированных комплексов реакций диспропорционирования, то значения стерических факторов возрастут в о раз. Таким образом, максимальная ошибка при расчетах стерических факторов обусловлена неопределенностью числа симметрии активиро-ваного комплекса в реакциях рекомбинации и диспропорционирования радикалов. [c.279]

    Суммарная скорость радикально-цепного процесса и кинетическая длина цепи, фактически определяющие выход при данных физико-химических условиях, зависят от скоростей реакций зарожде ния, развития и обрыва цепи (см. гл. И). Скорость реакций зарождения цепи обычно можно регулировать подбором инициатора, температуры и других экспериментальных условий. Скорость реакций обрыва цепи не поддается прямому контролю, поэтому такие реакции являются серьезным ограничением процессов, текущих по радикально-цепному механизму. Реакции обрыва цепи (почти всегда реакции рекомбинации и диспропорционирования радикалов) имеют высокие константы скорости, вследствие чего интервал времени между инициированием и обрывом цепи невелик ( 1 с). Если в течение такого короткого времени происходит больщое число стадий развития цепи, то, очевидно, это является результатом малых концентраций радикалов (их встречаТимеет значительно меньшую вероятность, чем встреча радикала и молекулы), а также результатом особенностей протекания реакций развития цепи. Количественно эти особенности, а также конкуренция между реакциями описываются на основании данных о равновесиях и константах скорости этих реакций. [c.139]

    Для многих радикальных бимолекулярных реакций энергия активации, как правило, невелика. Например, бимолекул рные реакции присоединения радикалов или атомов Н к молекулам олефинов имеют энергию активации, примерно равную 8,4 Ч- 16,8 кДж (см. 18) в реакциях рекомбинации и диспропорционирования радикалов это значение еще меньше (см. 6). Значение экспоненциального множителя в формуле (1.10) для таких реакций при высоких температурах близко к единице, поэтому в этих случаях особенно большое значение приобретают теоретические и экспериментальные методы определения Л-фактора. [c.26]

    В первых расчетах 5-фактора предполагали весьма упорядоченную структуру активированного комплекса, когда его геометрические и механические свойства близки к свойствам соответствующих молекул. Модель активированного комплекса, построенная на основе изложенных предположений, является примером жесткой модели активированного комплекса. В монографии Степуховича (201 приведены результаты многочисленных расчетов 5-факторов различных радикальных реакций, которые позволили в неплохом приближении объяснить низкие значения этих величин, найденные ранее при опытном изучении отдельных радикальных реакций присоединения и замещения, а также интерпретировать значительную часть экспериментальных данных по термическому и инициированному крекингу алканов. Следует отметить, однако, что расчеты 5-факторов на основе жесткой модели активированного комплекса приводят в ряде случаев (например, при рассмотрении реакций рекомбинации и диспропорционирования радикалов) к заниженным значениям этих величин. С накоплением экспериментальных кинетических данных появилась возможность сформулировать эмпирические правила, которые могут служить ориентиром при построении модели активированного комплекса. Ниже рассматриваются такие правила, а также модели активированного комплекса, получившие распространение при расчетах Л-факторов различных радикальных реакций. [c.27]

    Основываясь на. экспериментальных данных, Керр и Тротман-Дикенсон [1701 показали, что значения А(СН.,, К) имеют простую связь с величинами Д(Р, К ), когда реагируют два различных алкильных радикала К и К. Соответствующие значения Д(СНд, Н) и Д(К, К ) приведены в табл. 9.1. Во второй графе указано число атомов Н, которые могут отщепляться в реакции (9.1) с участием радикалов -СНд и К. В четвертой и шестой графах табл. 9.1 даны так нагываемые приведенные отношения констант скорости реакций рекомбинации и диспропорционирования радикалов, т. е. величины А/(Н), между которыми установлена линейная связь вида  [c.102]

    Обрыв цепи происходит в результате рекомбинации и диспропорционирования радикалов, гл. обр. пероксильных (2RO 2 - ROOR О2). При распаде пероксидов КООН часть радикалов регенерируется. Большую роль в обрыве цепи играют низкомол. радикалы (НО2, НО и др.). Скорость термоокислит. Д., как правило, значительно выше, чем термической. [c.24]

    Судьба первоначально образовавшихся алкоксирадикалов зависит от многих факторов (от окружения, температуры, строения R и т. д.), и одновременно происходит несколько конкурирующих процессов. К ним относятся рекомбинация и диспропорционирование радикалов, отрыв атомов или присоединение радикалов к подходящим субстратам, а также расщепление алкоксирадикалов. Например, в газовой фазе ди-трег-бутилпероксид (56) в качестве главных продуктов дает ацетон и этан, а также метан, метилэтилкетон, изобутеноксид и другие минорные продукты (простые эфиры и моноксид углерода) уравнения (89)—(93) . Диметил-пероксид образует главным образом метанол и моноксид углерода в соотношении 3 1 за счет диспропорционирования СНзО-с последующей атакой этого радикала на формальдегид и >СНО. Другие первичные диалкилпероксиды дают альдегиды и спирты вместе с моноксидом углерода, формальдегидом, углеводородами, водородом и диоксидом углерода. Вторичные диалкилпероксиды образуют главным образом кетоны. [c.478]

    Таким образом, существенны реакции рекомбинации (и диспропорционирования) радикалов Н-, 30-С3Н7, СН3. [c.68]


Смотреть страницы где упоминается термин Рекомбинация и диспропорционирование радикалов: [c.100]    [c.10]    [c.244]    [c.270]    [c.74]   
Смотреть главы в:

Химическая кинетика -> Рекомбинация и диспропорционирование радикалов

Радикальная полимеризация  -> Рекомбинация и диспропорционирование радикалов


Свободные радикалы в растворе (1960) -- [ c.32 , c.67 ]




ПОИСК





Смотрите так же термины и статьи:

Диспропорционирование

Диспропорционирование радикалов

Некоторые особенности экспериментального изучения кинетики реакций рекомбинации и диспропорционирования радикалов

Обзор экспериментальных работ, посвященных изучению кинетики реакций рекомбинации и диспропорционирования алкильных радикалов

РЕКОМБИНАЦИЯ И ДИСПРОПОРЦИОНИРОВАНИЕ СВОБОДНЫХ АТОМОВ И РАДИКАЛОВ 8 1, Рекомбинация атомов

Радикал рекомбинация

Рекомбинация

Рекомбинация и диспропорционирование

Стерические факторы реакций рекомбинации и диспропорционирования алкильных радикалов

Термодинамика реакций рекомбинации и диспропорционирования радикалов



© 2025 chem21.info Реклама на сайте