Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

спектры природа связей и структура

    Еще большую информацию спектр ЭПР может дать, если парамагнитные частицы содержат атомы с ядерными магнитными моментами. В этом случае в спектре образуется сверхтонкая структура, когда линия ЭПР расщепляется на несколько компонент. По числу компонент, их относительной интенсивности и величине расщепления можно получить важные сведения о распределении электронного облака, характере химической связи. Например, величина расщепления линий Мп - в различных солях и оксидах практически зависит только от природы окружающих его отрицательных ионов и не зависит от констант кристаллической решетки, уменьшаясь по мере возрастания степени ковалентности связи. [c.162]


    На основе теории валентных связей (МЕС) и теории кристаллического поля (ТКП) невозможно достаточно полно описать свойства комплексных соединений. МВС, хотя и дает наглядное представление о химической связи между атомами, но ограничивается только качественными объяснениями. Не приводится интерпретация спектров комплексов и детальное объяснение магнитных свойств, не учитываются энергетические и другие факторы при образовании комплексов. Достоинство ТКП в возможности количественных расчетов и в сопоставлении теории с экспериментом, ио это сопоставление далеко не всегда на пользу ТКП. Для комплексов, в которых энергия делокализации играет значительную роль, например для систем, в которых существуют я-связи, электростатическая теория непригодна. ТКП не рассматривает электронную структуру лигандов и принимает их как неизменные частицы. Невозможность удовлетворительного описания свойств комплексов в МВС и ТКП в значительной степени связана с тем, что обе теории исходят из одностороннего и абстрактного предположения о природе связей в комплексах — чисто ковалентной (в МВС) или чисто ионной (в ТКП). Эти недостатки в известной мере преодолеваются в теории поля лигандов, которая использует метод молекулярных орбиталей (метод МО). [c.232]

    Исследованиями колебательных спектров воды в гидратированных кислородсодержащих солях установлено, что частоты колебаний воды в них не совпадают, а изменяются при переходе от одного соединения к другому. Это приводит к выводу о том, что вода находится в связанном состоянии и что на ее колебательное движение оказывает влияние природа аниона, структура кристалла, сила образуемых водой Н-связей, заряд катиона. [c.55]

Рис. 6.6. ИК-спектр димедона в 0,1 М ЫаОН Внутренние факторы Влияние структуры вещества Внутренние факторы имеют решающее значение для определения природы вещества, для выяснения его структуры. Наличие в молекуле групп атомов, обладающих мезомерным (М) и индуктивным (I) эффектами, влияет на порядок связи и, тем самым, определяет положение и интенсивность полос инфракрасного спектра. Кратные связи и атомы, содержащие неспаренные электроны, вызывают мезомерный эффект. На мезомерный эффект может накладываться и индуктивный эффект этих атомов. Если кратных связей и атомов, содержащих неспаренные электроны, нет в молекуле, то положение полос поглощения зависит только от индуктивного эффекта. Например, на положение полос валент- Рис. 6.6. ИК-спектр димедона в 0,1 М <a href="/info/1896998">ЫаОН</a> <a href="/info/1752456">Внутренние факторы Влияние</a> <a href="/info/2765">структуры вещества</a> <a href="/info/489710">Внутренние факторы</a> имеют решающее значение для <a href="/info/1015631">определения природы</a> вещества, для выяснения его структуры. Наличие в <a href="/info/92813">молекуле групп</a> атомов, обладающих мезомерным (М) и индуктивным (I) эффектами, влияет на <a href="/info/2631">порядок связи</a> и, тем самым, <a href="/info/1522489">определяет положение</a> и <a href="/info/570165">интенсивность полос инфракрасного</a> спектра. <a href="/info/17019">Кратные связи</a> и атомы, содержащие <a href="/info/9261">неспаренные электроны</a>, вызывают <a href="/info/1122">мезомерный эффект</a>. На <a href="/info/1122">мезомерный эффект</a> может накладываться и <a href="/info/1034">индуктивный эффект</a> этих атомов. Если <a href="/info/17019">кратных связей</a> и атомов, содержащих <a href="/info/9261">неспаренные электроны</a>, нет в молекуле, то <a href="/info/1488257">положение полос поглощения</a> зависит только от <a href="/info/1034">индуктивного эффекта</a>. Например, на <a href="/info/526167">положение полос</a> валент-

    В последнее время метод ЯМР [163] был использован в исследовании комплексообразования при адсорбции органических молекул на ионах переходных металлов. Изучая парамагнитные сдвига и ширину линий в ЯМР-спектрах лигандов ионов переходных металлов, можно попытаться сделать заключение о геометрической структуре комплекса, природе связи металл — лиганд и о скоростях обмена между молекулами первой координационной сферы комплекса и физически адсорбированными молекулами. Например, при адсорбции этилена, пропилена и бензола на окисных кобальтовых и никелевых катализаторах, нанесенных на аэросил, образуются поверхностные л-комплексы в результате перекрывания 2 -орбитали иона металла и л-орбитали ненасыщенной молекулы углеводорода (рис. 18,а). При адсорбции насыщенных молекул (изопентан, н-гексан, циклогексан и т. д.) комплексы нестабильны вследствие перекрывания 2 -орбитали металла и СН-связи (рис. 18,6). [c.60]

    Согласно электронной теории хемосорбции, молекулы одного и того же газа могут связываться с энергетически однородной поверхностью полупроводникового адсорбента различными типами связи, между которыми существуют переходы. На основе статистического метода Гиббса для систе.м с переменным числом частиц получены выражения для концентраций хемосорбированных частиц с каждым данным типом связи. Эти выражения содержат химический потенциал адсорбируемых частиц в газовой фазе, уровень Ферми для электронов адсорбента, энергии, соответствующие каждому типу связи и кратности вырождения состояний адсорбированных частиц. Найденные нами формулы дают возможность получить изотермы адсорбции в зависимости от объемных электронных свойств адсорбента (концентрация и природа примесей, структура энергетического спектра полупроводника) и свойств адсорбируемых молекул .  [c.59]

    Второй раздел представляет собой обзор работ но инфракрасным спектрам поглощения комплексных соединений. Материал, содержащийся в этом разделе, сгруппирован по характеру проблем координационной химии (геометрическая структура комплексов, природа связи металл — лиганд, взаимное влияние координированных групп и т. д.), при обсуждении которых с успехом использовались данные инфракрасной спектроскопии. [c.4]

    Изучение электронных спектров поглощения комплексов переходных элементов в последние годы составляет одно из главных направлений экспериментальных и теоретических исследований, имеющих цель охарактеризовать и понять природу электронной ,структуры и связей в комплексах. Опубликованы тысячи научных статей, и во многих из них сделаны попытки интерпретировать спектральные данные о разнообразных комплексах различных элементов с разными степенями окисления. В настоящей главе мы рассмотрим основные положения главным образом на примере переходных З -элементов. Желающим более подробно и глубоко ознакомиться с этими вопросами следует обратиться к руководствам [6, 8, 10, 28—-31]. [c.484]

    Свойства полимерных материалов, как известно, определяются химическим строением вещества полимера и его вторичной структурой. Это в полной мере относится к физико-химическим, физико-механическим, электрофизическим, оптическим, магнитным и другим свойствам углей. Многие из них непосредственно связаны с природой и структурой углеродного каркаса углей. Рассматривая его возникновение и структурно-химические преобразования в процессе карбонизации органического вещества, мы приходим к выводу о накоплении в угольной структуре валентных модификаций атомов (5/)%)ар и в некоторых случаях вр л.. С этим связаны изменения электронной структуры (возрастание доли л-электро-нов, степени их делокализации и др.) и соответствующие изменения электрофизических, оптических и других свойств. Преобразование энергетического спектра электронной структуры ведет за собой также изменения многих физико-химических свойств (например, окислительно-восстановительных). [c.239]

    Взаимодействие спинов электрона и ядра вызывает так называемое сверхтонкое расщепление спектра ЭПР на отдельные компоненты, обусловленное этим взаимодействием. Сверхтонкое расщепление дает очень ценную информацию о природе связи, электронной структуре и т. д. [c.146]

    Природа сольватной структуры в растворе в диметилсульфоксиде (ДМСО) существенно иная это следует прежде всего из того, что полоса иона около 1200 см" не имеет дублетной структуры (рис. 99, а) и, значит, комплексы ДМСО—Н+—ДМСО не связаны с кислотой. В противоположность растворам в воде и метаноле сетка водородных связей в растворе в ДМСО не испытывает напряжений и группировки с туннельными протонами образуются легко. Они могут достаточно свободно ориентироваться одна по отношению к другой под влиянием протонных дисперсионных сил и по отношению к анионам под влиянием взаимодействия ион — индуцированный диполь. Следовательно, реализуется достаточно большое количество вполне определенных расстояний и ориентаций, выгодных с энергетической точки зрения. Необходимым же условием образования непрерывного спектра является статистическое распределение расстояний между водородными связями и их ориентациями. [c.302]


    В настоящее время, когда стала доступна область собственных колебаний металл — лиганд и появилось большое число работ как по длинноволновым инфракрасным спектрам, так и по низкочастотным спектрам комбинационного рассеяния, можно выделить два основных направления исследований 1) определение структуры комплексов по колебательным спектрам (см. разд. 6.5) и 2) выяснение природы связи металла — лиганд с помощью наблюдаемых частот и вычисленных силовых постоянных. Помимо связей металлов с лигандами, широко исследуются связи металл — металл, в том числе в так называемых кластерных соединениях. [c.125]

    Этот краткий обзор показывает, что спектроскопия ЭПР может быть с успехом использована для изучения влияния непосредственного окружения парамагнитных ионов переходных металлов (и, следовательно, их сольватных оболочек) на электронные структуры этих ионов. Из параметров спектров ЭПР можно извлечь информацию о распределении неспаренных электронов по имеющимся -орбиталям ионов переходных металлов. Поскольку параметры спектров ЭПР зависят от непосредственного окружения парамагнитного иона, например донорными атомами (даже если они диамагнитны), из них можно сделать выводы о симметрии диамагнитного окружения и о природе связей между донорными атомами и центральным парамагнитным атомом переходного металла [1 — 3]. [c.133]

    Данные ЭПР спектроскопии очень важны, так как они связаны с относительными энергиями -орбиталей переходных металлов. С их помощью можно получить сведения о природе связи и наличии радикалов, например в окислительно-восстановительных процессах [291]. Холмогоров [392] пришел к выводу, что сигналы фталоцианинов не связаны с самой структурой или с а- или р-моди-фикациями, а принадлежат либо примесям, либо условиям, которые приводят к появлению неспаренных электронов в кристалле. Эта точка зрения находится в соответствии с предположением [293] о том, что наблюдаемые явления объясняются примесями кислорода, адсорбированного внутри или на поверхности кристалла. Существенно, что такие относительно грубые методы очистки, как перекристаллизация из серной кислоты или промывка органическими растворителями, только постепенно уменьшают интенсивность сигнала в ЭПР-спектре, а дополнительная сублимация образца обычно приводит даже к его увеличению. Отсюда следует, что большинство образцов, взятых для физических исследований, вероятно, содержат либо указанную, либо какую-нибудь другую примесь, которая приводит к искажению результатов. Поэтому ЭПР-спектры могут служить только для качественной характеристики фталоцианинов, получение чистых образцов которых является узким местом исследования. [c.242]

    Природа связей в этих комплексах алкенов обсуждалась в течение длительного времени, причем выдвигалось много различных предположений. Результаты рентгеновского исследования категорически исключают возможность образования неэквивалентных связей между атомами углерода и платиной кроме того известно, что структура этилена при образовании комплекса остается по существу неизменной, но происходит некоторое ослабление двойной связи углерод—углерод, так как в ИК-спектрах наблюдается заметное понижение (на 80—150 см ) частоты соответствующего валентного колебания. [c.292]

    Для изучения карбонилов металлов наиболее широко использовался метод ИК-спектроскопии. Полученные спектры дают информацию не только о природе связи металл — углерод и мета 1л — лиганд, но такл е и о структуре соединений. Их часто используют для обнаружения мостиковых карбонильных групп М — СО — М. Полосы частот валентных колебаний СО таких групп наблюдаются в об [асти 1850 см . По ним также можно оценить [c.467]

    Взаимосвязь между структурой молекулы и ее химической активностью представляет собой один из основных вопросов химии. Систематические исследования высоко активных литийорганических соединений показывают существенную зависимость их реакционной способности от структуры [1, 2]. Понимание свойств этих соединений может основываться только на детальных сведениях об их структуре и характере связи. Лишь недавно исследование структуры и природы связи углерод—литий в литийорганических соединениях привлекло к себе серьезное внимание [3—5], причем одним из самых плодотворных физических методов в этой области оказался ядерный магнитный резонанс. Поскольку все ядра в большинстве обычных литийорганических соединений имеют магнитные изотопы, возможно исследование резонанса на ядрах углерода, лития и водорода. Ввиду относительной доступности протонного магнитного резонанса этот метод исследования получил наиболее широкое распространение. Основным параметром, который получают из спектров ЯМР, является химический сдвиг. Величина сдвига определяется плотностью электронного заряда вокруг резонирующего ядра и распределением заряда на соседних атомах. Оба эти фактора могут приводить к диамагнитному или парамагнитному сдвигу линий ядерного резонанса. [c.292]

    Хотя точная природа связи С—в алифатических соединениях лития еще неизвестна, нет оснований сомневаться в том, что эта связь имеет преимущественно ковалентный характер с некоторой, возможно, относительно высокой долей ионной структуры. Конечно, такое описание относится к мономерной форме ЫН, которую, к сожалению, непосредственно не наблюдали, и не ясно, можно ли его применять к многоцентровой связи. В том же случае, когда отрицательный заряд делокализуется на резонансно стабилизированной группе, связь становится ионной и поэтому лучше описывается моделью ионной пары. Это можно отчетливо видеть при исследовании оптических спектров соответствующих литиевых производных. Эти соединения окрашены и поглощают свет в той же области, что и соли других щелочных металлов. Например, спектр живущего полистирола в тетрагидрофуране практически одинаков для цезиевой, калиевой, натриевой и литиевой солей, а спектр последней соли сохраняется почти таким же и в бензольном растворе, где почти вся соль существует в димерной форме [15]. Следовательно, эта димеризация в отличие от агломерации насыщенных производных является следствием электростатического взаимодействия, приводящего к объединению двух диполей в квадруполь. Подобная ассоциация наблюдается и для натриевой соли в бензоле [16]. [c.469]

    Второе направление квантовохимического прогнозирования катализаторов связано с построением квантовохимических моделей поверхностей твердых тел, структуры хемосорбированных комплексов субстрат — катализатор или непосредственным изучением акта реакции на различных контактах. Молекулярные модели нашли широкое применение для решения различных задач теории твердого тела, в том числе связанных с адсорбцией и гетерогенным катализом. Их достоинствами являются относительная простота, наглядность, возможность точного учета геометрии решетки и химической природы атомов, а недостатками — трудности адекватного учета непрерывного спектра зонных состояний твердых тел. [c.61]

    Поглощение в УФ-области является следствием возбуждения электронов в молекулах. Прочность этих связей, а следовательно, и характеристическая энергия перехода определяются природой ядер атомов, и, таким образом, длина волны, при которой происходит поглощение, является скорее свойством группы атомов, чем просто электронов. Можно ожидать, что структурные изменения в поглощающих группах будут сказываться и на характере поглощения в этом, собственно, и состоит сущность использования спектров поглощения для получения данных о структуре молекул вообще и в частности — о строении молекул асфальтенов. [c.211]

    Учитывая эти обстоятельства, некоторые исследователи применяли спектроскопию ЯМР С в сочетании с данными ПМР для изучения фракций асфальтенов [14]. Однако сделанные на основании этих исследований выводы о том, что большая часть атомов углерода в молекулах асфальтенов имеет алифатическую и али-циклическую природу и что конденсированные ароматические структуры в молекулах асфальтенов состоят преимущественно из 3 и 4 бензольных колец, находятся в резком противоречии со всеми известными в настоящее время данными по структуре молекул асфальтенов. В спектрах ЯМР С исследованных фракций асфальтенов не были обнаружены связи атомов углерода в молекуле с гетероатомами. Подобное явление объясняется малой концентрацией последних. Химические сдвиги резонансных линий асфальтенов в спектрах ЯМР "С приведены в табл. 74. [c.223]

    Некоторые успехи, вероятно, могут быть достигнуты при резком ограничении круга рассматриваемых соединений. Так, если не будет нарушения геометрии молекулы или замены ее отдельных атомов в рассматриваемой группе соединений, то ноложр.ние полосы Va может быть использовано для нахождения варьируемого параметра (изменения природы связей или геометрии комплекса соответственно). Одной из таких попыток в этом направлении является анализ спектров различных алюмосиликатов, содержащих в структуре своих решеток АЮН-группы [8]. Было обнаружено, что если гидроксильная группа участвует в четверной координации атома алюминия, т. е, образован тетраэдр АЮз(ОН), то частота деформационного колебания АЮН-группы обычно близка к 1450 см -. В том случае когда атом алюминия имеет шестерную координацию, то деформационное колебание ОН-группы, входящей в окружение октаэдра АЮ (ОН), имеет частоту около 890 Уменьшение частоты колебания в 1,5 раза при таком же изменении координационного числа качественно согласуется с современными представлениями о свойствах силовых постоянных [И, 89, 396]. [c.66]

    Перейдем теперь к рассмотрению структуры граничных слоев в сетчатых полимерах. Мы изучали структуру граничных слоев отвержденного полимерного связующего в стеклопластиках и влияние на плотность граничных слоев природы связующего, а также условий термической обработки после отверждения. Структурные изменения были исследованы методом молекулярного зонда 238, 2391, который основан на изучении изменений спектров люминис-ценции примесных молекул антрацена, используемых в качестве зонда. Структура матрицы влияет на спектры люминисценции и по положению спектров люминисценции примесных молекул антрацена, введенных в системы, были определены плотности окружения и изменения в результате структурных воздействий. [c.170]

    Диборан представляет собой димер борана (ВНз), имеющий две трехцентровые двухэлектронные связи [18]. Как простейший электронодефицитный гидрид бора он явился объектом многочисленных теоретических исследований [12, 19], достаточно хорошо рассмотренных в [10]. Различие в современных объяснениях природы связи в диборане главным образом семантическое. Фотоэлектронный спектр [20] соответствует модели Питцера [21], согласно которой диборан рассматривается как дипротони-рованная форма гипотетического аниона В2Н4. Геометрия дибо-рана (1а) установлена с помощью дифракции электронов [22а], рентгенографического анализа и ИК-спектроскопии [10]. Первый метод использован также для установления структуры тетра-метилдиборана (16) [226] различие в геометрии (1а) и (16) объяснено сверхсопряжением метильных групп, [c.240]

    По спектрам ЯМР можно судить о природе связи в магнитных кристаллах. Величина магнитного поля, действующего на данное ядро, зависит не только от напряженности внешнего поля, но также от локального поля, обусловленного диполь-дипольным взаимодействием соседних ядер и атомов. Определяя резонансную частоту, нетрудно измерить величину зеемановского расщепления энергетических уровней ядер в данном магнитном поле. По величине расщепления и известным магнитным моментам различных ядер можно определить общую величину поля в области ядра. Исследуя спектры при разной ориентации кристалла по отношению к внешнему магнитному полю, можно получить угловое распределение локального магнитного поля. Зная свойства локального поля, можно определить природу сил связи между атомами и ионами в твердом теле. Например, в антиферромагнетике Мпр2 в локальное магнитное поле вблизи иона Мп вносят вклад как электроны, участвующие в образовании связи, так и соседние парамагнитные ионы марганца. Вклад р- и -электронов в связь и степень ковалентности можно вычислить, так как ионная и ковалентная структуры [c.83]

    Как уже указывалось (стр. 68), предположение об электростатическом характере влияния лигандов на центральный ион (с игнорированием деталей электронного строения лигандов) автоматически исключает возможность исследования в теории кристаллического поля таких важных вопросов, как природа связей центральный ион — лиганд, распределение электронного облака в координационном соединении и явлений, зависящих от деталей электронной структуры лигандов. Поэтому рассмотрению в этой теории подлежат только вопросы строения и свойства координационных систем, обязанные своим происхождением, главным образом, электронному строению центрального иона (с учетом влияния лигандов). Легко видеть, что круг этих вопросов довольно широк. Действительно, к нему относятся вопросы цветности соединения (электронные спектры поглощения в видимой и прилегающих к ней областям), магнитной восприимчивости и спектров ЭПР (без учета суперсверхтонкой структуры), относительной устойчивости в растворах, эффектов внутренней асимметрии и др., а с учетом поправки на ковалентность этот круг становится еще шире. [c.108]

    Наиболее полную информацию можно получить, исследуя монокристаллы. Из сравнения симметрии спектра парамагнитного центра со структурой кристалла и точечной симметрией отдельных кристаллографических положений можно установить положение парамагнитного центра в решетке. Если дефект требует зарядовой компенсации, можно установить положение компенсирующего центра, а иногда и его природу. Сверхтонкая структура отражает плотность неспаренных электронов на ядрах парамагнитных ионов, т. е. степень их локализации. Суперсверхтонкая структура дает прямые сведения о перекрытии электронных оболочек с соседями, т. е. прямые сведения о характере химической связи в кристалле. [c.6]

    Поглощение валентных колебаний С—Н всех насыщенных углеводородов лежит в области 3000 см , [1—4, 52]. В спектрах, полученных на приборах с дизкой дисперсией, в этой области редко можно на- блюдaть более двух-трех полос. При съемке спектров на приборах с высокой разрешающей способностью удается наблюдать четыре полосы поглощения, или перегиба. Точное положение полос поглощения определяется природой связи С—Н и мало зависит от структуры. Например, С—Н в группах СП,, СНг и СП алканов поглощает в близких областях  [c.5]

    Энергия квадрупольного взаимодействия мала. Поэтому частоты ЯКР резонирующих ядер атомов располагаются в радиочастотном диапазоне от О до 1000 Мгц. Квадрупольный момент ядра является величиной приблизительно постоянной и не зависит от природы химических связей данного атома. Градиент электрического поля, напротив, характеризуя распределение электронной плотности, зависит от природы связей не только данного атома, но п других атомов в молекуле, как связанных, так и непосредственно с ним не связанных. В результате расположение и число лин1ш в спектре ЯКР зависит от молекулярной и кристаллической структуры исследуемого соединения. Поэтому данные спектроскопии ЯКР позволяют [c.5]

    Как протоны, так и оба изотопа бора В (спин /2) и "В (спин 3) дают резонансные сигналы. Спектр протонного резонанса структуры б должен был бы характеризоваться одним значением химического сдвига и симметричными снин-спиновыми расщеплениями от взаимодействия В — Н, однако наблюдаемый спектр показывает, что в структуре имеются два типа протонов. Этот факт однозначно исключает структуру б. Таким образом, подтверждается мостиковая структура. Более того, два мостиковых водорода больше экранированы, чем четыре концевых, так как трехцентровая связь дает большую электронную плотность в середине моста. Резонанс бора показывает, что константа спин-спинового взаимодействия ВН2 велика и равна 28гц, а константа взаимодействия с мостиковыми атомами Н намного меньше. Спектр не дает указаний на существование взаимодействия В— В, что также согласуется с мости-ковой структурой. Исследования ЯМР внесли большой вклад в изучение структуры других гидридов, в том числе и замечательного полиэдрического иона ВюИ о. Следует добавить, что интерпретация этих спектров далеко не проста, и часто требуется применение двойного резонанса (гл. 13), а при этом необходимо глубокое понимание природы химических сдвигов и спин-спиновых взаимодействий. [c.96]

    Колебательные спектры соединений с мостиковыми атомами галогенов пока еще сравнительно мало исследованы. Спектральные дайные могли бы быть использованы в двух целях для выяснения природы связей (с помощью силовых постоянных) и при аналитических исследованиях, когда нужно установить, имеются ли в молекуле с неизвестной структурой мостиковые атомы. [c.148]

    Если линейчатые и полосатые спектры связаны с переходами между такими состояниями атомов и молекул, которым соответствуют определенные дискретные значения энергии, то сплошные спектры (в газах) обусловлены переходами между состояниями, из которых хотя бы одно не квантовано. Поэтому континуумы соответствуют таким пропессам, как диссоциация, ионизация или рекомбинация (ассоциация). Таким образом, если анализ полосатых спектров позволяет установить, какие молекулы и радикалы существуют в условиях пламени, то рассмотрение сплошных спектров могло бы дать нам еще более ценные сведения о самих процессах, осуществляющихся Ь ходе горения. Однако на опыте однозначная идентификация сплошных спектров очень затруднительна ввиду характерного для них отсутствия определенных отличительных черт. В случае полосатого спектра анализ его структуры даст точные сведения ой определенных молеку лярных константах и, таким образом, позволяет обычно приписать эти полосы какой-нибудь определенной молекуле. При рассмотрении же сплошных спектров такой подход к вопросу невозможен процесс, обуславливающий появление континуума, может быть идентифицирован только на основании дополнительных сведений путем выяснения химического состава частиц, присутствз Ющих в зоне пламени, и на основании данных о тепловых эффектах возможных элементарных реакций. Поэтому выяснение природы континуума часто представляет собой весьма трудную задачу. Тем не менее за последнее время в этом вопросе достигнуты определенные успехи, позволившие идентифицировать некоторые сплошные спектры, излучаемые пламенами. [c.130]

    Рассматривая тело как совокупность связанных микроконтуров, можно представить процесс межмолекулярного энергетического обмена как систему волн, состоящую из спектра частот связи и биений. Микроемкость и микроиндуктивность каждой молекулы зависят от молекулярной э. д. с. так, что внутренние частоты во -растают с ростом температуры. Неоднородность структуры тела, аличие примесей веществ другой физической природы должны изменить характер связи ккро-контуров. Поэтому примеси должны увеличивать многообразие частот межмолекулярного обмена. Следовательно, резонанс внутренних колебаний с внешним полем возможен на многих низких и высоких частотах. [c.308]

    Увеличение при комплексообразов ании v h для СНг- и СНз-групп, находящихся в а-положении к атому азота, по сравнению с в спектрах солей щелочных металлов, объяснено двумя факторами 1) увеличением s-характера связей С—Н и 2) увеличением ионности связей С—Н. Согласно Григорьеву, Av не зависит от природы связи М—Окарб-По значениям v можно идентифицировать комплексы с бетаиновой структурой (v >3000 В общем исполь- [c.54]

    Вопросам изучения системы Mg lj—НаО при различных температурах, выявлению кристаллогидратных форм, возникающих при обезвоживании Mg la- HaO, термодинамическим характеристикам процесса дегидратации гексагидрата хлористого магния посвящено значительное число работ. Однако структура твердых фаз, природа связей молекул воды в кристаллической решетке гидратов хлористого магния до сих прр недостаточно изучены. Рентгеноструктурные данные [1] и колебательные спектры [2—5], представленные в литературе, относятся лишь к одной гидратной форме — Mg lg- HaO и не затрагивают вопросы, связанные с существованием низших кристаллогидратов магния. [c.342]

    Учитывая изложенное, можно с1сазать, что максимально показательные спектры получаются лишь при специальной постановке эксперимента вначале прессуют таблетку из чистого кремнезема, затем ее прокаливают для удаления воды и ОН-групп, связанных водородной связью, а полученную таблетку модифицируют в отсутствие влаги (в большинстве случаев из газовой фазы, поскольку при этом можно применять метод ИК-спектроскопии для мониторинга реакции иммобилизации силанов). Понятно, что такой подход не может являться общим для всех типов ХМК и часто не позволяет решить основную задачу — установление природы и структуры привитого слоя ХМК, модифицированного обычным жидкофазным способом. При этом полоса изолированных силанольных групп перекрывается поглощением парных силанолов и воды, адсорбированной из растворителя. В этом случае авторы [9] рекомендуют использовать полосу с максимумом 1068 см , которая отвечает поглощению связи 81кремнезем—О—81силан- Однако наблюдение за изменением интенсивности этой полосы затруднено из-за того, что сама матрица кремнезема сильно поглощает в области ниже 1200 см . Поэтому необходимо применение ИК-спектрометров, использующих метод Фурье-преобразования для накопления сигналов и нахождения дифференциального спектра кремнезема до и после модифицирования [10, 13]. Информация, полученная ИК-спектроскопией при исследовании ХМК с привитыми группами, которые проявляют заметные взаимодействия с кремнеземной матрицей или друг с другом (карбоксильные, нитрильные, спиртовые, аминные и некоторые другие [7, 9, 14]), оказалась очень полезной [15] для выяснения механизма взаимодействия молекул модификатора и привитых групп с поверхностью кремнезема или между собой. [c.287]

    В результате проведенного выше анализа данных по плотности прочно связанной воды можно сделать вывод, что высокая энергия взаимодействия ее молекул с активными центрами гидрофильной поверхности и, как следствие, друг с другом еще не предопределяет повышенной по сравнению с объемной плотности связанной воды. Поверхность навязывает адсорбционным слоям структуру, зависящую от топографии и природы активных центров, т. е. в определенном смысле оказывает разу-порядочивающее действие на связываемую воду. Конечно, подвижность адсорбированных на гидрофильных поверхностях молекул воды, как это следует из анализа изменений энтропии при адсорбции [85] и данных ЯМР (см., например, [86]), намного ниже, чем в жидкой воде. Но приспособление адсорбционного водного слоя к топографии активных центров приводит к нарушению в нем целостности сетки межмолекулярных водородных связей в ИК-спектрах сорбированной воды полосы валентных колебаний слабо нагруженных ОН-групп воды существенно выше, чем в жидкой воде [66]. [c.35]

    Результаты расчетов МО применяются для отнесения полос в спектре ЭПР органического радикала, а также для установления геометрии свободных радикалов. Например, можно установить, плоский ли радикал СНз или лежит ли связь С — Н винильного радикала вдоль оси связи С - С. Если обнаруживается, что рассчитанные константы СТВ в значительной степени зависят от геометрии радикала (т.е. для различных структур проводится ряд МО-расчетов), соответствие рассчитанных и экспериментальных результатов может служить подтверждением правильности установления геометрии [14]. В некоторых примерах расчеты МО послужили доказательствами природы радикала, образовавшегося в эксперименте [Па, 14]. Например, у-облучение пиридина дает, как полагают, катион-радикал пиридина, т. е. частицу, у которой удален один из электронов неподеленной пары. Результаты, приведенные в табл. 9.2, показывают, что в действительности образуется 2-пиридильный радикал [11а]. [c.29]


Смотреть страницы где упоминается термин спектры природа связей и структура: [c.319]    [c.319]    [c.394]    [c.193]    [c.42]    [c.198]    [c.332]   
Органические синтезы через карбонилы металлов (1970) -- [ c.152 , c.156 , c.161 , c.164 ]




ПОИСК





Смотрите так же термины и статьи:

Связь природа

природа связе



© 2025 chem21.info Реклама на сайте