Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Понятие об ароматических свойствах

    ПОНЯТИЕ ОБ АРОМАТИЧЕСКИХ СВОЙСТВАХ [c.60]

    В органической химии существует понятие ароматичности, ароматических свойств. Под ароматичностью понимают способность вещества легко вступать в реакции замещения (но не присоединения) и устойчивость к действию окислителей. Это понятие возникло в результате изучения свойств бензола, который, несмотря иа формальную ненасыщенность, в отличие от этиленовых углеводородов, легко вступает в реакции замещения и устойчив по отношению к окислителям. В дальнейшем оказалось, что ароматические углеводороды обладают к тому же высокой термодинамической устойчивостью. [c.317]


    Бензол — ароматическая система. Электронное строение молекулы бензола. Понятие ароматичности . Гомология и изомерия ароматических углеводородов. Номенклатура. Способы получения бензола и его гомологов. Химические свойства. Реакции электрофильного замещения. Механизм реакции, я- и о-Комплексы. Два типа ориентантов (I и П рода). Механизм ориентирующего влияния заместителей. [c.171]

    Данное учебное пособие является первой частью издания по процес-. сам переработки нефти. В книге изложены основные понятия о нефти, ее свойствах и свойствах некоторых нефтепродуктов, основы подготовки нефти к переработке, принципы ректификации, подробно излагаются технологические схемы современных установок первичной переработки, каталитического облагораживания продуктов переработки, рассматриваются вопросы производства ароматических углеводородов и изомеризации легких углеводородных фракций. [c.3]

    Пиридин как ароматическая систе.ма. Сравнение основных свойств пиридина и пиррола объяснение их различия. Получение и химические свойства пиридина. Никотиновая кислота, витамин РР. Понятие о ко( ерментах. [c.249]

    Общность химической природы полимеров и однотипных низкомолекулярных соединений является основой общности их химических свойств и типов химических реакций и превращений. Поэтому понятие химия полимеров делится на две большие и несколько разноплановые составляющие — химия получения полимеров (о чем уже шла речь в ч. 1 книги) и химия превращений макромолекул, т. е. химические реакции макромолекул. Последней цели посвящена ч. 3 книги. Полимерным макромолекулам присущи все химические реакции, которые известны в органической химии для насыщенных и ненасыщенных алифатических и ароматических углеводородов и их производных, других низкомолекулярных аналогов соответствующих полимеров. [c.214]

    Ароматические углеводороды (арены). Гомологический ряд бензола. Номенклатура. Электронное строение бензола. Понятие об ароматичности. Взаимное влияние атомов и атомных групп в молекуле. Химические свойства бензола и его гомологов, реакции замещения. Получение бензола. [c.207]

    Автор придерживался структуры изложения материала, включающей рассмотрение строения и свойств сначала всех классов углеводородов - алифатических, карбоциклических и ароматических. Затем следует рассмотрение функциональных производных соответствующих классов углеводородов. При этом теоретические вопросы или понятия подробно рассматриваются по ходу встреч с ними впервые, т.е. по мере возникновения необходимости их использования. Автор надеется, что такой подход к изложению курса органической химии окажется плодотворным и поможет хорошему восприятию материала. [c.10]


    Позднее было обнаружено, что эти особые свойства — так называемый ароматический характер — связаны с тем, что бензол содержит циклическую сопряженную систему с 6 делокализованными я-электро-иами (см. раздел 1.2.4.2). Были синтезированы соединения, происходящие не от бензола, но тем не менее проявляющие ароматический характер. С развитием теоретических представлений и физико-химических методов понятие ароматичности претерпело изменения [1.2.5]. Учитывая это, появилась необходимость производные бензола отличать по названию от небензоидных ароматических соединений, используя для этого название бензоидные ароматические соединения или просто бензоидные соединения. [c.258]

    Поэтому необходимо уточнить, что именно в настоящее время подразумевается под понятием ароматичность . Одно из определений следующее ароматический — это обладающий химическими свойствами, аналогичными свойствам бензола. Считается, что циклическая молекула с сопряженной системой связей, устойчивость которой значительно больше, чем устойчивость гипотетической классической структуры, обладает ароматическим характером. [c.217]

    Цель книги — дать совокупность основных понятий химии гетероциклических соединений и обратить внимание читателей на связь между методами синтеза и свойствами различных циклических систем. Далее авторы старались показать, что для приобретения надежного знания предмета вовсе не нужна энциклопедическая память. Химия гетероциклических соединений так же логична, как химия алифатических и ароматических соединений, и понимание фактов важнее и легче, чем их заучивание. Для того чтобы понять химию гетероциклических соединений, необходимо иметь некоторый запас знаний в области химии алифатических и ароматических соединений, что и предполагалось при составлении книги. В этой книге часто использовались положения электронной теории, поэтому необходимо было дать ее краткое изложение. [c.13]

    Название ароматические соединения исторически возникло для группы веществ, которые были выделены из природных источников (в основном из приятно пахнущих растительных смол и бальзамов) еще в начале XIX века. В дальнейшем это название укрепилось за большим семейством органических соединений, обладающих общими признаками строения и химических свойств. Эти общие признаки, отличающие их от других классов органических соединений, объединяются понятием ароматичности. [c.112]

    Низкотемпературные свойства дизельных топлив интересуют практиков преимущественно с точки зрения их прокачиваемости. Прокачиваемость — очень важный параметр, так как подача точно заданного количества топлива в камеру сгорания дизеля является одним из основных условий его устойчивой и бесперебойной работы. Проблема прокачиваемости для большинства дизельных топлив возникает только в области отрицательных температур. Являясь функцией химического состава, прокачиваемость сухих топлив, с физико-химической точки зрения может быть охарактеризована по их вязкости, температурам застывания и помутнения. При оценке понятия прокачиваемости необходимо различать прокачиваемость по трубопроводу и прокачиваемость через фильтры топливоподающей системы двигателя. Прокачиваемость по трубопроводу является функцией текучести топлива при низких температурах и может быть охарактеризована через его вязкость и температуру застывания. Температура помутнения, фиксируемая в момент кристаллизации и выпадения твердых углеводородов из топлива, непригодна для оценки прокачиваемости по трубопроводам. Для оценки прокачиваемости через фильтры очень важно значение температуры помутнения, характеризующее такое состояние топлива, при котором может произойти снижение пропускной способности фильтрующих элементов. Дизельные топлива с высоким содержанием нафтеновых или ароматических углеводородов и небольшим содержанием метановых в том числе и твердых углеводородов при низких температурах достаточно хорошо прокачиваются по трубопро- [c.304]

    Следует иметь в виду трудности, которые возникают при последовательном применении понятия ароматичности к различным соединениям. Вещество считается тем более ароматическим, чем легче оно вступает в реакции замещения и чем труднее оно окисляется.Однако в изменении этих свойств при переходе одних веществ к другим часто нет параллелизма. [c.317]

    Говоря о взаимном влиянии атомов в молекулах углеводородов, прежде всего надо иметь в виду характер связей между атомами углерода и последовательность связей. В химии уже давно возникло понятие о сопряжении связей, выражающее особые свойства молекул, в которых по написанию чередуются кратные и простые связи (диены, полнены, ароматические молекулы). Теплоты образования таких молекул больше, чем полученные при суммировании значений энергий связи. Экспериментально определенная рефракция отличается от вычисленной по атомным и структурным инкрементам (экзальтация рефракции). Максимум поглощения света сдвинут в направлении длинных волн, а интенсивность поглощения повышена по сравнению с интенсивностью поглощения света молекулами насыщенных углеводородов. В молекулах с сопряженными кратными связями изменены междуатомные расстояния в направлении их выравнивания. Такие молекулы отличаются повышенной способностью к перераспределению электронной плотности в силовом поле реагента, т. е. отличаются высокой поляризуемостью. [c.109]


    В связи с этим понятия ароматические соединения , аро.мати-ческие свойства приобрели особый смысл. Так стали называть соединения с циклическим строением и характерными особенностями — тремя двойными связями в шестичленном цикле и сиецифи-ческими химическими свойствами. [c.177]

    Концепция ароматичности, н в первую очередь, ароматического секстета электронов, была развита для то-го, чтобы отразить некоторые аспекты химического поведения определенного класса молекул, в особенности относящиеся к их реакционной способности. На язык электронных представлений она была впервые переведена в теориях химии ароматических молекул, развитых Ингольдом [1] и Робинсоном [2]. Позднее, около 1930 г., Хюккелем, Полингом и другими было показано соответствие этих теорий квантово-физическим представлениям об электронах. С тех пор, и все в большей степени, ароматичность ассоциировалась одновременно с физическими свойствами молекул (термохимической энергией резонанса, диамагнитной восприимчивостью) и с типично химическими свойствами, связанными с реакциями и реакционной способностью. Кроме того, теоретически предсказанная связь между делокализацией тс-электронов и ароматическими свойствами привела к осознанию того, что ароматичность можно ожидать во всех случаях, когда условия стереохимии, наличие пригодных для использования орбит и число электронов делают возможной делокализацию электронов в циклической системе. С этой точки зрения важен не тип атомов, участвующих в делокализованной системе, а тип орбит. Можно рассматривать 1,3, 5-триазин и боразол (ВзНзНб) как вещества, имеющие качественно тот же ароматический характер, что и бензол, хотя и слабо проявляющийся. Дальнейшее расширение понятия приводит к тому, что трополон (I) [3] можно рассматривать как ароматическую систему, а циклопентадиенильные кольца в ферроцене (И) как обладающие ароматичностью в результате образования комплекса. [c.31]

    В общем курсе органической химии ароматические соединения рассматриваются, как правило, обособленно от других ненасыщенных соединений. Такой подход обусловлен резжим отличием свойств этих соединений от свойств как несопряженных, так и сопряженных полиенов алифатического и алициклического ряда. Само понятие ароматические соединения претерпело очень большие изменения, и в настоящее время оно объединяет разнообразные карбо-, гетероцикличе-окие и сэадвичевые (например, ферроцен) системы. [c.209]

    Имеются данные, указы1шющио иа существование двух различных типов комплексов ароматических углеводородов с резко различными свойствами, разделенные между собой значительным потенциальным энергетическим барьером. Один тип комплексов включает свободную связь электрофильного агента с облаком я-электронов. Эти комплексы называются я-комплексами. Второ тин включает проникповение такого агента в облака я-электронов и разрушение его, приводящее в результате к образованию настоящей сг-связи с одним из углеродных атомов кольца. Эти производные были названы т-комплексами. Свойства комплексов ароматических углеводородов ц влияние структуры ароматических углеводородов на стойкость этих комплексов очень хорошо объясняются в понятиях структуры, предложенной для я- и (т-комилексов. [c.406]

    В связи с тем, что образование ассоциатов в системе обязано проявлению взаимодействий между молекулами, они могут быть названы молекулярными ассоциата-ми. Элементы ассоциата, как правило, однородны по качеству. Например, в системе могут находиться одновременно парафиновые или ароматические ассоциаты. Важнейшим свойством ассоциата является отсутствие поверхности раздела фаз. Одной из характеристик ассоциатов является координационное число, под которым понимают число молекул, объединенных вокруг некоторого условного центра, представленного в частном случае центральной молекулой. Вероятно, однако, понятие координационнного числа целесообразно вводить в случае наличия центрального ядра и его окружения из четырех или более элементов. [c.45]

    Курс теории строения органических соединений отличается от систематического курса органической химии особым подходом к одному и тому же в своей сущности объекту — органической молекуле. Систематический курс излагается по классам соединений и может быть построен двумя способами первый кладет в основу структуру органического радикала и последовательно рассматривает алифатические, ароматические, гетероциклические ряды с соответствующими функциональными группами второй способ базируется на введении и последующем превращении функциональных групп в молекуле, что приводит к иному расположению материала углеводороды, спирты, альдегиды, кислоты, оксиальдегиды, оксикислоты и т. д. В обоих случаях в систематическом курсе отдается предпочтение описанию химических явлений, многообразию свойств конкретных соединений. Теоретический курс должен подходить к объекту с иной стороны, рассматривать предмет исторически, дeлfгь упор на сущность внутренней природы описываемых явлений. Для теоретического курса наиболее важным является выяснение основных понятий науки, которые, как известно, не неизменны, а текучи, подвижны, исторически обусловлены достигнутым уровнем знаний. [c.3]

    Хотя принцип химического строения уже давно лежит в основе мышления химика, тем не менее многие основные понятия органической химии традиционно определяются, исх )дя не из строения, а из состава орга,нических соединений. Это в первую очередь относится к гомологии. Распространено определение, согласно которому два соединения гомологичны, если они сходны по свойствам и отличаются по составу на гомологическую разницу СНа, взятую п раз. Понятие сходства произвольно, в некоторых отношениях гомологи могут обладать разными свойствами (например, физиологическое действие метилоиого и этилового спирта) на группу СНа могут отличаться по составу соединения, которые никак не назовешь гомологами, например, ароматический бензол и непредельный циклогептатриен. Совершенно ясно также, что накоплением групп СНа не исчерпываются способы регулярного усложнения органических соединений, поскольку органическая химия знает и другие закономерно построенные ряды с иной гомологической разни- [c.13]

    Проблема элеетронного и пространственного строения молекулы бензола хорошо известна. Особая термическая устойчивость бензола и его производных, стремление молекул этих соединений сохранять в различного рода химических превращениях неизменной свою главную структурную единицу — шестичленное сопряженное кольцо — привели к выделению этих соединений в самостоятельный, широко разветвленный класс ароматических соединений. Сопряженные циклические углеводороды и гетероциклические соединения, характеризующиеся свойствами, подобными бензолу (термодинамической стабильностью и склонностью к реакциям замещения, но не присоединения или расщепления), названы бензоидными, а соединения, не обладающие этими свойствами, — небензоидными. Наконец, еще более общее и концептуально важное понятие органической химии — ароматичность — также выведено из анализа свойств бензола и его аналогов. [c.265]

    В первоначальном смысле термины указывали на подобие химических свойств с бензолом. В рамках теоретической органической химии этими понятиями обозначают повышенную устойчивость циклической системы сопряженных связей по сравнению с аналогичной линейной структурой. Теоретической основой ароматичности является расчет молекулярных орбиталей по Хюккелю, согласно которому моноциклическая структура зр -гибриди-зованных атомов углерода, включающая (4п+2)л-электронов (п=0, 1, 2. ..), всегда проявляет ароматический характер. [c.220]

    Отличительной особенностью и важнейшим свойством ароматических макроциклов - порфиринов, азапорфиринов и фталоцианинов (НгФц) - является их низкая конформационная подвижность. Из-за отсутствия конформационных переходов химические реакции с их участием приобретают необычные свойства, которые нельзя удовлетворительно описать классическими структурными, кинетическими и термодинамическими теориями [1-11]. Вследствие высокой ароматичности (порядки связей С=С и С=М-связей в макроцикле составляют >1,5) обычные Н2П имеют в растворе плоскую конформацию. Значительное нарушение плоской конформации и переход к экстремально неплоской форме требует затрат энергии сопряжения в 16-членном макрокольце Н2П, которые составляют 1600 кХ моль в газовой фазе. В растворе и твердой фазе она, по-видимому, меняется мало. Вот почему есть основания полагать, что в переходном состоянии реакций образования и диссоциации металлопорфиринов существенное искажение плоских макроциклов порфиринов невозможно. Кинетические свойства Н2П [11] полностью подтверждают сказанное. Необычные кинетические свойства обусловлены наличием у молекул Н2П "жесткого" макроциклического эффекта (МЦЭ). Автором [8, 9] дано физическое обоснование и определение этого понятия. [c.326]

    Понятие антиароматичностн кажется, на первый взгляд, несколько странным, однако необходимо помнить, что свойства молекулы сравниваются с модельной системой. Антиароматическая молекула находится, таким образом, в основном состоянии, но это состояние обладает большей энергией, чем энергия рассчитанная или найденная для модельной системы. Основное состояние цикло-пропенил-аниона имеет более высокую энергию, чем энергии модельных систем— циклопропил- и аллил-анионов [47]. Аналогичным образом, циклобутадиен в основном состоянии будет иметь более высокую энергию, чем модельная система [48]. Мол<но ол<и-дать, что антиароматические соединения имеют свойства, противоположные свойствам ароматических соединений, и что к ним мол<-но применять критерии, обсул<денные в разд. 2.4.3, но с обратными заключениями В последующих параграфах этого раздела эти критерии будут вновь рассмотрены под другим углом зрения. [c.300]

    Дело в том, что определение понятия ароматичность , ясно и недвусмысленно сформулированное в XIX в., к нашему времени претерпело не ревизию, но существенное уточнение и углубление стало известным, что электронная сущность ароматичности — кольцевое перекрывание / -орбиталей, приводящее к формированию делокализованной орбитали, охватывающей цикл, обусловливает появление двух групп макроскопических свойств соединения, а именно 1) химических, состоящих в том, ароматическое соединение лишь в малой степе проявляет склонность к присоединению, характерную для ненасыщенных систем, а взамен обнаруживает склонность к электрофильному замещению (это те свойства, которые лежали в основе классического представления об ароматичности) 2) специфичесю спектральных особенностей, среди которых особенно важны и характерны особенности спектров ЯМР. Существо последних состоит в том, что в магнитном поле в молекуле ароматического соединения индуцируется кольцевой ток. Магнитный эффект последнего вызывает весьма существенные и характерные изменения величин химических сдвигов близлежащих ядер. В частности, в углеводородах характерный диапазон химических сдвигов протонов, присоединенных к ароматическим ядрам, составляет 7 -ь 8 м.д., тогда как для протонов в винильных положениях — 4 6 м.д. [c.450]

    В сумме значения всех 1Т-порядков дают число 3, т.е. три пары связывающих тт-электронов. Это число 1Т-электронов отвечает известному правилу Хюккеля, лежащему в основе теоретического определения понятия ароматичности. Если вспомнить, что фуроксановое кольцо плоское и, следовательно, оно удовлетворяет и другому требованию ароматичности, то с позиции этих критериев следовало бы признать рассматриваемую систему ароматической. Однако, во-первых, часть этого секстета 1Т-электронов выходит за пределы кольца на внециклическую связь N0, а, во-вторых, тт-электроны секстета почти не распространяются на соседнюю внутрнциклическую связь N0, которая, следовательно, почти ие участвует в делокализации тт-электронов и фактически прерывает кольцевую цель сопряжения. Наглядно распределение тт-электронов в фуроксановом кольце иллюстрируется штрихами и точками разной интенсивности (см. схематическое изображение 16) приведены также округленные значения тг-порядков связей. С точки зрения такого распределения электронов фуроксановая система представляет собой своего рода незамкнутую цепь сопряжения ОМССМО, перехваченную чисто простой связью между первым и предпоследним атомами цепи. Поэтому об ароматичности фуроксанового кольца на основании геометрических параметров и электронного распределения можно говорить лишь с известными ограничениями, хотя другие физические и химические свойства, как будет видно из следующих разделов, определенно указывают на ароматический характер системы. [c.31]

    Ясная концепция характерных черт химического поведения ароматических молекул эмпирически была развита очень давно, а в двадцатых годах нашего столетия начала интерпретироваться и находить свое выражение в понятиях электронных теорий химии, развитых Ингольдом [27] и Робинсоном [4]. Возникновение понятия ароматичность связано с химическим поведением некоторых соединений в самых разнообразных реакциях, а также, в некоторой степени, с физическими свойствами, такими, например, как диамагнитная восприимчивость, характерными для ароматических молекул. Ароматический характер обычно связывался с различными типами реакционной способности, а не со свойствами изолированной молекулы в ее основном состоянии, и наиболее ранняя удовлетворительная теория, а именно теория мезомерии, подчеркивала эту типично химическую точку зрения. Затем, в короткий период около 1930 года, история которого хорошо известна, Хюккель, Полинг и другие показали совместимость теории мезомерии и ароматического секстета с квантовой физикой электронов. Исходным пунктом являются два основных метода приближенного количественного описания ароматических систем метод валентных схем (ВС) и метод молекулярных орбит (МО), основные достоинства которых в том, что они хорошо обоснованы с физической точки зрения и что при помонди их можно вычислить термохимическую энергию резонанса — величину, которая может быть измерена. Энергия резонанса является свойством основного состояния изолированной молекулы, оказывающим лишь второстепенное влияние на реакционную способность, и концентрирование на ней внимания типично для физической точки зрения. В теории ароматичности центр тяжести сместился с химического поведения на физические свойства, и это отражает значительно большие успехи (по крайней мере вплоть до последнего времени) полуколичествен- [c.7]

    С другой стороны, применение локализованных орбиталей, вероятно, не столь эффективно при расчете типичных делокализо-ванных систем, таких, как я-электроны в ароматических молекулах. Тем не менее и в этих случаях с их помощью можно получить интересные сведения о свойствах молекул. Вполне возможно, что они помогут установить более тесное соответствие между теорией молекулярных орбиталей и таким понятием классической химии, как структуры Кекуле. Вероятно [12], в таких молекулах имеется, вообще говоря, несколько систем локализованных орбиталей, т. е. собственная энергия имеет несколько относительных максимумов. Каждая система локализованных орбиталей соответствует одной из возможных структур Кекуле, в которой каждая двойная связь соответствует одной локализованной орбитали, которая в основном сосредоточена в этой области. Следовательно, такие локализованные ортогональные молекулярные орбитали, соответствующие структурам Кекуле, являются возможным способом интерпретации волновых функций самосогласованного поля. Такой результат локализации был найден для бензола, хотя в этом случае две взаимно ортогональные локализованные молекулярные орбитали можно выбрать самыми разнообразными способами [13]. Эти результаты показывают, что мезомерию струк- [c.108]


Смотреть страницы где упоминается термин Понятие об ароматических свойствах: [c.209]    [c.22]    [c.220]    [c.249]    [c.10]    [c.214]    [c.196]    [c.26]    [c.450]    [c.324]    [c.79]    [c.5]   
Смотреть главы в:

Органическая химия -> Понятие об ароматических свойствах

Органическая химия Издание 2 -> Понятие об ароматических свойствах




ПОИСК







© 2025 chem21.info Реклама на сайте