Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства элементарного фосфора

    Физические свойства элементарного фосфора [53, 263, 321] [c.8]

    В книге рассмотрены свойства элементарного фосфора и его окислов, фосфорных кислот, а также некоторых солей и удобрений. Освещены физико-химические основы получения и важнейшие стадии производства термической фосфорной кислоты и ее солей. Описаны основные типы технологических схем в различном аппаратурном оформлении и дано их критическое сопоставление. Обсуждены перспективные направления развития производства и выделены наиболее прогрессивные решения. Приведены необходимые расчетные зависимости, материальные и тепловые балансы. [c.2]


    Фосфор. Свойства элементарного фосфора [c.127]

    СВОЙСТВА ЭЛЕМЕНТАРНОГО ФОСФОРА [c.168]

    При получении фосфорорганических соединений обычно широко используют фосфор и его минеральные производные, поэтому в настояшей главе приводятся основные данные по синтезу п свойствам элементарного фосфора, его минеральных кислот, галогенидов, окислов, сульфидов и гидридов. [c.340]

    Свойства. Элементарный фосфор существует в нескольких аллотропных формах, подобно рассмотренным ранее углероду и сере. Наиболее важными из них являются белая и красная формы. [c.178]

    Металлические свойства элементарных веществ усиливаются от As к В i. Азот и фосфор — типичные неметаллы. Их кристаллические решетки молекулярные. [c.299]

    Проведенные нами ранее исследования показали, что молекулярный фосфор, подобно органическим молекулам, способен при различных условиях полимеризоваться с образованием неорганического полимера - красного фосфора. Используя теоретические представления химии полимеров, а также сформированные на основе ранее проведенных исследований закономерности химии элементарного фосфора, можно ожидать что использование методов химии высоких энергий позволит расширить диапазон изменения условий (температура, присутствие добавок и др.) проведения синтеза красного фосфора, а также получать целевой продукт с набором заранее заданных физико-химических свойств (устойчивость к реакциям окисления-восстановления в присутствие паров воды, варьирование реакционной способности образцов КФ в реакциях фосфорорганического синтеза). [c.146]

    Чистую ортофосфорную кислоту получают из элементарного фосфора. Способы получения и физические свойства ортофосфорной кислоты описаны в [55]. [c.12]

    Элементарный фосфор обладает очень интересными структурными свойствами для него описано несколько аллотропических модификаций. Из двух обычных форм — белый и красный фосфор — первая является метастабильной (с высоким давлением пара) и имеет форму тетраэдра красная, фиолетовая и металлическая формы в основном аморфны и представляют собой высокополимерные твердые вещества с очень низким давлением пара. [c.10]

    При определении транспортных затрат на перевозку различных химических продуктов необходимо учитывать их физикомеханические свойства. Так, в случае определения транспортных затрат на доставку элементарного фосфора следует учитывать уменьшение степени использования грузоподъемности цистерн (в связи с необходимостью перевозки фосфора под слоем воды), а также все расходы на содержание и проезд проводников, сопровождающих цистерны. Эти расходы учитываются и при перевозках аммиачных цистерн. [c.264]


    Красный фосфор обычно получают из белого фосфора нагреванием в особых условиях. Промышленный красный фосфор почти полностью аморфен, как и препараты, полученные в лаборатории при превращении жидкого белого фосфора ниже 350°. Как и в случае многих сетчатых полимеров, для которых возможны различные атомные структуры, красный фосфор, полученный различными методами, имеет неодинаковые свойства. Найдено, что плотность колеблется между 2,0 и 2,4 г/см и наблюдаемые температуры плавления изменяются в пределах 585—600°. При возгонке или плавлении структура красного фосфора разрушается. При конденсации паров, полученных из любой формы элементарного фосфора (красный, белый, черный), всегда образуется белый фосфор, так как жидкость и пар в нормальных условиях состоят из тех же самых тетраэдрических молекул Р4, которые найдены для белого фосфора. [c.70]

    Между различными классами элементарных веществ нет резких границ, и многие элементарные вещества обладают промежуточными свойствами. Так, например, узлы кристаллической решетки металла галлия образованы не положительно заряженными ионами, а двухатомными молекулами низкотемпературное видоизменение олова характеризуется кристаллической решеткой атомного типа и наличием полупроводниковых свойств эти свойства обнаруживаются в твердом состоянии у таких элементарных окислителей, как селен и астат белое видоизменение металлоида фосфора характеризуется летучестью, и непрочностью кристаллической решетки молекулярного типа элементарные металлоиды висмут и полоний обладают металлической электропроводностью. Таким образом, границы между элементарными металлами и металлоидами и между элементарными металлоидами и окислителями до известной степени условны. [c.37]

    Фосфатные цеолиты дополнительно были охарактеризованы адсорбционными измерениями (см. гл. 8). Адсорбционные свойства цеолита Р-А аналогичны свойствам цеолита А, не содержащего фосфор. Замещение на фосфор в цеолите L уменьшает адсорбционную емкость на 50%, и размер пор при этом, по адсорбционным данным, снижается с 10 до 7 А- Кроме гого, в случае цеолита P-L наблюдается изменение в симметрии в направлении оси с размер элементарной ячейки удваивается и появляются 2 плоскости скольжения [133]. Фосфатный цеолит типа Р не является термически стабильным. В алюмосиликатных гелях фосфаты применялись для регулирования замещения алюминия и соотношения Si/Al при синтезе цеолита Y [135, 136]. Синтезировано несколько типов цеолитов, содержащих окклюдированные фосфаты. [c.338]

    Когда в конце 20-х годов этого века Н. Н. Семенов [1] для объяснения открытого Харитоном [2] критического предела воспламенения смеси паров фосфора с кислородом предложил новый вариант химических цепных механизмов, мало кто сомневался, что даже если это объяснение и окажется справедливым, оно оставит в химии не более существенный след, чем экзотические цепные схемы галоидирования, разработанные Боденштейном [3] за 15 лет до этого. Ближайшие же годы показали, однако, что нововведение Н. Н. Семенова — гипотеза о возможности разветвления цепи последовательных химических элементарных актов — позволило вскрыть совершенно новое, до того времени неизвестное химикам свойство превращающихся молекулярных систем. Очень скоро было показано, что разветвленный цепной механизм характерен не только для окисления фосфора, водорода, СО, фосфина, СЗз и НаЗ, но и для окисления самых разнообразных углеводородов и лежит в основе химизма всех процессов горения [4]. Позднее было найдено, что ряд полимеризационных процессов протекает через разветвленные цепи [5], а в самое последнее время установлено, что некоторые процессы фторирования также подчиняются этим законам [6, 7 . [c.214]

    Для объяснения второй стадии реакции мы воспользовались свойством производных трехвалентного фосфора присоединять элементарную с ру по схеме  [c.138]

    Проблема строения центров свечения и механизма поглощения света активирующей примесью является одной из наиболее фундаментальных и менее всего изученных проблем в физике люминесценции кристаллических фосфоров. В современной теории люминесценции кристаллофосфоров, в основу которой положена энергетическая модель, вопросы о строении, физических свойствах и химическом составе центров свечения вообще не рассматриваются. Различного рода центры связываются в указанной теории с донор-ными либо акцепторными уровнями, а элементарные процессы описываются чисто феноменологически с помощью констант захвата, высвобождения и рекомбинации электрона. [c.150]

    В качестве примеров анализа элементарного состава можно назвать следующие. При анализе чугунов и сталей определяют содержание углерода, серы, фосфора, кремния, марганца, хрома и др., так как от наличия определенных количеств этих элементов зависят свойства чугуна и стали анализируя кожу, определяют содержание в ней белковых и дубильных веществ, жира, золы и влаги, так как изменение количества одного из этих компонентов заметно влияет на физико-механические свойства РОЖИ. [c.19]


    Выделенные из реакционной смеси продукты по своим свойствам (не присоединяют элементарную серу, при гидролизе образуют соль фенилгидразина) отвечают строению продуктов присоединения оснований Шиффа к атому фосфора фенилгидразидов фосфористых и фосфинистых кислот. В ИК-спектрах синтезированных продуктов имеются полосы поглощения, характерные для группы P=N (1280—1380 сж ) и для групп NH (3180— 3400 см" ). [c.294]

    Сопоставьте свойства, характерные для элементарных азота и фосфора. [c.134]

    Книга представляет собой научно-техническую монографик> по химии и технологии термической фосфорной кислоты. В неп рассмотрены свойства элементарного фосфора, его окислов [c.2]

    Фосфор. Изучено электровосстановление элементарного фосфора [182, 59, 496, 423] и его соединений [423, 656]. Элементарный фосфор весьма реакционноспособен, он в равной мере способен проявлять окислительные и восстановительные свойства, т. е. должен вступать как в катодные, так и в анодные реакции. На катоде желтый фосфор (Р4) в зависимости от материала катода, растворителя и концентрации способен восстанавливаться до различных степеней окисления. В апротонных растворителях (АН, ДМФ) на ртутном электроде при концентрациях Р4<10 з моль/л происходит присоединение двух электронов с образованием двухзарядного бианиона Р42-, в концентрированных растворах фосфора образуется однозарядный анион Р4+е-->-Р4-. Восстановление протекает через образование хемосорбированного комплекса Р4Нд [59, 423]. Характер катодного процесса диффузионный. Анионы Р4" и Р4 способны взаимодействовать с находящимися в приэлектродном слое органическими соединениями с образованием фосфорорганических соединений [182, 59]. В протолитических растворителях процесс восстановления протекает необратимо с присоединением трех электронов также через промежуточное образование поверхностного хемосорбированного соединения Р4Ндж, электрохимически восстанавливающегося до фосфористого водоро- [c.102]

    Арван и Джонс [7] предложили следующий способ получения продуктов на основе Р4О10 и ЫНз. Элементарный фосфор окисляли в специальной аппаратуре сухим воздухом. Газы, содержащие фосфорный ангидрид, реагировали с ссушенным газообразным аммиаком при 240—725 X. Образующиеся при этом промежуточные соединения (по терминологии авторов) охлаждали в аппарате до 200 С в течение 3—5 с. Авторы также подчеркивали необходимость быстро охлаждать газы для получения продукта с хорошими физическими свойствами. Охлаждение достигалссь подачей воздуха, воды или любого другого подходящего для теплообмена агента в аппаратуру, выполненную из материала, обеспечивающего необходимую теплопередачу. Промежуточное соединение после достаточного охлаждения выделялось в специальной камере. Газы перед выбросом в атмосферу очищались от непрореагировавшего аммиака. [c.256]

    Вещества, построенные из атомов промежуточных элементов, — элементарные металлоиды (бор, углерод, кремний, фосфор, германий, мышьяк, сурьма, теллур). Характеризуются проч-ггымн кристаллическими решетками атомного типа (преимущественно нелетучи и тугоплавки) и наличием полупроводниковых свойств. [c.111]

    Азот и фосфор являются элементами УА группы периодической системы Д. И. Менделеева. На внешнем энергетическом уровне атомов этих элементов находится пять электронов из них три р-электрона. Поэтому в нормальном состоянии они проявляют валентность, равную трем. Наибольшее изменение в химических свойствах элементов УА группы наблюдается при переходе от азота к фосфору. В атомах азота внешним энергетическим уровнем является второй, содержащий только 5- и р-поду ровни, а подуровень с1 отсутствует. Атомы азота при переходе в возбужденное состояние могут увеличить число непарныхэлектронов максимум до четырех и при этомза счет потери одного электрона. В этом случае образуется электронная конфигурация а азот становится четырехвалентным, как в ионе [ЫН4] . Поэтому азот не проявляет валентности, равной пяти. В атомах фосфора наружным энергетическим уровнем является третий, состоящий из трех подуровней з, р и й. При возбуждении атомов фосфора увеличение числа непарных электронов происходит за счет использования -подуровня с образованием электронной конфигурации поэтому фосфор в отличие от азота может проявлять валентность, равную пяти. Размеры атомов азота и фосфора меньше, а энергия ионизации этих элементов соответственно больше, чем углерода и кремния. В связи с этим азот и фосфор при химических реакциях не теряют электронов и не превращаются в элементарные катионы. Сродство к электрону этих элементов незначительно и поэтому они, как правило, не превращаются и в элементарные анионы. Азот и фосфор образуют соединения как с кислородом, так и с водородом, только с ковалентными связями. Таким образом, азот и фосфор являются неметаллами. Причем свойства неметаллов у них выражены сильнее, чем у углерода и кремния. [c.213]

    По химическому составу полупроводники весьма разнообразны. К ним относятся элементарные вещества, как, например, бор, графит, кремний, германий, мышьяк, сурьма, селен, а также многие оксиды ( uaO, ZnO), сульфиды (PbS), соединения с индием (InSb) и т. д. и многие соединения, состоящие более чем из двух элементов. Известны и некоторые органические соединения обладающие полупроводниковыми свойствами. Таким образом, к полупроводникам относится очень большое число веществ. Обусловлены полупроводниковые свойства характером химической связи (ковалентным, или ковалентным с некоторой долей ионности), типом кристаллической решетки, размерами атомов, расстоянием между ними, их взаиморасположением. Если химические связи вещества носят преимущественно металлический характер, то его полупроводниковые свойства исключаются. Зависимость полупроводниковых свойств от типа решетки и от характера связи ясно видна на примере аллотропных модификаций углерода. Так, алмаз — типичный диэлектрик, а графит — полупроводник с положительным температурным коэффициентом электропроводности. То же у олова белое олово — металл, а его аллотропное видоизменение серое олово — полупроводник. Известны примеры с модификациями фосфора и серы. [c.298]

    Вещество будет обладать полупроводниковыми свойствами, если в данном состоянии обеспечиваются условия образования насыщенных парноэлектронных связей хотя бы у одного из компонентов (у анионообразователя). В элементарных полупроводниках ковалентная связь образуется заполнением 5- и /з-орбиталей всех атомов. Эти полупроводники подчиняются так называемому правилу октета 8—М, согласно которому атом в ковалентном кристалле имеет 8—N ближайших соседей (уУ — номер группы Периодической системы). Так, кремний, германий и а-олово имеют координационное число 4 (Л = 4), для полупроводниковых модификаций фосфора, [c.318]

    Физико-химические свойства дифосфида меди. Дифосфид меди СиРа обладает моноклинной элементарной ячейкой. Атомы фосфора объединяются в гоф-рированные слои, параллельные плоскости Ьс, образуя двухмерную сетку, состоящую из десятичлениых колец Р. Кратчайшее расстояние между атомами фосфора п слоях составляет З.бОД, в то время как среднее расстояние в кольцах — 2,20 (тетраэдрический ковалентный радиус фосфора 1,10 Д). Между слоями в середине колец имеются октаэдрические пустоты, каждая из которых занята парой Си—Си. Расстояние между атомами меди равно лишь 2,48 А (радиус Гольдшмидта для меди 1,28 Д). Каждый атом меди тетраэдрически окружен четырьмя атомами фосфора иа среднем расстоянии 2,37 Д. Атомы фосфора структурно неравноценны атом Р окружен тремя атомами Си и двумя атомами Р", а атом Р" тетраэдрически окружен одним атомом Си, двумя атомами Р" и одним атомом Р. Фосфорные слои связаны между собой только связями Р—Си. [c.68]

    Если учесть, что разница мел<ду полупроводниками и диэлектриками только количественная, то можно сказать, что наличие только металлической связи между атомами исключает полупроводниковые свойства вещества (из этого не надо делать вывода о том, что в обычных условиях металлическая составляющая связи в полупроводниках полностью отсутствует). Для полупроводников типичны ковалентные и ионно-ковалситиые связи. Музер л Пирсон отмечают, что в составе всех известных неорганических полупроводииков всегда есть неметаллические атомы какого-либо из эле.ментов IVA—VIIA подгрупп. Зонная теория не объясняет этого факта. Собственно полупроводниками являются элементарные вещества этих групп (углерод, кремний, германий, а-олово, некоторые модификации фосфора, мышьяка, сурьмы, селен, теллур). Сюда надо отнести и бор. Некоторые черты полупроводниковых свойств имеют сера и иод. Слева и снизу от этих элементов в системе находятся мета.ллы, а выше и правее— типичные диэлектрики. [c.317]

    Здесь можно сделать несколько замечаний. Много ли простых тел растворимы в органических (или любых иных) растворителях Разумеется, галогены (во многих растворителях), сера и фосфор (в сероуглероде), кислород в полифторированных простььх эфирах, щелочные металлы в жидком аммиаке, многие металлы в ртути и что еще ... Что до углерода, то графит и алмаз, до открьггия фуллеренов единственные (кроме сравнительно экзотического карбина) известные аллотропные формы этого элемента, полностью нерастворимы в любых органических или неорганических растворителях (не считая некоторой растворимости в расплавленном железе). Раньше нельзя бьшо всерьез рассматривать возможность проведения каких-либо экспериментов с растворами элементарного углерода. Однако и Сео, и С70 умеренно растворимы в обычных органических растворителях. Теперь можно манипулировать с растворами элементарного углерода в бензоле (или толуоле, дихлорбензоле или некоторых других растворителях). Это уникальное свойство [c.398]

    Фторирование элементарным фтором и безводным фтористым водородом некоторых видов рудных концентратов представляется достаточно перспективным. Это обусловлено более широкой областью существования жидкого состояния фторидов некоторых элементов по сравнению с хлоридами, большей разницей в температуре кипения у фторидов некоторых элементов с близкими свойствами и переводом кремния и фосфора в труд-ноконденсируемые фториды. Физико-химические свойства некоторых фторидов представлены в табл. 17. [c.92]

    В 1669 г. гамбургский алхимик Хенниг Бранд, разоривший на алхимических занятиях, исходя из предположения, что пр дукты жизнедеятельности организма содержат первичную мат рию, из которой можно приготовить философский каме занялся перегонкой человеческой мочи. Прокалив остаток отгонки жидкости, он получил в реторте светящуюся пыль, кот рую принял за элементарный огонь. Некоторое время X. Бра хранил свое открытие в тайне, но, нуждаясь в деньгах, прод секрет врачу И. Д. Крафту, который немедленно воспользовал приобретением для коммерческих целей. Он предпринял поезд по Европе и при дворах королей и богачей демонстрировал уд вительные свойства фосфора за большую плату. [c.36]

    Фосфор продавали дороже золота. Только тогда, когда способ получения фосфора стал известен многим и перестал быть секретом, т. е. в XVIII в., химики начали систематически изучать его свойства. В 1740-х годах Маргграф предложил способ получения фосфорной кислоты, Шееле в 1771 г. показал, что фосфор можно получить из золы костей. В начале 1770-х годов Лавуазье установил элементарную природу фосфора, а русский ученый Л. А. Мусии-Пушкин открыл его аллотропную форму— фиолетовый фосфор. В 1839 г. было разработано первое фосфорное удобрение — суперфосфат. Еще через 9 лет австрийский химик А. Шреттер при нагревании белого фосфора до 250 С в ат1 осфере оксида углерода обнаружил новую аллотропическую модификацию этого элемента — красный фосфор, который нашел широкое применение в производстве спичек. В XX в. американский физик П. Бриджмен получил еще одну аллотропную форму фосфора — черный фосфор, отличающийся хорошей тепло- и электропроводностью. [c.194]

    Многие свойства этих элементов становятся понятными при рассмотрении некоторых свойств их атомов. Азот сильно электроотрицателен по электроотрицательности (азот занимает третье место в ряду электроотрицательности) его превосходят лишь кислород и фтор. Электроотрицательности фосфора, мышьяка, сурьмы и висмута имеют значения соответственно 2,1, 2,0, 1,8 и 1,7. Усиление металлического характера, наблюдающееся в ряду от азота до висмута, и большая разница в устойчивости трихлоридов этих элементов могут быть обусловлены именно таким изменением электроотрицательности. В гл. X уже обсуждался вопрос об устойчивости иона аммония N11 . Азот, подобно углероду и кислороду, обладает свойством образовывать кратные связи, аналогичные связям в элементарном веш,естве Ns N фосфор и более тяжелые элементы этой группы образуют, как правило, лишь одинарные связи. Атом азота невелик, ковалентный радиус одинарной связи азота равен 0,70 А и вокруг такого атома свободно размещаются только три атома кислорода. Фосфор, имеющий ковалентный радиус 1,10 Л, и мышьяк с ковалентным радиусом 1,21 А имеют уже достаточно большие размеры и вокруг них могут свободно размещаться по четыре атома кислорода в тетраэдрической конфигурации, как это имеет место в случае фосфорной кислоты НзРО и мышьяковой кислоты НзАз04. Ковалентный радиус одинарной связи сурьмы равен 1,41 А, и атом сурьмы может окружить себя шестью кислородными атомами, как это и наблюдается в случае сурьмяной кислоты [c.302]

    Двуокись свинца — сильный окислитель. Будучи нагретой с концентрированной серной кислотой, она выделяет кислород, а при нагревании с концентрированной соляной кислотой — хлор. Уже нри небольшом нагревании PbOg отщепляет кислород. Если ее растирать с легко загорающимися веществами, такими, как сера или красный фосфор, то происходит воспламенение. На этом свойстве основано применение двуокиси свинца в производстве спичек. Плюмбат(1У) кальция (в смеси с хлоратом калия) также применяют для этой цели. В элементарном анализе по Деннштедту двуокись свинца служит для поглощения NOg, SOg, lg, H I, Вгд и НВг, которые количественно удерживаются слабо нагретой РЬОа. [c.593]

    Модификация пятисернистым фосфором придает противоизносные свойства диспергирующим присадкам типа ВСМ [31], а осернение элементарной серой-противокоррозионные свойства Для улучшения моющих свойств ВСМ их модифицируют олеиновой кислотой [34] или нейтралмзуют гидроокисями щелочно-земельных металлов и карбонати-руют /35,3б7. [c.39]

    Первым заключением, к которому пришел Бранд, было то, что в его маслянистой мертвой голове сам собой возник элементарный огонь. Исследовав более подробно полученный фосфор , т. е. Светопосец (от греческого фйд — свет и ipeoM — несу ), Бранд решил, что ему наконец удалось получить первичную материю , обладающую столь необычайными свойствами. По-видимому, при помощи этой материи он безрезультатно пытался осуществить [c.216]

    Во второй части книги Дальтон рассматривал на основе атомной теории некоторые элементарные веш ества, соединения из двух элементов, а затем — щелочи и земли. В небольшом параграфе первой главы второй части ( Об элементарных принципах ) Дальтон высказывал свою точку зрения на элементарные вещества. Он явно придерживался по этому вопросу старого определения, данного еще Лавуазье. Дальтон писал Под элементарными веществами или простыми телами мы понимаем такие, которые еще не были разложены и которые, как это было обнаружено, вступают в соединения с другими телами. Мы не знаем ни про одно из веществ, называемых элементарными, что они абсолютно не разложилгы, но его следует называть простым до тех пор, пока его не удастся подвергнуть разложению. Главнейшие простые тела обозначаются названиями кислород, водород, азот или селитроген, углерод или уголь, сера, фосфор и металлы. Огнеупорные щелочи и земли были в недавнее время разложены, впрочем, давно уже подозревалось, что они являются соединениями, а м-р Дэви недавно показал при помощи гальваническо тока, что некоторые из них содержат металлы и обладают всеми характерными свойствами окислов металлов поэтому, как мне представляется, можно без ущерба делу поместить все земли в один класс как окислы металлов  [c.49]


Смотреть страницы где упоминается термин Свойства элементарного фосфора: [c.428]    [c.2]    [c.336]    [c.28]    [c.111]    [c.119]    [c.226]    [c.432]   
Смотреть главы в:

Неорганическая химия -> Свойства элементарного фосфора




ПОИСК





Смотрите так же термины и статьи:

Фосфор свойства



© 2025 chem21.info Реклама на сайте