Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пиридин определение азота

    Результаты анализа функциональных групп приведены в табл. 2. При определении фенольных гидроксилов вводили поправки на СО.2, содержащуюся в растворителе, и следы карбоновых кислот в анализируемом образце (присутствие которых выявлялось соответствующим перегибом на кривой титрования). Функциональные группы фракции С определяли в ее суспензии в соответствующем растворителе, и поэтому результаты могут оказаться заниженными. Данные определения азота оснований во фракциях С и С оказались неточными вследствие адсорбции пиридина этими фракциями, и поэтому анализы были повторены с материалом, растворимым в бензоле (С и С.,) и нерастворимым в нитробензоле (С с небольшим количеством С , после чего были произведены соответствующие вычисления. [c.42]


    Метод достаточно прост и позволяет производить несколько параллельных определений. Однако его нельзя считать универсальным, так как он совершенно не применим для определения азота в некоторых органических соединениях, содержащих азот в ядре (например, пиридин). В некоторых случаях при анализе методом Кьельдаля необходимо применять дополнительную обработку анализируемых веществ. Так, например, при сжигании в серной кислоте нитросоединений (К — МОа), нитрозосоединений (К — N0), азосоединений [c.211]

    Определение азота по Кьельдалю в некоторых органических соединениях, содержащих азот в ядре (например, в пиридине, хинолине), не приводит к положительным результатам. [c.49]

    Некоторые ароматические гетероциклические соединения, например пиридин и его производные, с трудом разлагаются серной кислотой. Поэтому, если не предпринять специальных мер, при определении азота в образцах, содержащих эти вещества, будут получены заниженные результаты (см. рис. 4-1). [c.271]

    При определении азота по Кьельдалю азот нитратов, нитритов, азо- и диазосоединений, а также азот пиррола, пиридина, хиноли-на и многих других гетероциклических соединений не учитывается. [c.137]

    Классическое определение азота по Дюма сопряжено с трудностями, чаще всего связанными с неколичественным выделением элементного азота и неполным окислением углеводородного скелета молекулы. Наиболее просто происходит превращение в элементную форму азота аминосоединений. Присутствие одного или нескольких атомов азота в цикле (производные пиридина, бензтриазолов и т. п.) уже обусловливает более высокую температуру сожжения, чем это возможно при окислении оксидом меди в контейнере при 900 °С. То же относится к нитрилам, образующим при неполном окислении термостойкие цианиды меди, к полинитросоединениям, для которых возможно неполное восстановление оксидов азота, и ко многим другим соединениям, для которых наблюдается систематическое занижение содержания азота. [c.128]

    Гетероциклические соединения [79, 81, 154] могут присутствовать и в группе соединений основного характера и в группе соединений остаточного азота. Для качественного определения азотных гетероциклов в инфракрасной области можно пользоваться табл. 68 [79, 207]. Гетероциклические соединения с атомом азота в кольце, как правило, имеют характер вторичных аминов или иминов (пирролы, пиридины, хинолины). В их спектрах поглощения присутствуют полосы поглощения вторичных аминов или иминов, отличающихся, как уже говорилось, повышенной интенсивностью. Кроме того, присутствуют интенсивные полосы поглощения, соответствующие скелетным колебаниям кольца, валентным колебаниям замещенных колец, валентным и деформационным колебаниям водородного атома кольца. [c.134]


    Кондуктометрическое титрование [32, 243] для определения кадмия применяется очень редко. Отмечена возможность титрования раствором Кз[Ре(СМ)в , осаждающего (в противоположность К4[Ре(СН)в]) нормальную соль кадмия. Определение можно производить в присутствии РЬ [565, стр. 335]. Другой способ основан на количественном осаждении кадмия (в присутствии до 3-кратного количества цинка) в аммиачной среде анилидом тиогликолевой кислоты. Высокочастотным титрованием определяют 0,1 — 11 мг Сс1 в 20 Л1Л раствора оксалаты, тартраты и цитраты не мешают [173]. Очень разбавленные растворы Сс " (0,02—0,5 мг в 40 мл) предложено титровать сероводородной водой в токе азота [565, стр. 271]. Можно титровать кадмий и роданидом в присутствии пиридина, при этом Си маскируют тиосульфатом, N1 — диметилглиоксимом. Ag, Ли, Со, РЬ и Хп должны быть удалены, а А1, Аз, В1, Сг, Ке, Зп, платиновые и щелочноземельные металлы определению не мешают [707]. Комплексы кадмия с аналогами соли Рейнеке (см. стр. 59, 83) могут быть использованы для его кондуктомет-рического титрования [572]. [c.121]

    Данные, полученные при изучении диффракции электронов [2], позволили рассчитать величину связи углерод-азот в молекуле пиридина, которая оказалась почти равной величине углерод-углеродной связи в молекуле бензола и составляет 1,37 0,03 А. Инфракрасный спектр пиридина, снятый Клейном и Туркевичем [3], послужил основой для расчёта теплоты образования пиридина. Характерный для пиридина спектр поглощения в ультрафиолете довольно близок по своему характеру к спектру бензола для определения пиридина в парах, содержащих, кроме него, аммиак или никотин [4], служит абсорбционная линия 2 550 А. [c.373]

    Ход анализа. В колбу для электрометрического титрования с двумя платиновыми электродами вносят 5—10 мл пиридина, затем навеску анализируемого раствора (0, —2 г в зависимости от содержания воды) и перемешивают магнитной мешалкой при продувании колбы сухим азотом. После этого смесь-титруют реактивом Фишера из микробюретки, причем в момент конца титрования микроамперметр покажет резкое, скачкообразное возрастание силы тока. Предварительно в такнх же условиях проводят холостой опыт. Относительная ошибка в определении воды не превышает 5%. Конец титрования можно фиксировать и визуально по изменению окраски раствора (за счет выделяющегося свободного иода). Однако при этом ошибка возрастает, в особенности если анализируемый раствор окрашенный илн мутный. [c.127]

    Гетероатомы азота могут образовывать водородные связи (ср. пиридин, стр. 55), если же соединение содержит ЫН-группы, то возможна ассоциация. Имидазол (183) показывает молекулярный вес в 20 раз больще ожидаемого (криоскопическое определение в бензоле) и кипит при 256° 1-метилимидазол кипит при 198°. Другое объяснение, которое представляется возможным на основе инфракрасного спектра, состоит в том, что имидазол существует большей частью в ионизованной форме (184) [6]. [c.227]

    Прибор для определения фенольных гидроксилов был подобен прибору, применявшемуся Бруксом и Магером [9] ири исследовании кислотных кислородсодержащих групп в угле и экстрактах из него. Незначительные изменения заключались в том, что платиновые электроды были заменены сурьмяными, как более удобными в конструктивном отношении кроме того, в качестве растворителя применялся не пиридин, а менее ядовитый этилендиамин. Все определения проводили в атмосфере азота, не содержащего кислорода. Установлено, что прибавление точного количества ксиленола-2,6 усиливает резкость перегиба в конечной точке. [c.40]

    Содержание пиридиновых проязводных в каучуке латекса усталавливалось определением азота по Кьельдалю. Найдено производных пиридина в латексах, % Б—3,10 В—5,53 Г—4,10. [c.101]

    Проведение определения отличается от слепого опыта тем, что вещество вводят сначала в правое длинное колено реакционного сосуда. Взвешивают в стеклянной пробирочке с проволочной рукояткой (как при определении азота по Преглю), высыпают и взвешивают снова. Так как определение по Церевитинову дает ошибку в 3%, то вполне достаточно взвешивать с точностью до 0,01 мг. Жидкости взвешивают в капилляре и выливают в аг. Надо очень тщательно следить за тем, чтобы вещество полностью растворилось в пиридине — нерастворимые вещества вовсе не реагируют и дают только результат слепого опыта. После введения реактивов и сборки аппарата выжидают еще 10 мин. и в случае, если все вещество растворилось, устанавливают уровень ртути на деление 1 мл, перемешивают и встряхивают постукиванием по короткому колену в течение первых 10—20 сек. ртуть быстро опускается, потом медленнее и при нормальном течении реакции уровень ртути останавливается или опускается в течение следующих 10 сек, еще только на 0,03 мл. После [c.462]

    Резз Льгаты определения азота также позволяют подтвердить высказанное выше положение, что основания сланцевой подсмольной воды относятся к гомологам пиридина. Действительно, если сопоставить температуры кипения азотистых оснований и процентное содерл<ание в них азота, можно видеть, что исследуемые фракции по содержанию азота ближе всего подходят к производным пиридинового ряда. [c.185]


    С помощью сдвигающих реагентов в принципе можно определять геометрию молекул в растворе [40]. Этот экспфимент обычно проводится в диапазоне быстрого обмена. Предполагают, что спектральные сдвиги протонного ЯМР, обусловленные СР, имеют по своей природе дипольный характер. В идеальном случае можно задаться структурой молекулы и рассчитать по уравнению (12.22) дипольные сдвиги для большого числа различных ядер исследуемой молекулы. Чтобы добиться соответствия расчетных и эксцфиментальных данных по сдвигу, меняют задаваемую структуру молекулы. Поскольку структура исследуемой молекулы и структура комплекса в растворе, как и величина и положение магнитного диполя металлического центра в комплексе, неизвестны, то в общей сложности система имеет восемь неизвестных. Что это за неизвестные, можно увидеть из рис. 12.10, где показан такой жесткий лиганд, как пиридин, связанный в комплекс с СР. Для определения ориентации молекулы относительно СР нужны четыре параметра 1) г—расстояние между металлом и донором 2) а — угол между связями металл — донорный атом и азот — орто-углерод 3) р—угол между плоскостью лиганда и магнитной плоскостью х, у металла 4) у — угол, характеризующий поворот плоскости молекулы лиганда относительно оси азот — пара-углерод. Кроме того, нужны два угла для определения ориентации магнитной оси относительно связи металл — [c.193]

    Каменноугольный пек представляет сложную смесь различных органических веществ (до нескольких сот). Из них химически индентифици-рованы лишь несколько десятков [93]. Поэтому пеки характеризуют по фракционному или компонентному составу. Группы веществ в пеках, имеющих определенную молекулярную массу, растворяются в одних растворителях и не растворяются в других. В результате многочисленных работ по разделению селективным растворением пека на фрак ции в настоящее время отобраны следующие растворители петролейный эфир (гептан), бензол (толуол), пиридин (хинолин). Часть пека, растворяемая в петролейном эфире, названа -у-фракцией, или мальтенами растворимая в бензоле, нерастворимая в петролейном эфире — -фракцией, или асфальтенами часть, нерастворимую в бензрле (толуоле), а-фрак-цией, или карбоидами. В последнее время а-фракцию стали подразделять на ai-фракцию и а2-фракцию. Фракция а не растворима в пиридине (хинолине). Предполагается, что она состоит из частичек угля, попавших в смолу, частичек сажи, образовавшихся при деструкции летучих продуктов, выделяющихся из каменного угля при его нагреве, а также из высокомолекулярных органических веществ. Молекулярная масса (средняя величина) каждой фракции мальтены 400—500 асфальтены — 700-800 карбоиды - 2000. Каменноугольный пек состоит в основной своей массе из ароматических, а также из гетероциклических молекул. В пеке обнаружены соединения, имеющие гетероциклы с кислородом, азотом и серой. Элементарный состав пека, отличающийся способом получения и температурой начала размягчения, представлен ниже, % [94]  [c.150]

    В определенных условиях—действием фтора, разбавленного азотом, при — б ", на раствор бензола в пиридине — можно получить и фторбензол  [c.177]

    Нанесите на пoлo y универсальнойлндикаторной уиаги каплю раствора пиридина. Можно отметить липп. слабое потемнение бумаги, соответствующее значению pH около 7,6. Пиридин проявляет слабые основные свойства. Проделайте аналогичное определение с раствором хинолина и запишите значение pH раствора. Какое соединение азота является более сильным основанием Запишите уравнения реакций взаимодействия с водой пиридина, хинолина, изохинолина, акридина. [c.137]

    Поскольку вода является жестким растворителем, то для жестких и мягких ионов должны быть характерны свои специфические зависимости энергии Гиббса переноса ионов из воды (стандартного растворителя) в другой растворитель от мягкости последнего. Если ионы имеют одинаковый заряд и приблизительно равны по величине, то жесткие ионы должны предпо1 -тительно концентрироваться в водной среде, а мягкие — в более мягких растворителях. Параметру дано указанное в уравнении (7.12г) определение, потому что по величине ион Ад занимает промежуточное положение между жесткими ионами На и К . Определены параметры ц 34 органических растворителей так, X 2,2,2-трифторэтанола, воды, пиридина и Ы,К-диметилформ-амида равны —0,12, 0,00 (по определению), 0,64 и 1,35 соответственно. Если в молекуле растворителя имеется электронодонорный атом кислорода, азота или серы, то мягкость растворителей возрастает в ряду О-доноры (спирты, кетоны, амиды) <Н-доноры (нитрилы, пиридины, амины) <8-доноры (тиоэфиры, тиоамиды). Описаны различные применения этого параметра мягкости растворителей [285]. [c.503]

    Пи ридилметил)иминодиуксусная кислота является своеобразным комплексоном, содержащим в качестве дополнительного координационного партнера атом азота пиридинового цикла, что вносит определенную специфику в поведение этого соединения при взаимодействии с катионами. Известный в литературе метод получения этого соединения состоит в восстановлении пиридин-2-альдоксима до соответствующего амина п последующем взаимодействии последнего с монохлорускуснон кислотой [1]. Однако получение исходного пиридин-2-альдокси-ма представляет собой чрезвычайно трудный многостадийный процесс. [c.244]

    Прочность водородной связи. Как упоминалось в предыдущем разделе, измерения, выполненные Кертойзом и др. [87], показывают, что более прочные водородные связи образуются с более слабыми основаниями, такими, например, как пиридин, через атом азота и более слабые — через атомы кислорода простого эфира или кетогрупп, имеющих определенное сходство. [c.911]

    В качествепримера можно привести определение индия вспла-вах с серебром (отношение Ag 1п = 9 1) [166,167]. 0,5 г сплава растворяют в 5 мл концентрированной азотной кислоты, кипятят для удаления окислов азота, разбавляют до 200 мл и прибавляют 10 мл 0,05 М раствора динатриевой соли этилендиаминтетрауксусной кислоты, 5 мл пиридина и 10 капель 0,1 %-ного водного раствора пирокатехинового фиолетового. После этого светло-желтый раствор титруют 0,05 М раствором сульфата меди до появления голубой окраски. Описанным путем найдено 10,15% индия. Для контроля серебро было определено потенциометрическим титрованием иодидом калия, а после выделения серебра электролизом индий был определен в форме 8-оксихинолината. При этом найдено 89,91% Ag и 10,12% 1п. [c.104]

    Определенную практическую ценность имеют реакции гомолитического алкилирования гетероароматаческих соединений, таких, как пиридин, хинолин, изохинолин, акридин, хиноксалин, пиримидин, тиазол и имидазол. Для увеличения выхода алкили-рованных гетероциклов реакцию необходимо проводить обязательно в присутствии кислоты, когда гетероциклы реагируют в протонированной по азоту форме. В таких условиях выходы продуктов алкилирования высоки, и реакция происходит исключительно по а- и у-положениям по отоошению к протонированно-му азоту  [c.551]

    Поскольку вполне определенно установлено, что нитрована в серной кислоте происходит за счет иона нитрония N0 [18], становится ясным, что нитрование уже заряженного положительно иона пиридиния должно быть затруднено и идти не в положения 2 и 4 с низкой электронной плотностью, а в положение 3, которое подвергается относительно более слабому воздействию аммонийного кольцевого атома азота пиридиния. Подобйое рассуждение справедливо и для других случаев взаимодействия пиридина с другими положительными или электрофильными реагентами, например для сульфирования, бромирования или для реакции Фриделя—Крафтса. [c.314]

    Было найдено, что алкилирование изокарбостирила иодистыми алкилами и щелочью происходит по азоту (стр. 321), в то время как метилирование серебряной соли, а также бензоилирование изокарбостирила в пиридине приводит к образованию 0-производных [439]. Течение реакций этого типа не может поэтому служить для решения вопроса о том, находится ли водород в изокарбостириле у азота или у кислорода. Действительно, характер этих превращений не позволяет использовать определение структуры конечных продуктов реакции для суждения о строении исходного вещества. [c.324]

    Пиридазин является слабым однокислотным основанием с довольно высокой температурой кипения. Сам пиридазин представляет собой бесцветную жидкость со слабым запахом, напоминающим запах пиридина, т. пл.—6,4° т. кип. 207,4° в атмосфере азота при давлении 762,5 мм по 1,5231 1,1054 [16]. На основании криоскопических определений пиридазин, по-видимому, только немного ассоциирован в бензоле или диоксане его высокая температура кипения объясняется большим дипольным моментом (около 4D) [17, 100], как это наблюдается и в случае нитробензола. Рассчитанное значение диполь- ного момента [101, 102] согласуется с экспериментальными данными. Величина поверхностного натяжения пиридазина (46,9 дн1см при 34°) также близка к соответствующей величине для нитробензола, однако пиридазин имеет низкую константу Этваша, которая заметно меняется с температурой. Была измерена также вязкость пиридазина [17]. Абсорбционный спектр этого соединения имеет две сильных полосы, Х акс. 245—250 и 338 мц, в гексане в воде вторая из этих полос смещается до 300 мц водный раствор хлористого водорода обнаруживает очень сходную кривую [64, 103]. Квантовомеханические расчеты предсказывают появление полосы при 336 мц [104]. Исследован также спектр паров пиридазина [105]. Пиридазин смешивается во всех отношениях с водой, бензолом, диоксаном и спиртом несколько менее растворим в эфире и почти совсем нерастворим в циклогексане [17]. Он представляет собой очень слабое основание, у которого рКа равно только 2,33 (у пиридина p7< 5,23) [106]. Однако пиридазин является более сильным основанием, чем пиримидин (1,30) или пиразин (0,6). [c.93]

    В сополимере акрилонитрила с метилвинилпиридином содержание пиридинного азота определяют путем титрования в среде нитрометана раствором хлорной кислоты, а нитрильный азот омылением КОН с последующим определением выделившегося аммиака [287]. [c.87]

    Гудриан с сотр. [89] изучали гидроденитрогенизацию пиридина на кобальтмолибденовом катализаторе при 250—400 °С и 8,3 МПа. Они обнаружили, что при высоких степенях превращения температура, необходимая для достижения определенной степени удаления азота, примерно на 25 °С ниже на суль-фидированном катализаторе, чем на катализаторе в оксидной форме. Присутствие сероводорода понижает эту необходимую температуру еще на 60°С. Гидрирование пиридина и разрыв кольца пиперидина происходили быстрее на сульфидном, чем на оксидном катализаторе. Присутствие НаЗ оказывает небольшое влияние на гидрирование, но значительно ускоряет разрыв кольца. [c.83]

    При длительном стоянии отобранной для анализа пробы могут произойти существенные изменения в составе предназначенной для анализа воды. Поэтому, если нельзя начать анализ воды сразу или в крайнем случае через 12 ч после отбора пробы, нужно консервировать пробу для стабилизации ее химического состава. Пробы для определения всех видов связанного азота, окисляе-мости, пиридина и т. п. консервируют, прибавляя к ним серную кислоту приливают по 2 мл разбавленной (1 3) серной кислбты на каждый литр исследуемой воды. Пробы для определения взвешенных веществ и сухого остатка консервируют, прибавляя к ним 2 мл хлороформа на каждый литр исследуемой воды. После прибавления хлороформа воду следует хорошо взболтать. Для определения фенолов сточную воду подщелачивают, добавляя к ней 5 г едкой щелочи на каждый литр воды. [c.13]

    Для определения гидроксильных групп полиэфиров [46] 0,05— 0,1 г полиэфира растворяют в свеженерегнанном сухом пиридине, куда добавляют 10-кратный избыток равных количеств уксусного ангидрида и пиридина. Смесь оставляют на 48 час. при комнатной температуре, затем выливают в холодную воду. Выпавшее соединение (ацетилпроизводное) отделяют на воронке, промывают водой до полного удаления уксусной кислоты и высушивают до постоянного веса. Высушенное соединение омыляют метанольным раствором щелочи в течение 3 час. при барботировании азота на кипящей водяной бане, подкисляют серной кислотой, уксусную кислоту отгоняют в токе азота и титруют 0,01 раствором NaOH. Молекулярную массу рассчитывают по формуле [c.114]

    Были исследованы инфракрасные спектры поглощения молекулярных соединений окиси азота, ацетонитрила, пиридина, ацетальдегида, ацетона, хлористого ацетила, этилацетата, диэтилового эф ира, метанола и циклогексана с А1Вгз, А1С1з, ЗпСЦ и некоторыми другими каталитически активными галогенидами металлов. При этом были обнаружены значительные изменения частот, характерных для определенных связей присоединившихся органических молекул и N0, которые непосредственно выявляют электроноакцепторную природу указанных галогенидов и место их присоединения к молекулам аддендов. В случае этилацетата молекулы галогенидов присоединяются прежде всего к карбонильной группе эфира, в случаях же хлористого ацетила — к атому хлора. Изменения в спектрах органических молекул позволяют предположить, что молекулы исследованных галогенидов металлов обладают более сильными электронно-акцепторными свойствами, чем молекулы муравьиной и уксусной кислот, причем эти свойства увеличиваются в последовательности  [c.291]


Смотреть страницы где упоминается термин Пиридин определение азота: [c.340]    [c.345]    [c.60]    [c.1170]    [c.59]    [c.182]    [c.295]    [c.29]    [c.36]   
Методы органического анализа (1986) -- [ c.333 , c.336 , c.345 ]




ПОИСК





Смотрите так же термины и статьи:

Азот, определение

Азот, определение азота



© 2024 chem21.info Реклама на сайте