Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ЭЛЕКТРОННОЕ СТРОЕНИЕ И СВОЙСТВА АТОМОВ

    Сравним, например, NH4 и СН4.. Эти две молекулярные частицы обладают одинаковым электронным строением, поскольку они являются изоэлектронными. В каждой из них имеется центральный атом, окруженный октетом валентных электронов, которые обобществлены в связях с четырьмя атомами водорода. Различие между ними заключается в заряде ядра центрального атома. Поскольку заряд ядра у N на единицу больше, чем у С, обобществляемые атомами водорода электронные пары сильнее притягиваются к ядру атома N в КНд, чем к ядру атома С в СН4. Поэтому связи N—Н поляризованы сильнее, чем связи С—Н. Соответственно ион аммония в воде обладает кислотными свойствами, чего нельзя сказать о метане  [c.96]


    Электронное строение атома бериллия в газообразном состоянии — 15 25% Увеличение заряда ядра атома бериллия по сравнению с зарядом ядра атома лития наряду с тем, что 25-электроны только частично экранируют друг друга, приводит к двум эффектам 1) атом Ве имеет металлический радиус только 0,89 А, значительно меньше, чем в случае лития (1,22 А) 2) потенциалы ионизации Ве, 9,32 и 18,21 эв, гораздо большие, чем у Ы (5,39 эе), делают Ве значительно менее электроположительным, если рассматривать его хилшческие свойства в сравнении со свойствами Действительно, не существует никаких кристаллических соединений или растворов, в которых ионы Ве + существовали бы как таковые. Все соединения, строение которых было определено, даже соединения с наиболее электроотрицательными элементами, такие, как ВеО и ВеР.,, по крайней мере частично обладают ковалентным характером связи. Электронное строение атомов других элементов II группы (Mg, Са, 5г, Ва и Ка) подобно строению атома Ве. Однако больший размер этих ато.мов уменьшает влияние заряда ядра на валентные электроны. Так, их потенциалы ионизации ниже, чем у Ве они в основном более электроположительны, а ионная природа их соединений законо-.мерно возрастает в группе сверху вниз. [c.67]

    С развитием электронной теории строения атомов стало ясно, что химические свойства элементов являются функцией электронной стрз ктуры атомов. Отсюда следует, что в качестве объективного критерия, однозначно определяющего положение элемента в Периодической системе, целесообразно выбрать именно электронное строение атома. Поэтому в развитии Периодического закона выделяют три этапа. На первом этапе в качестве аргумента, определяющего свойства элементов, была выбрана атомная масса и закон был сформулирован Д.И.Менделеевым следующим образом "Свойства элементов, а также формы и свойства их соединений находятся в периодической зависимости от их атомного веса". На втором этапе было выяснено значение атомного номера, который, как оказалось, определяет заряд ядра атома. Открытие изотопов и изобаров показало, что истинным аргументом, определяющим природу элемента, является именно заряд ядра, а не атомная масса. Действительно, атомы с одинаковой атомной массой — изобары (например, Ат, °К, — принадлежат разным элементам, в то вре- [c.226]

    Подобная близость свойств объясняется тем, что в высшей степени окисленности атомы элементов главных и побочных подгрупп приобретают сходное электронное строение. Например, атом хрома имеет электронную структуру Когда [c.647]


    Углерод-углеродные связи в молекуле бензола обладают свойствами, не похожими на свойства ни одинарных, ни двойных связей. Особенности бензола объясняются его электронным строением. Каждый атом углерода в молекуле бензола находится в состоянии sp -гибридизации. Он связан с двумя соседними атомами углерода и атомом [c.90]

    Основополагающим понятием современной химии является понятие о химическом элементе , т. е. виде атомов с определенной совокупностью свойств. Под свойствами изолированных атомов подразумеваются заряд ядра и атомная масса, особенности электронного строения, потенциалы ионизации, сродство к электрону и электроотрицательность, атомные, орбитальные и ионные радиусы н т. д. Однако необходимо иметь в виду, что изолированные атомы как форма организации вещества могут существовать в природе лишь при достаточно высоких температурах в виде моноатомного пара. Единственным исключением являются благородные газы, для которых при любых условиях и в любом агрегатном состоянии структурной единицей является атом. Все остальные элементы существуют в природе в виде более сложных агрегатов молекул и кристаллов. Таким образом, следует строго различать понятия элемента как вида изолированных атомов и простого вещества как формы существования элемента в свободном состоянии. Следует особо подчеркнуть нетождественность этих понятий хотя бы потому, что один элемент может существовать в виде нескольких простых веществ (аллотропия) .  [c.26]

    Особые свойства воды являются отражением электронного строения ее молекулы, которая имеет угловую структуру атом кислорода в ней находится в состоянии 5р -гибридизации. Молекулы воды ассоциированы главным образом за счет водородных связей (см. 5.9). [c.248]

    Заряд атомного ядра по величине совпадает с порядковым номером элемента в периодической системе число электронов равно заряду ядра. Атом в целом нейтрален, т. е. сумма отрицательных зарядов компенсирована положительным зарядом ядра. Размеры атомного ядра (диаметр 10 — 10 м) весьма малы по сравнению с размерами атома (диаметр 10 м), но почти вся его масса сосредоточена в ядре ( 99,97 %). А так как масса является мерой энергии, то в ядре сосредоточена почти вся энергия атома. Плотность ядерного вещества огромна ( 10 кг/м ). Заряд ядра определяет не только общее число электронов, но и электронное строение атомов, а следовательно, их физико-химические свойства. [c.90]

    Электронное строение молекулы бензола. Свойства бензола интерпретируются теорией молекулярных орбит следующим образом. Каждый атом углерода может иметь три связи, гибридизован-ные тригонально по типу sp и лежащие в одной плоскости (см. том I  [c.129]

    Таким образом, общие и специфические свойства определяются схожестью электронного строения атомов ( в свободном или связанном состоянии), проявляемой в близости радиусов, величин электроотрицательности атомов, в изоморфизме соединений, равенстве и однотипности валентных возможностей атомов и т. д. Индивидуальные свойства — это свойства, присущие только данному атому это результат проявления всех особенностей его электронной структуры, его заряда ядра и всех вытекающих особенностей (энергии, геометрии атомных орбиталей). Электронная структура атома в свободном состоянии индивидуальна, неповторима. Атом занимает определенное место в непрерывном ряду элементов и обладает физической индивидуальностью спектром, атомной массой, набором изотопов и т. д. и т. п. [c.48]

    Благодаря большой электроотрицательности кислорода обе углерод-кислородные связи сильно поляризуются и атом углерода приобретает частичный положительный заряд. Этот положительный заряд является причиной индуктивного смещения электронов в связях между атомом углерода и соседними группами. Все эти особенности электронного строения карбонильной группы могут объяснить многие характерные реакции карбонилсодержащих соединений. Свободная пара на кислороде обусловливает электрофильную атаку углерод карбонильной группы из-за частичного положительного заряда является местом атаки нуклеофильных частиц индуктивный сдвиг электронов вдоль связей между углеродным атомом и соседними группами объясняет некоторые особые свойства групп, расположенных по соседству с карбонильной функцией. [c.114]

    Атом азота находится в состоянии sp -гибридизации (две из трех sp -гибридных орбиталей образуют ст-связи). Он поставляет в ароматический секстет один р-электрон. Неподеленная пара электронов на sp -гибридной орбитали обусловливает свойства пиридина как основания (см. 10.3). Атом азота с таким электронным строением принято называть пиридиновым (рис. [c.47]


    Объяснение строения и свойств молекул, основанное на представлении о перекрывании 5- и р-орбиталей, оказалось во многих случаях непригодным, в частности для соединений углерода. Как видно из схемы электронного строения атома углерода (рис. 29), в нем имеются два неспаренных электрона. Следовало бы ожидать, что такой атом углерода должен быть двухвалентным. Для проявления валентности, равной четырем, необходимо возбудить атом углерода. При этом один из 25-электронов может занять уровень 2р , благодаря чему образуется конфигурация (15) (25) (2р ) (2р.) 2р , в которой имеется 4 неспаренных электрона, из них три электрона обладают орбиталями р, а четвертый — орбиталью 5. При полном спаривании должно быть три однотипных связи, а четвертая связь должна быть другого типа. Од- [c.84]

    Схематически влияние р-металла III группы периодической системы на проводимость полупроводника (Ое) показано на рис. 204. Захватывая электроны из о-связи Ое—Ое, атом Оа обращается в отрицательный ион, создавая этим самым электронную вакансию, или дырку . Таким образом, создается примесная проводимость полупроводников, очень сильно изменяющая их электрические свойства. Подбор донорных и акцепторных примесей показан в табл. 127, где приведена часть периодической системы Д. И. Менделеева, из которой исключены - и /-металлы, электронное строение которых является особым (гл. XII). [c.448]

    Ископаемые угли относятся к природным углеродистым веществам. Уникальные свойства углерода, благодаря которым существует огромное многообразие органических, в том числе и высокоуглеродистых соединений, обусловлены расположением углерода посередине шкалы злектроотрицательностей и электронным строением его атома. Внешний электронный слой атома углерода имеет два 5- и два р-электрона 2 р . При образовании химических связей атом легко переходит в возбужденное состояние, в котором его валентность равна четырем. [c.101]

    Причины общности свойств лантана я лантаноидов есто ственно искать в строении электронных оболочек их ат(-мов. [c.116]

    Структура и строение. Свойства веществ определяются массами и зарядами ядер атомов, из которых они построены, пространственным расположением атомных ядер и типом связи, существующим между атомами в молекулах этого вещества. Массы атомов (за исключением водорода — дейтерия) существенны только для очень немногих свойств веществ, в первую очередь для удельных весов. Большинство свойств зависит в основном только от пространственного расположения атомных ядер и от числа и состояний электронов, которые в конечном счете опять-таки определяются зарядами ядер. Расположение ат,омных ядер в веществе считают его структурой. От структурных данных отличают данные, относящиеся к электронным состояниям молекул (распределение электронов у различных атомов, характер их взаимодействия или тип связи, пространственное расположение связей) эти результаты рассматривают как данные о строении молекул. [c.328]

    В периодах системы Д. И. Менделеева с повышением порядкового номера элемента восстановительные свойства простых веществ понижаются, а окислительные возрастают и становятся максимальными у галогенов. Так, в 3-м периоде натрий — самый активный восстановитель, а хлор — самый активный окислитель. Объясняется это строением атомов элементов. У атома натрия на внешнем энергетическом уровне находится один электрон, отдав который, атом превращается в ион с 8 электронами на внешнем уровне, как у атома инертного газа неона. Атом хлора содержит на внешнем уровне 7 электронов. Приняв один электрон, он переходит в ион с устойчивыми электронным уровнем, как у атома инертного газа аргона. [c.188]

    Атомы. Последним известным в настоящее время пределом делимости вещества являются элементарные частицы — протоны, нейтроны и др. За последние десятилетия благодаря появлению мощных ускорителей и тщательному исследованию состава космических лучей стало известно около 200 элементарных частиц. Теперь ставится вопрос об их (строении в связи с этим вместо термина элементарные частицы иногда пользуются выражением фундаментальные частицы . Атомами называются наиболее простые электрически нейтральные системы, состоящие из элементарных частиц. Более сложные системы — молекулы— состоят из нескольких атомов. Химикам приходится иметь дело с атомами, образующим вещества, — атомами химических элементов они представляют наименьшие частицы химических элементов, являющиеся носителями их химических свойств. Атом химического элемента состоит з положительного ядра, содержащего протоны и нейтроны, и движущихся вокруг ядра электронов . Многие из этих атомов устойчивы, они могут существовать сколь угодно долго. Известно также больщое число радиоактивных атомов, которые спустя некоторое время превращаются в другие атомы в результате изменений, происходящих в ядре. [c.5]

    Электронное строение атома в нормальном (невозбужденном) состоянии определяется числом электронов в атоме. Если атом не возбужден, электроны занимают такие орбитали, на которых их энергия минимальна. Число электронов в атоме равно положительному заряду ядра. Таким образом, заряд ядра является характеристикой, определяющей электронное строение атомов, а следовательно, и свойства элементов. Поэтому в настоящее время периодический закон формулируется следующим образом свойства простых веществ, а также свойства и формы соединений элементов находятся в периодической зависимости от заряда ядра атомов элементов. [c.59]

    Термодинамические свойства твердых растворов палладия с серебром [6] четко отражают эти особенности электронного строения избыточная интегральная свободная энергия сплавообразования имеет минимальное значение, а парциальные избыточные свободные энергии резко изменяют ход концентрационной зависимости вблизи состава, содержащего 60 ат.% серебра (рис. 1). [c.155]

    Различия в магнитных свойствах веществ связаны с электронным строением их составных частей — ато MOB, ионов или молекул. Если в частице все электроны спарены, то их магнитные моменты взаимно компенсируются и суммарный магнитный момент частицы равен нулю такая частица диамагнитна. Парамагнетизм проявляется частицей при наличии в ней одного или нескольких неспаренных электронов. Суммарный магнитный момент такой частицы не равен нулю с увеличением числа неспаренных электронов он возрастает. [c.207]

    Подобная близость свойств объясняется тем, что в высшей степени окисления атом элемента, находящегося в третьем периоде (в главной подгруппе) и атомы элементов побочной подгруппы приобретают сходное электронное строение. Например, атом хрома имеет электронную конфигурацию 1з Когда хром находится в степени окисления 4-6 (например, в оксиде СгОз), шесть электронов его атома (пять М- и один 4б-электрон) вместе с валентными электронами соседних атомов (в случае СгОз — атомов кислорода) образуют общие электронные пары, осуществляющие химические связи. Остальные электроны, непосредственно не участвующие в образовании связей, имеют конфигурацию отвечающую электронной структуре благородного газа. Аналогично у атома серы, находящегося в степени окисления -Ьб (например, в триокси-де серы ЗОз), шесть электронов участвуют в образовании ковалентных связей, а конфигурация остальных (1з 28 р ) также соответствует электронной структуре благородного газа. Короче говоря, сходство в свойствах соединений элементов побочной подгруппы и элемента третьего периода той же группы обусловлено тем, что их ионы, отвечающие высшим степеням окисления, являются электронными анапогами. Это легко видеть из данных табл. 21.1. [c.497]

    Подобная близость свойств объясняется тем, что в высшей степени окисленности атомы элементов главных и побочных подгрупп приобретают сходное электронное строение. Например, атом хрома имеет электронную структуру 15 25 2р 35 3р 3й45 Когда хром находится в степени окисленности -[-6 (например, в оксиде СгОз), шесть электронов его атома (пять Зё- и один 45-электрон) вместе с валентными электронами соседних атомов (в случае СгОз — атомов кислорода) образуют общие электронные пары, осуществляющие химические связи. Остальные электроны, непосредственно не участвующие в образовании связей, имеют конфигурацию 15 28 2р Зз Зр , отвечающую электронной структуре благородного газа. Аналогично у атома серы, находящегося в степени окисленности -)-6 (например, в триоксиде серы 50з), шесть электронов участвуют в образовании ковалентных связей, а конфигурация остальных 1з 25 2р ) также соответствует электронной структуре благородного газа. [c.647]

    Свойства и получение. Атом углерода в валентном состоя-ВИИ s 2spxPgPz имеет четыре, неспаренных электрона и во внешнем электронном слое отсутствуют как свободные квантовые ячейки, так и неподеленные электронные пары (только для одного элемента, кроме углерода,— водорода характерно состояние атома, имеющее з ти особенности). Такое электронное строение атома и расположение углерода посередине шкалы электроотрицательностей обусловливают уникальные свойства данного элемента, благодаря которым существует огромное многообразие органических соединений. [c.352]

    Свойства и получение. Внешняя электронная оболочка атома углерода в основном и возбужденном состоянии имеет строение 2s 2p и s2pxPfPi. Таким образом, в валентном состоянии атом углерода имеет четыре неспарениых электрона и во внешнем электронном слое отсутствуют как свободные атомные орбитали, так и неподеленные электронные пары (только для одного элемента, кроме углерода, - водорода характерно подобное состояние атома). Такое электронное строение атома углерода обусловливает две характерных его особенности возможность образовывать четыре ковалентные связи и неспособность к донорно-акцепторному взаимодействию. [c.363]

    Строение и физические свойства. Атом германия в GeF., имеет неподеленную электронную пару это, по-видимому, сказывается па геометрии молекулы. В настоящее время нет экспериментальных данных о строении и состоянии GeFg в газовой фазе. Если в газовой фазе GeFo мономолекулярен, то, согласно представлениям о ковалентности связей Ge—F, молекула должна быть угловой, с углом F—Ge—F, либо близким к 90" (участие в связях только р-электронов германия), либо равным примерно 120° (гибридизация с неподе-ленной парой s-электронов). [c.44]

    Строение молекулы и свойства метана. Электронное строение молекулы метана рассмотрено в 3.2. Атом углерода в молекуле метана находится в состоянии хр -гибрндизации. В результате перекрывания четырех гибридных орбиталей атома углерода с 5-орбиталями атомов водорода образуется весьма прочная молекула метана. Электронное строение молекулы метана см. рис. З.П. [c.284]

    Гипотеза Григоровича. По мнению В. К. Григоровича, расположение атомов в твердых и жидких простых веществах определяется, в основном, их электронным строением [8]. В металлической решетке, где внешние электроны положительных ионов сильно возбуждены вследствие возмущающего действия соседних атомов, сравнительно небольшой прирост температуры может быть достаточным для наступления перекрытия и обменного взаимодействия внешних р оболочек ионов, не перекрывающихся при низких температурах ([8], стр. 202). Так, например, объемноцентрированная кубическая структура натрия, область существования которой простирается от 30 К до температуры плавления, по Григоровичу, может быть объяснена с помощью следующих соображений. Из экспериментальных данных (об оптических свойствах, эффекте Холла и т. д.) известно, что натрий в твердом и жидком состоянии имеет один электрон проводимости на атом. Это означает, что его валентный электрон с Зз уровня переходит в электронный газ. Атомы натрия в конденсированном состоянии имеют внешнюю 25 2р оболочку. Взаимодействие ионов с электронным газом приводит к сближению и перекрыванию р-орбиталей внешних р оболочек ионов, в результате чего возникают обменные / вухэлектронные о-связи, направленные по трем осям прямоугольных координат. Образование шести связей каждым атомом со своими соседями приводит к простой кубической ячейке со свободным объемом в центре, который может быть заполнен таким же ионом. Так, из двух простых кубических под-решеток, энергетически невыгодных, а потому редко реализующихся в металлах, образуется ОЦК структура, одна из трех типичных металлических структур. Гипотеза Григоровича иллюстрируется рис. 43. Точно так же обосновывается возникновение ОЦК структур и у других щелочных металлов. Для лития, ионы которого имеют 15 оболочку, возникновение ОЦК структуры связывается с предположением о переходе 8 электронов на р уровни. [c.175]

    Следовательно, это типичный процесс восстановления Аналогично слсдует рассматривать восстановление в тех случаях, когда одновалентный атом или группа атомов замепгается водородом нли другой группой с более выраженными электроположительными свойствами Приведенные примеры показывают, что в процессах восстановления могут происходить изменения электронного строения двоякого рода. [c.16]

    Электронное строение и типы связей элементов периодической системы - ключ к пониманию Сфуктуры и свойств простых и сложных веществ, образованных эти.ми элементами Два или более атомов располагаются друг около друга так, как это энергетически выгодно. Это справедливо независимо от того, сильно или слабо связана фуппа атомов, содержит эта фуппа лишь несколько или 10 атомов, является расположение атомов упорядоченным (как в кристалле) или неупорядоченным (как в жидкости). Группа ато.мов устойчива тогда и только тогда, когда энергия атомов, расположенных вместе, ниже, чем у отдельных атомов. Единственной физической причиной конкретной кристаллической сфуктуры любого элемента и его модификаций является перекрытие валентных и подвалентных оболочек его атомов, приводящее к образованшо определенных межатомных связей. Число протяженность и симмефия орбиталей атомов данного конкретного элемента полностью определяют число, длину, ориентиров и энергию межатомных связей, образующихся в результате перекрытия этих орбита-лей, а следовательно, размещение атомов в пространстве, т е. кристаллическую структуру, основные физико-химические свойства элемента. [c.30]

    Объяснение свойств системы изоиндол — изоиндоленин кроется,, по-видимому, в электронном строении изоиндола и его изоиндоленинового таутомера, а также в анализе возможного влияния на него заместителей различной природы. Расчеты электронного строения изоиндола (см. табл. 1.3) показывают, что атомы углерода в положении 1 и 3 обеднены электронами по сравнению с атомом азота. Введение электронодонорных групп в эти положения должно вести к компенсации указанного дефицита и к стабилизации молекулы в целом. С другой стороны, в молекуле изоиндоленина (1.1 ЭОЛ) атом углерода в положении 1 более обеднен ими, чем атом углерода в положении 3 в бензиль-ном фрагменте структуры. Следовательно, в этом случае введение электронодонорного заместителя к первому атому углерода ведет к стабилизации молекулы в целом. Ясно, что введение электронодонорного заместителя к бензильному атому углерода никакой стабилизации оказывать не будет. [c.61]

    Приведенное распределение электронов были бы очень трудно представить себе без привлечения гибридных орбиталей. Разумеетс.я, ранние попытки описания электронного строения СО с привлечением резонанса трех структур С+—О", С = 0иС =0+ приблизительно одинакового веса были гораздо менее удовлетворительны, чем описания, основанные на современной теории, изложенной выше. Исходя из последней, можно понять также электронно-донорные свойства молекулы СО, проявляющиеся, например, в ее способности к образованию комплекса ВНз СО. Действительно, атом С имеет пару электронов (неподеленная пара, п. 5), облако которых сильно направлено в сторону от связи СО и которые могут легко заполнить первоначально незаполненный октет атома В. [c.241]

    При особом рассмотрении водорода нельзя не обратить внимания на его исключительное сходство с галогенами. Несмотря на некоторые различия, он обладает рядом характерных, общих с галогенами свойств. Так же как и галогены, он является неметаллом и, так же как и последние, в элементарном состоянии образует двухатомные молекулы. В этих молекулах, как в случае галогенов, так и в случае водорода, атомы связаны простой связью. Работа, необходимая для разложения молекул на атомы, постепенно убывает в ряду Н—С1—Вг—Р—I. Так же как галогены, водород может выступать в качестве электроотрицательного иона, т. е. водород аналогично галогенам обладает сродством к электрону. Последнее означает, что в случае присоединения одного электрона к нейтральному атому Н, выделяется энергия. Так же как водород, галогены в соединениях, где они отрицательно заряжены, исключительно одновалентны. Соединения водорода с металлами, в которых водород является электроотрицательной составной частью по строению и характеру связи, соответствуют аналогичным соединениям галогенов. По своему строению эти вещества подобны солям, и поэтому водород в полном смысле слова можно считать солеобразователем . Точно также и работа, которая должна быть затрачена, чтобы получить положительно заряженный водород, т. е. атом водорода с отщепленным электроном, является отнюдь не меньшей, чем у галогенов (за исключением фтора). В этом можно убедиться, сравнив ионизационные потенциалы (см. стр. 140). [c.42]

    По электронному строению внешнего слоя 7 ат и R + элементы делятся на подгруппу VIIA — галогенов (F, С1, Вг, I, Ai), во внешнем слое которой находится 7е- и УПВ — марганца (Мп, Тс, Re) с внешним слоем из 1 или 2е . Главная подгруппа — галогены являются типичными неметаллами, а побочная — подгруппа марганца — металлы. Сближает их и объединяет существование для большинства элементов группы степени окисления +7, в которой и галогены и металлы проявляют сильнейшие окислительные свойства. [c.357]

    Электронное строение молекулы бензола. Свойства бензола интерпретируются теорией молекулярных орбит следующим образом. Каждый атом углерода может иметь три связи, гибридизован-ные тригонально по типу зр и лежащие в одной плоскости (см. том I 5.9, рис. 41). При этом наиболее прочная о-связь образуется в том случае, когда валентный угол имеет значение 120°. Эти условия выполнены в уникальном случае щестиуглеродного цикла, поэтому бензол имеет плоский цикл, прочно связанный 0-связями (рис. 18,а). Эти условия также являются идеальными для многократного перекрывания р-орбит (рис. 18,6). Так как система циклическая, каждая р-орбита перекрывает орбиты соседних атомов со специфической широкой делокализацией [c.124]

    Таким образом, электрон — весьма сложное материальное образование. Еще в 1907 г., развивая положение о бесконечности процесса познания природы, В. И. Ленин писал Электрон, как и атом — неисчерпаем . Время подтвердило правильность этого утверждения. Человеческий разум глубоко проник во внутреннее строение атома, необычайно расширились и наши представления о природе электрона. Нет сомнения в том, что дальнейшее развитие науки вскроет еще более глубокЕге п сложные свойства объектов микромира. [c.69]

    Атомом водорода, собственно говоря, и ограничился точный расчет электронных оболочек и зависящих от их строения свойств атомов. Возможности науки начала XX века оказались недостаточными для расчета более сложных атомов, чем атом водорода. Оставалось рисовать лищь приблизительные картины устройства электронных оболочек других атомов, используя для этого данные о строении атома водорода, опираясь на показания спектрального анализа и руководствуясь периодическим законом и общими соображениями об устойчивости различных комбинаций электронов. [c.206]

    Полученные результаты по испарению нитридов можно объяснить их электронным строением. Как известно [7], важнейшим фактором, определяющим физические и химические свойства sp-элементов, к которым, в частности, относятся В, А1, Ga и N, является стремление к образованию стабильных электронных зр -конфигура-ций (СЭК). Из всех твердых sp-веществ химически наиболее прочен алмаз, у которого атом углерода характеризуется 5р -коифигура-цией, возникшей в результате гибридизации s p -конфигурации. [c.155]


Смотреть страницы где упоминается термин ЭЛЕКТРОННОЕ СТРОЕНИЕ И СВОЙСТВА АТОМОВ: [c.13]    [c.161]    [c.53]    [c.9]   
Смотреть главы в:

Основные законы химии. Т.1 -> ЭЛЕКТРОННОЕ СТРОЕНИЕ И СВОЙСТВА АТОМОВ




ПОИСК





Смотрите так же термины и статьи:

Атомов строение

Атомы свойства

Строение электронных оболочек атомов и химические свойства элементов

Электрон в атомах

Электронная структура атомов. Зависимость свойств элементов от строения их атомов

Электронное строение

Электронное строение атомов

электронами электронное строение



© 2025 chem21.info Реклама на сайте