Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изомеризация промежуточных соединений

    При осуществлении изомеризации парафиновых углеводородов на промышленных алюмоплатиновых катализаторах, промотированных фтором и хлором, металлцеолитных катализаторах, а также сверхкислотах, особенности кинетики и механизма реакции обусловлены механизмом образования промежуточных соединений. [c.14]

    Для гидратации олефинов с концевой двойной связью применяют смесь муравьиной кислоты с каталитическими количествами сильной кислоты, например хлорной. Для получения спиртов нужно гидролизовать образующиеся в качестве промежуточных соединений сложные-эфиры муравьиной кислоты. При этом следует ожидать изомеризации, как показано в одном из приведенных ниже примеров. Для гидратации олефинов с разветвленной цепью лучше использовать трифторуксусную, а не муравьиную кислоту [21. При гидратации 2-метилбутена-2, метилциклопентена и метилциклогек-сена выходы спиртов составляют около 45%. Присоединение муравьиной кислоты в сочетании с серной является стереоспецифиче-ским, по крайней мере в некоторых случаях. Так, например, транс- [c.213]


    В соответствии с этим при обсуждении механизма скелетной изомеризации углеводородов на ряде металлических катализаторов был сделан вывод [119], что реакция протекает более быстро в тех случаях, когда структура реагирующей молекулы такова, что возможно образование промежуточного соединения с пятичленным кольцом. Реакция по такому механизму протекает толь- [c.224]

    Попытки превратить прямую цепь олефиновых углеводородов в разветвленные цепи или провести обратные превращения осложняются полимеризацией разветвленных олефиновых углеводородов, которая приводит к снижению выходов продуктов /11 /. Известно очень много фактов, говорящих о том, что в процессе гидроизомеризации парафинов на катализаторе платина - окись алюминия происходит изомеризация промежуточных соединений - олефинов. Платина, вероятно, вызывает дегидрирование парафиновых углеводородов до олефиновых, которые обладают способностью под действием кислотных центров на окиси алюминия превращаться в разветвленные изомеры. Последние вновь подвергаются гидрированию над платиной до парафиновых углеводородов с разветвленной цепью, В этом случае гидрирование идет гораздо быстрее, чем полимеризация. [c.37]

    Отсутствие у алкилциклопропанов склонности к изомеризации можно приписать олефиновому характеру циклопропанового кольца. По ионному цепному механизму [3] расширение кольца потребовало бы образования в качестве промежуточных соединений таких ионов, как I, с отрывом иона водорода [c.49]

    Необходимо отметить, что процесс, обратный первой стадии (адсорбции углеводорода) приводит к изомеризации (миграции двойной связи), что и наблюдали на опыте, а скорость восстановления катализатора, измеренная в отсутствие кислорода, достаточна для объяснения скорости окислительной дегидрогенизации [81]. Но эти модели не дают ключа к решению вопроса о происхождении различий в селективности у разных окислов, т. е. эти модели не раскрывают причин, заставляющих окислы отдавать предпочтение одному из возможных реакционных путей (через альдегид или диен). Начальный выход первичных продуктов окисления никогда не равен 100%, и всегда присутствует какое-то количество продуктов деструкции. Этот новый тип селективности связан с легкостью десорбции первичных продуктов, которые очень часто адсорбируются сильнее, чем олефин, как показывает их влияние на кинетику реакции. В экстремальных случаях не десорбируется ни одно из промежуточных соединений между олефином и СО или СОг, и единственной реакцией, которую удается наблюдать, является полное сгорание, и притом не только на неселективных катализаторах, но и на селективных, таких, как В1— —Мо—О (например, циклопентен) [83]. По той же причине при работе со всеми этими катализаторами следует избегать микропористости, поскольку из-за медленной диффузии в порах удлиняется время контакта, что приводит к глубокому разрушению желательных продуктов. [c.165]


    При низком давлении водорода скорость реакции изомеризации определяется скоростью образования промежуточных ненасыщенных соединений, которые десорбируются в газовую фазу путем вытеснения их с поверхности катализатора водородом. Таким образом, возрастание скорости реакции изомеризации при увеличении парциального давления водорода от нуля до определенной величины связано с явлениями ограничения избыточных концентраций промежуточных ненасыщенных соединений тем самым водород препятствует образованию из них прочно адсорбированных соединений на поверхности катализатора. С увеличением парциального давления водорода выше определенного промежуточные соединения и водород начинают конкурировать за участки поверхности, ответственные за протекание реакции, и дальнейшее увеличение давления водорода приводит к уменьшению скорости реакции. [c.35]

    В реакции изомеризации парафиновых углеводородов наиболее медленной стадией является перегруппировка промежуточных соединений на кислотных центрах носителя, поэтому при синтезе катализатора необходимо придать носителю сильные кислотные свойства. Роль металла сводится к осуществлению первичного акта дегидрирования молекулы парафинового углеводорода с образованием олефина и протекания реакции гидрирования промежуточных соединений, что обеспечивает стабильность каталитической системы. Немаловажным моментом в синтезе катализатора изомеризации является подбор правильного соотношения между концентрацией металла и кислотностью носителя - это определяет не только активность, но и селективность его действия и стабильность в процессе изомеризации. [c.42]

    Кинетика реакций обмена очень близка к кинетике изомеризации, и эти две реакции имеют некоторые общие промежуточные соединения. [c.79]

    В случае изомеризации на цеолитах реакция протекает как с образованием алкенов в качестве промежуточных соединений, так и без их образования. [c.75]

    Здесь же нам хотелось бы рассмотреть некоторые вопросы кинетики и механизма реакций образования как самих углеводородов ряда адамантана, так и весьма интересных промежуточных соединений, образующихся нри изомеризации различных трициклических углеводородов, как мостикового, так и конденсированного тина строения. [c.229]

    Алкилгалоиды легко изомеризуются под влиянием катализаторов реакции Фриделя—Крафтса [61]. Безуспешность попыток обнаружить дейтерообмен при катализируемой хлористым алюминием изомеризации й-пропилхлорида в изопропилхлорид в присутствии хлористого дейтерия исключает возможность, что изомеризация может идти через олефин, и поднимает вопрос о том, является ли первичный ион карбония необходимым промежуточным соединением [2321. [c.441]

    В научной литературе к бифункциональным катализаторам относятся системы, в которых два типа активных центров участвуют в двух или более последовательных стадиях данной реакции. Эти центры могут находиться в одном твердом теле, либо на поверхности двух различных фаз, находящихся в контакте, например Р1 - А Оз. Радикалоподобные или ионные промежуточные соединения, возникающие в последовательных стадиях, должны быть взаимно превращаемыми. Наиболее общепринятая теория предполагает существование промежуточного легко десорбирующегося соединения, например олефина, в случае реакции изомеризации. Если центры этих двух типов принадлежат двум различным твердым фазам, как в случае алюмоплатинового катализатора, радикалоподобные частицы R, образовавшиеся на платине путем диссоциативной адсорбции RH, могут перейти в виде К к кислотным центрам на оксиде алюминия, изомеризоваться и возвратиться на Ш1атину в виде К [28, с. 60]. [c.42]

    В изучении механизма реакции гидрокарбонилирования достигнуты заметные успехи. Накоплены экспериментальные доказательства образования промежуточного соединения олефина с катализатором, вероятно с гидрокарбонилом кобальта. В настоящее время точный характер этого комплекса можно определить лишь предположительно. Дополнительного выяснения требует такнх е роль изомеризации двойной связи как фактора, определяющего относительные выходы индивидуальных изомерных спиртов. [c.267]

    Для изомеризации насыщенных углеводородов применяются катализаторы двух четко различающихся типов а) сильные кислоты и б) гидрирующие катализаторы на твердых кислотных носителях. Однако механизм изомеризации на катализаторах обоих типов принципиально совпадает в том отношении, что в обоих случаях активным промежуточным соединением является карбоний-ион. [c.88]

    Позднее Циглер (1954) разработал эффективный метод непрерывной термической димеризации бутадиена в 1 ис-г ис-циклооктадиен-1,5 и установил, что этот углеводород устойчив и отличается от описанного Вильштеттером соединения, которое очень активно в реакциях присоединения фенилазида, диазометана и дифенилдиазометана. Циглер считал вероятной для этого лабильного диена транс-гранс-конфигурацию, но Коуп (1962) привел несомненное доказательство цис-транс-к.онфи-гурации. Он установил, что продукт первого гофмановского расщепления (II) является 1-диметиламино-г ис-циклооктеном-4, который получается также из п-бромбензолсульфоната циклооктен-4-ола-1 и диметиламина. транс-изомеризация промежуточного соединения II вряд ли могла произойти при втором гофмановском расщеплении, так как в восьмичленном кольце более устойчивой является 1 ис-двойная связь (см. выше). Поэтому для лабильного диена возможна только одна структура, а именно г ис-транс-циклооктадиена-1,5 (III). Промежуточный амин II был разделен на антиподы путем кристаллизации его ( + )-10-камфорсульфокислых солей из диизобутилкетона, а оптически активные амины были превращены в иодметилаты с [аЬ = —14,9° и + 14,3° и в четвертичные основания. Прн гофмановском расщеплении (-(-)-основание дало (-Ь)-г ас-7-ранс-циклооктадиен-1,5 с [а]о=+Л21,3°, а из (—)-основания образовался его энантиомер с Ыб= —120,5°. В этих углеводородах со средними кольцами жесткая циклическая система и водородное взаимодействие препятствуют вращению транс-группиров-ки —СН = СН— по отношению к остальному кольцу и таким образом предотвращают рацемизацию. [c.90]


    Результаты, полученные для индивидуальных углеводородов при 375— 425° С и давлении 70 ат, позволяют рассматривать эту реакцию как сочетание каталитического крекинга с гидрированием. Как и при каталитическом крекинге, в реакции участвуют адсорбированные карбоний-ионы, изомеризующиеся в катионы более разветвленного строения. После такой изомеризации промежуточные соединения претерпевают расщепление главным образом в бета-положении по отношению к несущему заряд углеродному атому. В результате расщепления образуются алкен и новый карбоний-ион, который при достаточно большом его размере может привести к повторному протеканию рассмотренного цикла реакций. [c.191]

    По-видимому, син- и анти-я-аллильные комплексы [67, 68 ] сохраняют свою конфигурацию до тех пор, пока каледый из них не превратится в общий а-связанный комплекс, в котором неконцевые атомы углерода аллильной группы связаны простой связью и изомеризация промежуточного соединения может быть представлена схемой, показанной на рис. И. Однако скорость рекомбинации [c.146]

    Первый из механизмов (реакция 1) представляет собой прямое нуклеофильное замещение на группу НО". Согласно второму механизму (реакция 2), группа НО сначала отрывает протон, находящийся в орго-положении к группе 80зЫа, с образованием промежуточного соединения типа дегидробензола [75]. Последний механизм (реакция 3) включает изомеризацию промежуточного соединения, полученного атакой гидроксила на атом серы, которая при этом увеличивает свою валентность [76]. [c.468]

    Параметры уравнения скорости могут быть связаны рядом дополнительных соотношений, которые бывают иногда весьма полезными для выявления изомеризации промежуточных соединений. Другие подходы, основанные на измерении стационарных скоростей, не позволяют сделать этого. Введение стадий изомеризации промежуточных соединений не влияет на вид уравнения скорости (разд.3.7), однако может приводить к невыполнимости соотношений, связывающих определенные кинетические парамет- [c.129]

    Изучение изомеризации предельных угленодородов в течение болсс двух десятилетий все возрастающим числом исследователей дало много сведений, важных как для техники, так и для теории. Исследования в этом направлении стимулировались потребностью в изобутане — сырье для процессов алкилирования, а также желательностью иревращения содержащихся в бензине парафинов нормального строения в изомеры с разветвленными цепями, обладающие более высокими аитидетонацион-иыми свойствами. Практическое значение аналогичного процесса изомеризации алкилциклопентанов в циклогексан или его алкилзамещенные объясняется главным образом тем, что эти последние являются промежуточными соединениями при производстве соответствующих ароматических углеводородов посредством дегидрогенизации. Сам циклогексан также является сырьем для получения адипиновой кислоты для производства иейлопа. Помимо этой практической стороны дела, изучение подобных реакций может пролить свет на поведение углеводородов и помочь в разъяснении механизма каталитических реакций. [c.14]

    С учетом высокой энергии активации (190 кДж/моль) и порядка реакции по водороду (-1) авторы [135] считают, что реакция изомеризации протекает на кислотных центрах. Отсутствие метана и этана в продуктах крекинга исключает механизм гидрокрекинга на благородном металле. Отсутствие этильных изомеров свидетельствует о том, что как изомеризация, так и гидрокрекинг протекают в каналах цеолита 28М-5, т. е. каталитический вклад внешней поверхности цеолита незначителен. Следовательно, изомеризация и гидрокрекинг протекают по карбкатион-ному механизму, видоизмененному эффектом, который обусловлен геометрией пор цеолита 75М-5. Фактор геометрии цеолита в катализаторе - Н25М-5 влияет как на конечные, так и на промежуточные соединения. В отличие от широкопористых цеолитов, в 28М-5 механизм расщепления в значительной степени определяется 3-расщеплением моноразветвленных карбкатионов. [c.121]

    Следовало ожидать, что если олефины являются промежуточными соединениями в изучаемой реакции, то при алкилировании [1- С] бутанолом-1 и [1- С] бутеном-1 распределение радиоактивного углерода С в алкильной группе 2-фенилбутана должно быть одинаковым, поскольку в том и другом случаях образуется наиболее стабильный втор-бутил-катион. Между тем, данные радиометрического анализа показывают, что с олефином величина скелетной перегруппировки в два раза выше. Этот факт подтверждает, что величина скелетной изомеризации алкильной группы может заметно возрасти при использовании в качестве алкилирующих агентов олефинов. На основании литературных данных и приведенных выше результатов дейтерообмена при алкилировании СеОб спиртами или при алкилировании спиртами в присутствии катализатора ВРз-020 можно считать, что роль олефинов как промежуточных продуктов алкилирования возрастает при повышении температуры. [c.117]

    Изучая реакции переалкилирования трет-пентилбензола в толуоле и л-грег пентилтолуола в бензоле при 80 °С и контакте с AI I3, авторы пришли к выводу, что перегруппировка трег-пентильной группы протекает по стадиям деалкилирование — перегруппировка — переалкилирование. Считают, что изомеризация протекает и без отрыва алкильной группы от ароматического ядра, причем в качестве промежуточных соединений получаются феноний-ионы, мостиковые катионы и классические ионы. [c.203]

    Поскольку состав алкилатов в случае разных изомеров бутилена сходен, предполагается, что их изомеризация происходит с высокой скоростью и состояние, близкое к равновесию, устанавливается до начала алкилирования. Этот постулат несколько отличается от ранее принятого механизма. Изомеризация бутиленов приводит к образованию преимущественно изобутилена, который затем полимеризуется, превращаясь в 2,2,4-триметилпентилкарбо-ний-ион — промежуточное соединение при образовании конечного продукта (2,2,4-триметилпентан). 2,2,4-Триметилпентилкарбоний-ион способен превращаться в другие изомеры, которые в свою очередь дают соответствующие триметилпентаны (2,3,4- и 2,3,3-триметилпентан). [c.55]

    Триметилпентан и соответствующий ему триметилпентильный карбониевый ион не являются первичными продуктами реакции или промежуточными соединениями, образующимися при непосредственном взаимодействии изобутана и бутена-2. 2,2,3-Триметилпентан, содержащийся в незначительном количестве в продуктах алкилирования, образуется, вероятно, вследствие изомеризации 2,2,4-триметилпентильного иона. [c.55]

    Нитрогруппу обычно восстанавливают алюмогидридом лития, являющимся одним из наиболее сильно действующих гидридов. Действительно, в то время как боргидрид натрия в водном растворе метилового спирта при 25 °С не действует на нитрогруппу [20], алюмогидрид лития в сочетании с палладием, нанесенным на активированный уголь, в щелочном растворе оказывает достаточно эф- фективное действие [21]. Восстановление третичных алициклических нитросоединений алюмогидридом лития осложняется изомеризацией образующихся в качестве промежуточных соединений производных тидроксиламина, что приводит к образованию первичных и вторичных аминов [22]. [c.472]

    Рассмотренный пример изомеризации тракс-2,3-диметилнорбор-нана интересен тем, что здесь скорость перегруппировок ионов карбония превышает скорость их стабилизации, что ведет к реакции, протекающей по согласованному механизму без образования промежуточных соединений. [c.217]

    Промежуточное соединение А не успевает принять конформацию циклооктана и сохраняет пространственное строение, характерное для исходной молекулы. На это указывает пространственное расположение метильных заместителей в образовавшихся при изомеризации экЗо-2-метилбицикло(3,3,1)нонана диметилбицик-ло(3,3,0)октанах, среди которых в наибольших концентрациях присутствовали экзо-, эндо-шзоиеры. Эту стереоспецифичность перегруппировки легко понять, если допустить упрощенную схему изомеризации  [c.221]

    Таким образом, схемы изомеризации, включающие промежуточное образование (в виде ионов) бициклических углеводородов со средиимп размерами циклов, кажущиеся, на первый взгляд, сугубо гипотетическими, на самом деле не лишены реальности, так как роль промежуточных ионов карбония такого строения в рассматриваемых перегруппировках можно считать доказанной. Характерно также то, что в механизме как прямой, так и обратной реакции имеется много общего, и, в частности, протекают они через образование одних и тех же промежуточных соединений и одних н тех же ионов. [c.228]

    Для того чтобы некоторая часть этилбензола могла прогид-рироваться в количествах, достаточных для получения промежуточного соединения, температура изомеризации не должна быть высокой. При этом для протекания реакции нет необходимости в полном гидрировании этилбензола. Оптимальное использование этилбензола или какого-либо другого ароматического углеводорода с более сложной боковой цепью возможно при двухстадийном процессе. Первая стадия осуществляется при давлении 12 атм, температуре 385°С, соотношении (мольном) водорода и сьфья, равном 10, среднечасовой скорости подачи жидкости /7, 28/. На этой стадии происходит частичное гидрирование. Вторую стадию проводят в тех же условиях, но в температурном интервале 430-500ОС в это время происходит дегидрирование. [c.38]

    Декатионированные, а также различные ионообменные формы цеолитов типа Y с поливалентньл<и металлами характеризуются более высокой, чем алюмосиликатные катализаторы крекинга, активностью в реакциях изомеризации ксилолов /21/. Экспериментальные данные показывают, что превращения ксилолов при применении цеолитов типа Y с поливалент-HboiH катионами включают стадию тро с-алкилирования, в которой триметилбензолы образуются как промежуточные соединения /22/. [c.39]

    Образование промежуточных соединений с катализатором, деформирую1цим молекулы и снижающим энергии активации реакции изомеризации  [c.556]

    Проведение процесса изомеризации в дейтерированном растворителе позволяет установить механизм, действующий в модельной системе. Например, в случае согласованного механизма, протекающего через симметричное переходное состояние, должна происходить изомеризация любого дейтрона, включенного из растворителя. В то же время в случае азааллильного промежуточного соединения возможно включение дейтрона без последующей изомеризации. [c.444]

    Несмотря на рациональные идеи, содержащиеся в теории Либиха и в работах, ее развивавших, она не получила в свое время должного оформления и распространения. Причин для этого много, но главная из них связана с трудностям1и прямых или косвенных доказательств непрерывного изменения энергии химических связей в духе идей Бертолле. В то же время химические теории промежуточных соединений было возможно выразить наглядными схемами, оказавшимися весьма плодотворными в классическом органическом синтезе. Так, представления об образовании и распаде промежуточных соединений сыграли выдающуюся роль в изучении реакций полимеризации (Бутлеров, Бертло), гидратации и дегидратации (Бутлеров, Перкин, Клейзен, Кневенагель и др.), изомеризации (Фаворский). Именно поэтому теория промежуточных соединений оставалась еще руководящей идеей в основополагающих каталитических синтезах Г. Г. Густавсона, Ш. Фриделя и Д. Крафтса, П. Сабатье и В. И. Ипатьева Теория Либиха, естественно, тогда [c.126]

    Бирадикалы в форме радикал-анионов образуются в качестве промежуточных соединений при восстановлении кетонов до пинаконов (см. стр. 210), а также в реакциях восстановления сложных эфиров, завершающихся образованием ацплоинов (см. стр. 211). Пиролитическая изомеризация циклопропана в пропилен также протекает, по-видимому, через промел<уточное образование бирадикала  [c.307]

    Эти методы синтеза [24, 251 напоминают океосинтез, но более пригодны для их осуществления в лаборатории. В первом случае получается карбоновая кислота, содержащая на один углеродный атом больше, чем исходное соединение, а во втором — кислота, содержащая на два атома углерода больше, чем исходное соединение. Алкены, вероятно, образуются в качестве промежуточных соединений при всех этих реакциях, и, поскольку преобладает кислая среда, они, по-видимому, сначала превращаются в карбониевые ионы. Тенденция карбониевого иона к изомеризации приводит к образованию более стабильного третичного карбониевого иона, поэтому эти методы имеют большее значение для получения разветвленных кислот, чем кислот нормального строения. Проведение этих реакций не вызывает затруднений, однако отделение нужной кислоты ог других образующихся кислот составляет существенную часть работы. Выходы могут достигать 90%. [c.274]

    Ц и к л о г е к с а н ы. При нагревании метилциклогексана с бромистым или хлористым алюминием превращения его практически не происходит, так как в равновесных условиях он является основным продуктом изомеризации. Однако в тех случаях, когда метильная группа содержит радиоактивный углерод , образуется метилциклогексан, содержащий G в кольце [92]. При 25° С и продолжительности контакта 21 час. 31% радиоактивного углерода перемещается в кольцо. В этих опытах в качестве катализатора применяли бромистый алюминий — бромистый водород, промотированный етор-бутилбромидом. В отсутствие етор-бутилбромида в кольцо перемещается только 2% радиоактивного углерода. Такая реакция изомеризации не может протекать по механизму карбоний-иона без промежуточного образования ионов с меньшим или большим числом углеродных атомов в кольце. Поскольку вероятность образования трех-, четырех- или семичленных циклических промежуточных соединений ничтожно мала, очевидно, что при этой реакции должны получаться циклопентильпые карбоний-ионы. [c.94]


Смотреть страницы где упоминается термин Изомеризация промежуточных соединений: [c.88]    [c.130]    [c.214]    [c.107]    [c.134]    [c.15]    [c.273]    [c.237]    [c.243]    [c.152]    [c.133]    [c.213]   
Основы ферментативной кинетики (1979) -- [ c.61 , c.74 , c.129 , c.130 , c.214 ]




ПОИСК





Смотрите так же термины и статьи:

Соединения промежуточные



© 2025 chem21.info Реклама на сайте