Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Состав и структура полимера

    Б тех случаях, когда структура полимера очень сложна и недостаточно выяснена, название полимера слагается из наименований исходных веществ, которые входят в состав данного высокомолекулярного соединения, например феноло-формальдегид-ные, мочевино-формальдегидные, меламино-формальдегидные полимеры. [c.11]


    Применение акрилового полимера. На поведение синтетических соединений в буровых растворах влияют не только состав, структура и молекулярная масса конкретного полимера, но и состав и температура системы, в которую их добавляют. Конкретный полимер может работать как флокулянт лри малых концентрациях и как понизитель фильтрации при высоких. Эти переменные факторы делают необходимым проведение обширной программы испытаний до того, как новый продукт поступит на рынок. [c.477]

    Разнообразие исходных мономеров и высокая активность промежут. продуктов делают хим. состав М. разнообразным, а структуру полимера-нерегулярной. [c.22]

    Широкое использование и высокие темпы роста производства полимеров обусловлены, в первую очередь, разнообразием их физических, химических и механических свойств. Для направленного изменения свойств, т. е для установления связи состав — структура — свойства необходимо владеть знаниями о структуре полимеров и способах се регулирования в процессе синтеза. Решение этой задачи требует серьезного анализа и обобщения обширной информации в области химии и физики поли.меров, накопленной за последние годы Отбирая эту информацию для учебного пособия, авторы руководствовались те.м, что в какой бы области полимерной науки и технологии ни работал специалист, он должен владеть знаниями не только в этой области. Действительно, современный химик-синтетик должен знать не только методы синтеза мономеров и полимеров, но и хорошо разбираться в том, как свойства получаемого им полимера зависят от химической природы исходных веществ— мономеров. Исследователь, занимающийся физикой и механикой поли.меров, должен иметь четкое представление об их химическом строении. Наконец технолог, работающий в области переработки полимеров, должен знать и химию полимеров, и их физические и эксплуатационные свойства, а также свойства их растворов. [c.5]

    Тепловое расширение полиамидов может изменяться при введении в их состав небольших количеств некоторых неорганических соединений. Например, добавление к ПА 66 около 2% дисульфида молибдена приводит к понижению коэффициента линейного расширения на 40%. Это объясняется увеличением упорядоченности структуры полимера под влиянием добавки. [c.154]

    Исходя из вышеизложенного, к характеристикам, объединяемым общим понятием структура полимера , мы будем относить количественный и качественный состав атомов, входящих в макромолекулу, тип и содержание функциональных групп, порядок чередования групп атомов, размеры макромолекул, наличие или отсутствие меж-молекулярных связей, надмолекулярные структуры (в том числе,кристаллические). В случае высокомолекулярных соединений тонкие детали молекулярного строения, например способ соединения мономерных звеньев в цепь или пространственное расположение заместителей, определяющим образом влияют на свойства полимерного материала. Чрезвычайно важна информация о строении макромолекулы как целого - о молекулярной массе, виде ММР, о форме макромолекул, их гибкости, способности переходить в ориентированное состояние. [c.16]


    ИК-спектры позволяют сравнивать химический состав полимеров, обнаруживать химические изменения и примеси, изучать водородные связи и др. Ниже (часть III) приведены ИК-спектры основных компонентов древесины - целлюлозы (см. рис. 9.1 и табл. 9.1) и лигнина (см. рис. 12.2 и табл. 12.1). ИК-спектры используют и при изучении физической структуры полимеров, например, для характеристики кристалличности целлюлозы и сравнения ее полиморфных модификаций (см. 9.4.4 и 9.4.6). [c.147]

    Химическая структура полимера, т. е. химический состав и способ" соединения атомов в макромолекуле, однозначно не определяет поведения материала, построенного из этих макромолекул. [c.31]

    Легкость, с которой кристаллизуются цеолиты, объясняется высокой реакционной способностью геля, соответствующей концентрацией щелочи и высокой поверхностной активностью, обусловленной небольшими размерами частиц рассматриваемых твердых фаз. Гель, вероятно, образуется вследствие сополимеризации индивидуальных силикатов и алюминатов по механизму конденсационной полимеризации. Состав геля и его структура, по-видимому, определяются размером и структурой полимери-зующихся частиц. [c.262]

    Структура полимеров в блоке обусловлена конформационными и стереохимическими факторами, главными из которых являются 1] гибкость макромолекулярной цепи, регулярность или способность к образованию термодинамически устойчивых упорядоченных структур, молекулярно-массовое распределение (ММР), а для сополимеров — химический состав с учетом ближнего и дальнего конфигурационного порядка (регулярность чередования микроблоков или их статистическое распределение). [c.73]

    Влажность полимера — содержание в нем свободной влаги, выраженное в процентах по отношению к его массе. Влага поглощается полимером в результате сорбции. Поэтому влажность полимеров определяется относительной влажностью среды, продолжительностью пребывания полимера во влажной атмосфере и размерами его частиц. На влажность полимеров влияют химический состав и строение макромолекул, упорядоченность структуры полимера и др. Способность полимерного материала поглощать влагу зависит также от типа применявшихся при получении полимера эмульгаторов и катализаторов, полноты их отмывки, режима сушки полимера. [c.117]

    Можно выделить два уровня структуры полимеров — молекулярный и надмолекулярный. Молекулярная структура полимера описывает его химическое строение, т. е. состав и порядок связи отдельных атомов и групп в полимерной молекуле. Однако свойства сетчатых эпоксидных полимеров зависят не только от химического строения молекул полимера, но и от пространственного расположения образующих полимер молекулярных цепей. В настоящее время можно считать установленным, что все полимеры от аморфных до кристаллических обладают той или иной степенью упорядоченности, зависящей как от химической природы полимера, так и от способов его получения и переработки [1], причем эта упорядоченность обусловливается не только наличием кристаллической решетки даже в кристаллических полимерах, а связана именно с характерной чертой полимеров— наличием длинных молекулярных цепей. [c.54]

    Строение макромолекул, характер их теплового движения, физическая структура полимера, наличие в нем примесей или специальных добавок влияют на вид, концентрацию и подвижность носителей. В связи с этим значение остаточной электрической проводимости зависит от многих параметров, характеризующих строение и состав полимерных диэлектриков. [c.57]

    Если в процессе переноса не изменяется структура полимера и состав раствора, то глубина проникновения движущейся границы пропорциональна корню Квадратному из времени диффузии и коэффициент пропорциональности используют в качестве формального параметра переноса. Предложен ряд методов расчета коэффициентов диффузии электролита по глубине проникновения [5, с. 208 99 101 ]. И в этом случае рассчитанный коэффициент диффузии зависит от концентрации раствора, а главное, не всегда отражает физическую сущность процесса диффузии компонентов раствора. [c.53]

    СВЕТОСТОЙКОСТЬ полимеров, их способность выдерживать длит, действие света без заметного изменения внеш. вида и эксплуатац. св-в. Зависит от хим. состава и структуры полимера, толщины образца, кол-ва и природы ингредиентов, а также от условий облучения (спектральный состав излучения, его интенсивность, т-ра, состав и влажность атмосферы). Критерий С.— время экспозиции, за к-рое происходит определ. изменение св-в материала или его внеш. вида. Эффективный путь повышения С.— введение светостабилизаторов. См. также Атмосферостойкость. [c.517]

    Получающиеся при радикальной полимеризации полимеры характеризуются беспорядочным чередованием различных структурных единиц. Так как элементарные реакции, приводящие к различным структурам, различаются константами скорости и энергиями активации, то микроструктура полимерной цепи дает представление об относительной вероятности различных элементарных реакций роста цепи. В табл. 13 приведен структурный состав некоторых полимеров. [c.96]


    Точка зрения, что химические изменения, происходящие под действием радиации, влекут за собой образование свободных радикалов, подтверждается уже рассмотренными исследованиями по полимеризации. В табл. 34 приводятся выходы свободных радикалов, полученных при радиолизе небольших молекул. Делая определенные допущения в отношении связей, рвущихся с образованием свободных радикалов, основанные на строении рассматриваемых молекул, и зная поглощенную энергию, можно вычислить процентный энергетический выход реакции (см. последнюю колонку табл. 34). Очевидно, что для установления характера радиолиза приведенных в табл. 34 соединений важны по крайней мере два фактора атомный состав и структура полимера. Несомненно, что наличие таких электроотрицательных элементов, как галоиды и кислород, способствует разрушению, тогда как присутствие ненасыщенных связей, особенно в группах с сопряженными двойными связями и ароматических группах, стабилизирует молекулы. Эти результаты для небольших молекул, по крайней мере качественно, можно применить к структуре полимеров. [c.293]

    Решающие факторы, влияющие на В. полимеров,— химич. состав и строение макромолекул, упорядоченность структуры полимера и др. Способность полимерного материала сорбировать влагу зависит также от типа применявшихся при получении полимера эмульгаторов и катализаторов, полноты их отмывки, режима сушки полимера, а также от способности каждого из ингредиентов полимерного материала поглощать влагу. [c.242]

    Как было показано выше, существующие методы В. приводят к образованию между молекулярными цепями полимера поперечных химич. связей, различающихся по химическому составу и энергии С—С С—3—С С—3—8—С С— Х—С и, возможно, С—О—С. Химический состав, структура, концентрация, распределение и эпергия этих связей определяют многие физико-механич. свойства вулканизатов. Влияние химич. состава поперечных связей на свойства вулканизатов рассмотрено в ст. Вулканизующие агенты. [c.266]

    Реакционная способность П. по отношению к радикалам определяется не общим числом делокализован-ных л-электронов, а средним эффективным сопряжением, связанным с молекулярной и надмолекулярной структурами полимера, а также содержащимися в полимерах ПМЦ (эффект локальной активации). В реакциях П. с радикалами резко повышается роль полярного переходного состояния, реализующегося, вероятно, вследствие повышения электронодонорных свойств субстрата, активированного ПМЦ. В связи с этим П. могут служить ингибиторами деструкции ряда низкомолекулярных и полимерных соединений (не только линейных, но и пространственно-сетчатых). Регулируя состав, молекулярно-массовое распределение и содержание ПМЦ, можно изменять эффективность этих ингибиторов при умеренных и высоких температурах. [c.499]

    При чтении литературы по спектрам полимеров можно видеть, что данные о спектрах позволяют решать два рода задач. В одной группе работ интерес сосредоточен на получении сведений о структуре полимеров (расположение атомов, степень упорядоченности, химический состав и т. д.) и детали спектров исследуются односторонне или вообще не рассматриваются в зависимости от того, помогают ли они в решении этой задачи или нет. В другой группе работ предметом исследования является весь набор полос поглощения и внимание концентрируется на вопросах происхождения полос, причем даже в тех случаях, когда структура полимера уже определена другими методами. В этой связи можно отметить, что, хотя структура кристаллического полиэтилена была известна еще в 1939 г., инфракрасный спектр этого кристаллита был предметом исследования лишь в ряде недавних больших работ. Оба эти подхода к проблеме вполне оправданны, так как необходимы и эмпирические и фундаментальные теоретические исследования. Учитывая сложность спектров полимеров и тот факт, что для теоретического получения простых выводов необходимо рассмотрение всех деталей, можно предполагать, что пройдет еще очень большой период времени, пока будет достигнуто полное понимание спектров полимеров, за исключением, может быть, самых простых. По этой причине становится очевидным, что при исследовании полимеров, [c.329]

    Различные материалы на основе полиуретанов, особенно пенопласты и эластомеры, приобретают все большее значение в промышленности. Строение и состав уретановых полимеров чрезвычайно разнообразны. Наряду с уретановыми группами они содержат мочевинные, ароматические, простые эфирные и сложноэфирные группы, причем часто уретановых групп даже меньше, чем других функциональных групп. Кроме того, полиуретаны сильно различаются по характеру мономеров, входящих в их состав. Следствием такого разнообразия строения и состава полиуретанов является то, что они обладают широким диапазоном свойств. Этим же обусловлен интерес к изучению связи между их структурой и свойствами. [c.325]

    Существует другое определение [1, с. 106], заключающееся в том, что под понятием химическая модификация подразумеваются только те химические процессы, которые приводят к направленным изменениям одного или нескольких свойств полимера молекулярная структура полимера при этом в основном сохраняется. Химическую модификацию определяют и как направленное изменение свойств полимеров при введении в состав макромолекулы малого количества фрагментов иной природы [2]. [c.42]

    Стадия роста цепи является основной в процессе поликонденсации. Она определяет главные характеристики образующегося полиЪгра молекулярную массу, состав сополимера, распределение по молекулярным массам, структуру полимера и другие свойства. Прекращение роста цепи макромолекулы может происходить под влиянием физических факторов, например, в результате увеличения вязкости системы, экранирования реакционных центров цепи, сворачивание ее в плохом растворителе и других. При прекращении роста реакционный центр сохраняет химическую активность, однако, как правило, не имеет подвижности, необходимой для протекания реакции [14]. Другой причиной является образование однотипных, не взаимодействующих функциональных групп на обоих концах полимерной цепи за счет избытка одного из мономеров. На этом принципе основан один из способов регулирования молекулярной массы полимеров (синтез сложных полиэфиров, полиамидов и др.). [c.159]

    Углеродная матрица объединяет в одно целое армирутощие элементы в композите, что позволяет наилучшим образом воспринимать различные внешние нагрузки. Определяющи.ми факторами при выборе материала матрицы являются состав, структура и свойства кокса. В зависимости от условий получения и поставленных задач наиболее часто в качестве матрицы в УУКМ применяют пироуглерод, стеклоуглерод, кокс с каменноугольного и нефтяного пеков, графит, пирографит, сажу и др. Стеклоуглерод - продукт термопереработки сетчатых полимеров. Исходным сьфьем являются целлюлоза и синтетические смолы. Тер.мин пеки употребляется для обозначения твердых в обычных условиях, но плавких продуктов термического превращения - асфальтосмолистых веществ, получаемых из нефти, каменного угля и др. Пеки в зависимости от происхождения подразделяются на природные (нефтяные, каменноугольные) и синтетические, а по структуре на обычные и мезофазные (жидкокристаллические), [c.161]

    Восемь пиков отвечают N-метильным группам, входящим в состав следующих 8 конформационных триад транс-транс-транс, транс-транс-цис, цис-транс-транс, цис-транс-цис, цис-цис-цис, цис-цис-транс, транс-цис-цис, транс-цис-транс. Если энергии всех конформаций одинаковы, все 8 сигналов будут иметь равные интегральные интенсивности. Как видно из рис. 13.28, это не так, но все же ни одна из конформаций не имеет большого преимущества. Приведенное отнесение сигналов является предположительным, хотя, если аналогии с низкомолекулярными моделями в данном случае справедливы, сигналы цас-формы должны лежать в более сильном поле. Можно оценить разность энергий двух конформационных форм, предполагая, что она обусловлена в основном взаимодействиями с ближайшими соседями по цепи, приводящими к небольшому повороту вокруг со-связи. Получаемая при такой оценке величина Л = 1 ккал/моль вполне разумна, хотя, к сожалению, отсутствие строгого отнесения сигналов не позволяет с уверенностью определить, какая из конформаций более выгодна. В других растворителях (метанол, вода, хлороформ, трифторэтанол, трифторуксусная кислота) мультиплетность сигнала N-метильных протонов сохраняется, хотя относительные химические сдвиги могут меняться, что говорит о нерегулярности структуры полимера. Эти факты в сочетании с данными, полученными другими физическими методами [188, 189], означают, что полисаркозин в растворе находится в конформации статистического клубка. [c.333]

    Метод ПГХ позволяет при выборе соответствующих условий определять с точностью 1—2% брутто-состав фракций, содержащих полимеры стирола (СТ) и метилметакрилата (ММА), независимо от молекулярной массы и химической структуры полимеров. При этом для анализа достаточно 0,1—5 мкг образца. Этот метод может быть использован для анализа как Г11Х-фракций, так и фракций, разделенных с помощью ТСХ. Интересные возможности открывает сопоставление состава полной фракции и ее компонентов. Нетрудно показать, что если знать состав двух фракций, полученных с помощью ТСХ, тЦт — х я mllml = у, и исходной ГПХ-фракции, = z (здесь я пг — массы [c.250]

    С. зависит от состава и структуры полимера, определяющих его способность поглощать свет и вероятность протекания при этом химич. реакций (см. Фотодеструкция, Фотоокислителъная деструкция), от толщины облучаемого образца, количества и природы ингредиентов (напр., пластификатора, наполнителя, красителя), нримесей и растворителя, а также от условий облучения (спектральное распределение действующего излучения, интенсивность света, темп-ра, влажность и состав атмосферы). Для определения С. применяют методы, к-рыми характеризуют световое старение ири оценке атмосфера-стойкости. [c.195]

    Для характеристики полимеров исиользуют понятие степепи к р и с т а л л и ч и о с т и, или коэфф. кристалличности. Стеиепь кристалличности показывает, какая часть полимера закристаллизована и входит в состав кристаллич. областей. Значепие этой величины в зависимости от условий кристаллизации и способа обработки для большинства полимеров колеблется от 20 до 80%. Встречаются случаи, когда степень кристалличности мепьше 20% (поливипилхлорид, нек-рые каучуки) и больше 80% (кристаллы полиэтилена). Она снижается при уменьшении регулярности цепи, иапр. степень кристалличности полиэтилена пизкой плотпости меньше, чем полиэтилена высокой плотности. Наличие в структуре полимеров кристаллических и аморфных областей является причиной их основных специфич. свойств. Наряду с большой прочностью, к-рой характеризуются все кристаллич. тела, кристаллические полимеры при определенных темп-рпых условиях обладают способностью к сравнительно большим обратимым деформациям благодаря существованию в их структуре аморфных участков. Плавление кристаллич. иолимеров, в отлпчие от иизкомолекулярных веществ, происходит в большом темп-рном интервале. [c.593]

    В случае полимеризации виниловых соединений щелочными катализаторами карбанионный механизм не согласуется с наличием влияния природы металла на структуру полимера и влиянием полярности связи углерод — металл на состав сополимеров стирола и бутадиена. Механизм ступенчатого присоединения мономера к связи углерод — металл не согласуется с наличием индукционного периода, отсутствием зависимости скорости полимеризации изопрена при высоких концентрациях бутиллития от концентрации последнего. Кроме того, мономеры, обладающие примерно равной полярностью и поляризуемостью (например, стирол и бутадиен), сополимс-ризуются со скоростями, характерными для раздельной полимеризации. На основе приведенного экспериментального материала выдвигается гипотеза о том, что активными центрами при полимеризации виниловых соединений, вероятно, являются малоустойчивые комплексные образования ион-дипольного характера, сольватированпые молекулами мономера, а полимеризация виниловых соединений катализаторами щелочного типа относится к особому случаю цепного катализа. [c.536]

    Связь износостойкости с другими свойствами полимерных материалов. Пути регулирования износостойкостн. Наличие связи между износостойкостью и др. свойствами полимерных материалов [см. ф-лы (1) — (7)] позволяет влиять на их износостойкость (нутем изменения деформационных и прочностных свойств), варьируя состав и структуру полимера. Связь износостойкости с каждым из показателей этих свойств неоднозначна, и, меняя один из показателей, невозможно оставить неизменными другие. Но нри прочих равных условиях чем выше прочность, тем больше износостойкость. Эффективность активных наполнителей для повышения износостойкости резин и в нек-рых случаях пластмасс связана именно с этим обстоятельством. [c.456]

    На основании результатов изучения процессов горения различных полимеров установлено 1) самогаше-ние материала может происходить вследствие испарения с его поверхности большого количества негорючих частиц или образования на поверхности защитных полимерных пленок, не поддерживающих горения 2) введение фосфора в состав полимера способствует увеличению доли эндотермич. процессов ( охлаждению материала) и образованию в ряде случаев прочного кокса (чем быстрее коксуется полимер, тем выше его О.), введение галогенов приводит к понижению темн-ры пламени в газовом слое у поверхности полимера и ингибированию воспламенения 3) О. галогенсодержащих полимеров в зависимости от природы галогена уменьшается в ряду Вг>С1 > F 4) совместное присутствие в полимерном материале атомов фосфора и галогена (особенно брома), галогена и сурьмы оказывает синергич. действие на повышение О. (при определенном соотношении соответствующих пар) у близких по химич. природе полимеров О. повышается с увеличением термостойкости 6) О. определяется химич. структурой полимера напр., при введении ароматич. звеньев, замене группировок Р—О— С на Р—С, при уменьшении длины алкильной цепи у атома фосфора О. полимера возрастает 7) с повышением плотности упаковки макромолекул О. у близких по химич. природе полимеров возрастает. [c.202]

    Возникновение или усиление С. в равновесных или квазиравновесных студнях м. б. обусловлено, кроме того, медленными (вторичными) процессами, изменяющими структуру полимера (при кристаллизации, дополнительном сшивании) или его химич. состав (напр., при омылении тиоэфирных групп ксантогената целлюлозы при созревании вискозы). [c.205]

    Таким образом, кремнекислородный скелет полисилоксаноз обусловливает стабильность их по отношению к действию тепла, сильных окислитслсй и воды, так легко гидролизующей многие другие кремнийорганические соединения. Свойства силоксано В, обусловливаемые большой угловой связью, ионным и дипольным характером, гибкостью молекул и т. п., зависят от структуры полимера, степени функциональности и типа органических радикалов, входящих з состав полисилоксана. [c.93]

    До настоящего времени нет единой точки зрения по вопросу классификации полимеров, что затрудняет изучение предмета студентами. В процессе развития полимерной науки использовались две классификации полимеров. Одна из них делит все полимеры на конденсационные и полимеризационные (аддиционные), другая — на ступенчатые и цепные полимеры. Ошибки и недоразумения обычно возникают из-за того, что понятия одной классификации механически используют в другой. Термины конденсационные и ступенчатые иногда считают синонимами, так же как термины полимеризационные и цепные . Хотя эти термины действительно во многих случаях равнозначны, их не следует путать друг с другом, так как в основе их лежат два различных принципа классификации. Конденсационно-аддицион-ная классификация имеет в виду главным образом состав или структуру полимеров, тогда как ступенчато-цепная классификация основана на механизме реакций полимеризации. [c.11]


Смотреть страницы где упоминается термин Состав и структура полимера: [c.18]    [c.355]    [c.471]    [c.48]    [c.517]    [c.348]    [c.48]    [c.94]    [c.268]    [c.269]    [c.459]    [c.100]   
Смотреть главы в:

Основы химии полимеров -> Состав и структура полимера




ПОИСК





Смотрите так же термины и статьи:

Влияние структуры и состава полимера на его химическую стойкость

Изучение состава и структуры полимеров

Полимеры определение структуры и состав



© 2025 chem21.info Реклама на сайте