Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Селективность переносчика

    Большой теоретический и практический интерес представляет окисление боковых алкильных цепей у гомологов бензола для получения ароматических спиртов, альдегидов, кетонов и кислот. Эти процессы можно проводить в жидкой или паровой фазе, при нормальном или повышенном давлении, при воздействии лучистой энергии, тепла или катализаторов. Применение последних более заманчиво, так как благодаря селективному действию катализаторов процесс можно останавливать на нужной стадии окисления. Несмотря на большое количество литературы по окислению гомологов бензола, механизмы этих процессов изучены еще плохо, но, вероятнее всего, они протекают цепным путем. Катализаторы окисления являются или активаторами, или переносчиками кислорода. Окисление ароматических углеводородов над У. О , [28] представляют следующим образом  [c.209]


    Достаточно селективно (предпочтительно в присутствии переносчиков кислорода) протекает электроокисление нафталина с образованием фталевой кислоты [c.221]

    В отличие от газовой хроматографии, в которой подвижной фазой служит газ-носитель, выполняющий лишь функцию переносчика вешества и влияющего только на эффективность колонки, в жидкостной хроматографии в функцию подвижной фазы входит еще и влияние на селективность колонки. Это свойство подвижной жидкой фазы имеет первостепенное значение для ЖАХ, так как оно позволяет достигать оптимальных условий разделения не только выбором соответствующего селективно действующего адсорбента, что не всегда просто, но и подбором системы растворителей, действующих селективно. [c.79]

    Повышение давления до значительных величин порядка сотен атмосфер, а в отдельных случаях даже до нескольких атмосфер вызывает дополнительный эффект, связанный с межмолекулярным взаимодействием анализируемых веществ с газом-носителем. В этом случае газ-носитель перестает играть роль только лишь переносчика вещества и, следовательно, его природа начинает оказывать воздействие на коэффициент Генри и величину удерживаемого объема. Таким образом, повышая давление, можно подобрать такие условия опыта, которые увеличат селективность неподвижной фазы за счет изменения коэффициента Генри. [c.56]

    Существует несколько механизмов ионного транспорта. Согласно механизму подвижных переносчиков ионофор Т-, вызывающий селективную проводимость мембраны, образует на поверхности мембраны комплекс с ионом С+ С+4-Т Х [СТ]. Этот нейтральный комплекс диффундирует к противоположной стороне мембраны и диссоциирует, так что С+ переходит в водную фазу, а Т" под действием электрического поля возвращается обратно  [c.140]

    У жидких мембран на основе ионообменников и нейтральных переносчиков активные центры, нейтральные и заряженные комплексы сохраняют способность к перемещению, поэтому ограничения в селективности, связанные с подвижностью, в значительной мере отпадают. Электродное поведение таких мембран можно предсказать с помощью констант экстракции (констант ионного обмена). [c.549]

    В случае нейтральных переносчиков (8), типичным примером которых являются макроциклические соединения, селективность жидкостных мембран определяется равновесными параметрами и зависит от отношения в/ а- Величину этого отношения легко определить из данных по равновесной экстракции солей нейтральными молекулами из водных растворов в органический растворитель. Механизм переноса также отличается от ионообменного, поскольку в нем не участвуют заряженные ионообменные центры. Вместо этого образуются заряженные комплексные ионы (К8") нейтральных молекул с катионами, которые и выступают переносчиками последних  [c.180]


    Для катионов приблизительно одинакового размера с одинаковым зарядом отношение кв/кл не зависит от природы растворителя, поскольку комплексы практически не отличается друг от друга по устойчивости. По этой причине селективность таких мембран зависит только от химических свойств нейтральных переносчиков, которые отражаются на величинах констант образования соответствующих комплексов. Кроме того, селективность во многом зависит от специфичности взаимодействия катионов со связывающими их нейтральными молекулами. [c.180]

    Среди многочисленных фторирующих реагентов, применяемых для фторирования органических молекул, выделяется группа неорганических и органических переносчиков фтора, реакции которых с органическими соединениями могут формально быть расценены как реакции электро-фильного фторирования. Индикация таких процессов - ориентация в реакциях с производными бензола, закономерности присоединения к алкенам и реакции с некоторыми элементоорганическими соединениями -указывает на роль в этих процессах "псевдоположительного" атома фтора. Разумеется, получение истинного фтор-катиона невозможно по термодинамическим причинам. Механизмы этих реакций сложны и во многих отношениях не всегда ясны. Однако этот факт не исключает использования термина "электрофильные фторирующие агенты", если результат такого фторирования может быть описан с этих позиций [26]. Успехи в практической реализации этих методов налицо, особенно в плане фторирования гетероциклических соединений, стероидов, сахаров и других природных веществ. Анализ синтетических возможностей таких реагентов и различные варианты введения фтора в органические молекулы с помощью переносчиков фтора являются предметом данной книги. Такие фторирующие реагенты обладают пониженной окислительной способностью, что позволяет проводить процесс, контролируемый по температуре, глубине фторирования и селективности. [c.17]

    Одним из лучших электродов такого типа является К-селективный электрод с мембраной на основе нейтрального переносчика валиномицина (рис. 10.17), пригодный для определения калия в присутствии 10 -крат-ного количества натрия. Столь высокая селективность обусловлена удивительным соответствием размера внутренней полости циклической мо- [c.141]

    В ряде случаев применение систем катализаторов-перенос-чиков дает возможность осуществить целенаправленное превращение органических соединений, которые неактивны на электродах при прямом электрохимическом превращении. В некоторых случаях катализатор-переносчик позволяет придать "реакции нужное направление и за счет поддержания определенного окислительно-восстановительного потенциала проводить ее с высокими селективностью и выходами целевого продукта. [c.115]

    Системы со взвешенными в растворе частицами катализато-ров-переносчиков, вероятно, могут применяться и для селективного электрохимического превраш ения химических веществ при их малом содержании в растворе. [c.121]

    Наибольшее внимание, однако, в последние годы привлекают процессы электрохимического окисления ароматических углеводородов. Высокие селективность и скорость процессов окисления достигаются главным образом применением катализаторов — переносчиков. С особым успехом при окислении антрацена в антра-хинон применялся ион церия [39, 40]  [c.9]

    Низшие алифатические альдегиды с достаточной селективностью могут быть окислены до соответствующих кислот лишь в специально подобранных мягких условиях, обычно в присутствии катализаторов-переносчиков. Характерным примером такой реакции является окисление хлораля в трихлоруксусную кислоту [58]. Суммарная анодная реакция может быть выражена следующим уравнением  [c.275]

    Представленное объяснение не исключает и других. В частности, а.1ьдоксимы агликонов, благодаря наличию хелатных группировок, возможно, являются селективными переносчиками ионов кальция через 1е.мбраны миофибрильных клеток, и тем самым увеличивают биологическую активность, так как известно [77, 78], что ионы кальция усиливают сократимость миофибриллов. Не исключено также, что оба эти эффекта имеют место в живом организме. [c.307]

    В калиевом комплексе нонактина форма цепи молекулы антибиотика напоминает бороздку теннисного мяча, а восемь О-атомов сложноэфирных и простых эфирных группировок расположены в вершинах куба и связывают ион за счет ион-дипольных взаимодей-станй. Существенно, что макротетралнды являются наиболее селективными переносчиками для ионов аммония (МН.1 ). [c.594]

    В 1951 г. Н. Б. Лапкина и В. А. Назаренко при изолировант этиленгликоля перегонкой с водяным паром применили в ка честве селективного переносчика этиленгликоля бензол. Этп способом в сочетании с некоторыми другими операциями этн леигликоль отгоняется даже из сильно разбавленных растворов [c.102]

    Жидкостные электроды. В жидкостных ионселективных электродах возникновение потенциала на границе раздела фаз обусловлено ионным обменом, связанным с различием констант распределения иона между жидкой и органической фазами. Ионная селективность достигается за счет различия в константах распределения, устойчивости комплексов и различной подвижности определяемого и мешающего ионов в фазе мембраны. В качестве электродноактивного соединения в жидкостных ионселективных электродах могут быть использованы хелаты металлов, ионные ассоциаты органических и металлосодержащих катионов ц анионов, комплексы с нейтральными переносчиками. Большое распространение получили пленочные пластифицированные электроды, выпускаемые промышленностью и имеющие соответствующую маркировку, например, ЭМ—СЮ4 01, ЭМ—НОз —01. Чувствительный элемент таких электродов состоит из электродноактивного компонента, поливинилхлорида и растворителя (пластификатора). В лабораторной практике используют аннонселективные электроды, для которых электродноактивным соел,инением являются соли четвертичных аммониевых оснований. [c.121]


    Изучение биологических мембран привело к разработке электродов на основе так называемых "нейтральных переносчиков" -макроциклических полиэфиров - антибиотиков (моноактин, грамицидин, валиномицин). Молекулы циклических полиэфиров содержат кольца иа атомов кислорода, энергетически способные вьшолнять роль сольватной оболочки вокруг катиона. Таким образом, происходит внедрение катиона в органическую фа у. При этом образуются подвижные заряженные комплексы, обеспечивающие катионную проводимость таких сред. Среди них наиболее известен К -селективный электрод с жидкой мембраной - раствором ва-линомицина в органическом растворителе. Коэффициенты селек-tивнo ти составляют = Ю- , = 1  [c.57]

    Наиболее селективно и эффективно электрохимическое окисление алифатических спиртов осуществляется в щелочной среде с участием гетерогенного катализатора-переносчика электронов — гидроксидов никеля. Метагидроксид никеля КЮОН окисляет спирт, восстанавливаясь до гидроксида никеля М1(0Н)2 [c.207]

    Здесь мы в большей степени касаемся применения фотохимии в промышленном синтезе. Очевидно, что фотохимический процесс должен превосходить по выходу или чистоте продукта обычные методы производства, чтобы конкурировать с ними. Особенно подходящими кандидатами для промышленного применения являются цепные реакции (часто с радикальными переносчиками цепи) с фотохимической начальной стадией. Мы уже рассматривали такое их использование в связи с фотополимеризацией (разд. 8.8.2). Заметим, что фотохимическая реакция может быть экономически оправданной даже в том случае, когда ее квантовый выход низок, если выход химического продукта выше, чем у обычных процессов. В производстве веществ тонкой химической технологии расходы на свет составлявот незначительную часть общей стоимости продукта высокого качества. Более того, вследствие относительно малых количеств используемого материала серийный процесс часто может представлять увеличенную копию лабораторного метода. При использовании фотохимии в широкомасштабном валовом химическом производстве возникают несколько большие трудности, так как плата за энергию может теперь составлять существенную часть стоимости конечного продукта. В широкомасштабном производстве часто применяются реакторы непрерывного действия, ставящие перед фотохимией проблемы, связанные с их конструкцией. В частности, необходимо использовать прозрачные реакторы или прозрачные кожухи ламп, стенки которых часто загрязняются образующимися смолообразными (и светопоглощающими) побочными продуктами. Размер реактора также может серьезно ограничиваться поглощением света реагентами. Этим недостаткам фотохимического синтеза должна быть противопоставлена более высокая селективность получения продуктов и лучший контроль за их образованием. Процесс производства отличается меньшими тепловыми нагрузками, поскольку реагенты не нужно нагревать, а затем охлаждать. Выли разработаны и технологии преодоления проблем, связанных с фотохимическими реакторами. Они включают освещение поверхности падающих тонких слоев реагентов использование ламинарных потоков несмешивающихся жидкостей, причем ближайшей к стенке реактора должна быть жидкость, поглощающая свет применение пузырьков газа, вызывающих турбулентность, для улучшения обмена реагента. И на- [c.283]

    В большинстве соаременных методов восстановления карбонильной и других функциональных групп используют реагенты, способные к переносу гвдрид-ионов от атомов 111 группы периодической системы. Многие реагенты этого типа обеспечивают значительную селективность и стереохимический контроль реакций. Наиболее известными реагентами являются борогидрид натрия и алюмогидрид лития. Борогидрид натрия относится к мягким реагентам, он легко восстанавливает только альдегиды и кетоны. Алюмогидрид лития — один из наиболее активных переносчиков гидр ид-ионов, он легко восстанавливает кетоны, сложные эфиры, кислоты и даже амиды. Реакционные способности этих реагентов и ряда других восстановителей такого типа приведены в табл. 4 1. [c.119]

    МЕМБРАНЫ ЖЙДКИЕ, полупроницаемые жидкие пленки или слои, обеспечивающие селективный перенос в-в в процессе массообмена между жидкими и (или) газообразными фазами. Различают свободные, импрегнированные и эмульсионные М. ж. Свободные М. ж,-устойчивые в гравитац. поле слои жидкости, отличающиеся по плотности от разделяемых ими фаз, напр, слой орг. жидкости, расположенный под водными р-рами в обоих коленах и-образной трубки. Импрегнированные М. ж. представляют собой пропитанные жидкостью пористые пленки (полипропиленовые, полисуль-фоновые, политетрафторэтиленовые и др.) или волокна (полипропиленовые, полисульфоновые). Эмульсионные М. ж,-стабилизированные ПАВ жидкие слои, отделяющие капельную фазу от сплошной в эмульсиях типа вода-масло-вода нли масло-вода-масло. Толщина свободных М. ж., как правило, св. 1 мм, импрегнированных 10-500 мкм, эмульсионных 0,1-1,0 мкм. М. ж. могут быть одноко шонентными и многокомпонентными. Первые являются для проникающего через М. ж. в-ва лишь более или менее селективным р-рителем, осуществляют пассивный перенос. Многокомпонентные М. ж. обычно содержат хим. соединения-переносчики, растворенные в мембранной жидкости и способные избирательно связывать и переносить через мембрану диффундирующее в-во (индуцированный либо активный транспорт). Перенос в-в через М. ж. может протекать в режиме диализа и электродиализа (движущая сила процесса-градиент хим илн электрохим. потенциала по толщине мембраны, см. Мембранные процессы разделения ). [c.31]

    М ж. применяют при экстракции и абсорбции, а также при проведении нек-рых хим. р-цпй. При экстракции неорг. в-в в качестве М. ж. использ5тот, как правило, содержащую экстрагент-переносчик орг. жидкость, к-рая разделяет исходный и реэкстрагирующий водные р-ры. Таким путем удается, напр., селективно извлекать ионы к.-л. металла из исходного водного р-ра и в одну стадию получать в реэкстрагирующем водном р-ре более высок5то концентрацию этого металла. Подобный процесс в системах с водными мембранами, заключенными между двумя масляными фазами, дает возможность разделять смеси орг. соед., напр, углеводородов. Мембранную экстракцию применяют в пром-сти для извлечения из сточных вод и технол. р-ров примесей металлов, ароматич. аминов, фенола и др. в-в. [c.31]

    Первым электродом с жидкостной мембраной был кальций-селективный электрод на основе кальциевой соли додецилфос-форной кислоты, растворенной в диоктилфенилфосфате. В выпускаемых в настоящее время электродах для определения кальция в качестве ионофоров применяют эфиры фосфорной кислоты с двумя алифатическими радикалами, содержащими от 8 до 16 углеродных атомов, или нейтральные переносчики. В случае эфиров фосфорной кислоты на поверхности мембраны устанавливается равновесие [c.203]

    ИСЭ с жидкими мембранами в качестве активного вещества могут содержать хелаты металлов,ионные ассоциаты и кошшексы с нейтральными переносчиками,растворенные в несмешивающемся с водой органическом растворителе.Возникновение потенциала на границе раздела фаз связано с различием констант. распределения определяемого иона в жидкой и органической фазах. Ионная селективность достигается за счет экстракционных,комшгексообраэовательных эффектов и различной подвижности ионов в пределах мембраны. [c.41]

    До сих пор мы рассматривали способы регулирования селективности образования связей С—С, основанные на изменениях в свойствах нуклеофильной компоненты. Очевидно, что не менее эффективными средствами такого контроля могут быть вариации в природе реагентов, эквивалентных одному и тому же электрофилу. Например, столь различные по свойствам соединения, как R O+BFr, R 0 1, (R 0)20, R OOR, в реакциях с нуклеофилами выступают в роли переносчиков одного и того же ацил-катиона. Точно также такие непохожие соединения, как соли триалкилоксония R30+Bp4 , алкилтозилаты, алкилгалогениды или алкилацетаты, могут использоваться в качестве эквивалентов одного и того же алкил-катиона. Понятно, что при наличии столь богатого арсенала электрофильных реагентов, различающихся по своей активности, стабильности, чувствительности к стерическим препятствиям, эффектам растворителя и т. п., почти всегда можно выбрать такой реагент, который обеспечит нужную хемо- или региоселективность реакции с субстратом, имеющим несколько нуклеофильных центров. [c.173]

    Некоторые из этих антибиотиков, например моненсин, селективно связывают ноны щелочных металлов, в частности натрий. Однако особую популярность они получили как переносчики ионов Са и по масштабам использования в исследованиях мембран приближаются к валиномицину. Как установлено с помощью рент-геноструктурного анализа, в комплексах с ионами молекулы полиэфирных антибиотиков обволакивают связываемый ион, удерживая его за счет ион-дипольных взаимодействий с простыми эфирными группировками. Подковообразная конформация антибиотика нередко стабилизируется водородной связью между группами, расположенными на противоположных концах цепи в случае Са в [c.594]

    Для отечественной промышленности этот метод получения пропиленоксида имеет ряд преимуществ не только по сравнению с этилбензольным, но и с изобутановым вариантами производства. Окисление ИПБ в гидропероксид протекает значительно легче, чем окисление этилбензола и изобутана и освоено в СССР в крупном масштабе. ИПБ в этом процессе используется как переносчик кислорода и расходуется мало, так как предусматривается отдельная стадия гидрирования ДМФК до ИПБ — исходного продукта для синтеза гидропероксида кумола. Б этой связи реализация кумольного метода возможна в гораздо больших объемах по сравнению с этилбензольным и изобутановым вариантами, развитие которых сдерживается дефицитом сырья и ограничением сбыта сопряженного продукта. Кумольный метод производства пропиленоксида по сырью близок к процессу получения фенола и ацетона, и имеет общие с ним технологические стадии. Поэтому создание кооперированного производства пропиленоксида и ацетона позволит решить не только проблему повышения селективности процесса получения фенола за счет переработки побочных ДМФК и АФ путем их совместного гидрирования с ДМФК, образующимся в эпокси-дировании, но и будет способствовать снижению капитальных затрат в обоих производствах за счет совмещения стадий алкилирования бензола и окисления ИПБ. Блок-схема совместного производства пропиленоксида, фенола и ацетона приведена на рис. 3.23. [c.240]

    В последнее время показано, что на гетерогенных катализаторах окислителем углеводоролов мпжрт быть не только кислород, но и его переносчики (КЮ, ЗОг и др.). В работе [215] проведено сравнительное исследование окисления различных углеводородов молекулярным кислородом и окисью азота (табл. 114). На катализаторах мягкого окисления (закись меди, висмут к олово-мо-либденоБые системы) пропилен окисляется кислородом в альдегиды с высокой селективиостью — до 80% (об.), а взаимодействие пропилена с окисью азота на этих системах приводит к образованию нитрилов и поэтому селективность низка (10—30% об.). Нз катализаторах, в которые введен ион свинца, окисление пропилена кислородом в альдегиды протекает с низкой избирательностью (5—30% об.), а селективность образования нитрилов при взаимодействия олефина с окисью азота высока—от 60 до 90% (об.). [c.290]

    Ионообменные мембраны обладают способностью селективно пропускать ионы одного знака и препятствовать движению противоположно заряженных ионов. При этом переносчиками тока становятся почти исключительно ионы одного вида—катионы в катионитовых и анионы в анионитовых мембранах. Ка-тионитовые мембраны содержат в матрице ионогенные группы кислотного характера —ЗОзН, —Н2РО3, —СООН, которые препятствуют движению анионов. В матрице анионитовой мембраны находятся основные группы —Й =, Н =, НН =, которые при диссоциации приобретают положительный заряд и препятствуют движению катионов. В хлорном электролизере ионообменная мембрана препятствует миграции ионов ОН в анодное пространство и пропускает ионы Ыа+ в катодное (рис. П.1). [c.74]

    Каталитическое гидрирование с использованием переносчиков водорода позволяет осуществлять в некоторых случаях селективное восстановление одной нитрогруппы в динитросоеди-. нениях. Например, при нагревании с циклогексеном в присутствии палладия на угле 2,6-динитроанилин переходит в 3-нитро-фенилендиамин-1,2, а 1,2-, 1,3- или 1,4-динитробензолы —в соответствующие нитроанилины с выходами более 90% [1244], [c.561]


Смотреть страницы где упоминается термин Селективность переносчика: [c.282]    [c.27]    [c.77]    [c.173]    [c.493]    [c.292]    [c.208]    [c.404]    [c.493]    [c.171]    [c.474]    [c.9]    [c.208]    [c.488]    [c.54]   
Введение в мембранную технологию (1999) -- [ c.349 ]




ПОИСК





Смотрите так же термины и статьи:

Переносчик



© 2024 chem21.info Реклама на сайте