Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные процессы при производстве азотной кислоты

    Схема автоматизации комбинированной системы производства азотной кислоты (по данным Г. К. Рубцовой) представлена на рис. Х-34. Регулирование процессов в отдельных аппаратах агрегата ведется по основным параметрам расходу воздуха и ам-миака. [c.322]

    Процесс производства азотной кислоты контактным окислением аммиака состоит из двух основных стадий получения окиси азота и переработки ее в азотную кислоту. На этой последней стадии происходит окисление N0 до высших окислов азота с последующим поглощением их водой. [c.270]


    Характерным направлением совершенствования химической технологии является применение высоких давлений, что позволяет повысить производительность аппаратов без увеличения их габаритов за счет ускорения реакции (обычно это относится к процессам в жидкой и газовой фазе). Экономическая эффективность применения повышенных давлений доказана в производстве азотной кислоты, в процессе получения спиртов и альдегидов методом оксосинтеза, в процессах гидрирования различных ароматических продуктов. Дальнейшее повышение давления в основных технологических установках во многом зависит от технического прогресса в химическом машиностроении, создании более прочных материалов. Эффективность повышения давления должна определяться сравнением получаемого результата (увеличением выхода продукта или степени селективности реакции) и потребных дополнительных затрат (на применение более прочных материалов и повышенный расход энергии для создания высокого давления). [c.39]

    Реакции (а) — (г) практически необратимы и поэтому направление процесса определяется соотношением скоростей реакций. В отсутствие катализаторов прн высоких температурах (выше 900°С) окисление аммиака идет в основном с образованием азота по реакции (в). Для производства азотной кислоты необходимо наиболее полное окисление аммиака по реакции (а), поэтому применяют катализаторы, избирательно ускоряющие ее. На практике степень окисления аммиака кислородом воздуха до оксида азота, т. е. селективность процесса, достигает 98%. В качестве избирательных катализаторов, ускоряющих процесс окисления аммиака до оксида азота, могут служить платина и ее сплавы с металлами платиновой группы, оксиды железа, марганца, кобальта и др. До [c.100]

    Технологический процесс производства нитрата аммония состоит из следующих основных стадий нейтрализации азотной кислоты газообразным аммиаком, выпаривания раствора нитрата аммония, кристаллизации и гранулирования плава, охлаждения, классификации и опудривания готового продукта (рис. 18.4). [c.264]

    Процессы и аппараты, общие для различных отраслей химической технологии, получили название основных процессов и аппаратов. Например, одним из основных процессов является перегонка (ректификация) — процесс разделения жидких смесей, основанный на различии давления паров компонентов смеси. Этот процесс применяется для разделения жидкого воздуха в производстве кислорода, разделения воды и азотной кислоты в производстве азотной кислоты, разделения сложной смеси органических продуктов для получения дивинила в производстве синтетического каучука и во многих других химических производствах. [c.9]


    Б книге приведены технологические расчеты основных процессов производства неорганических веществ серной кислоты, синтетического аммиака и азотной кислоты, фосфорной кислоты, минеральных удобрений, солей минеральных кислот, соды и щелочных продуктов. Во 2-м издании (1-е изд. — 1966 г.) отражены новейшие достижения отечественной и зарубежной технологии. [c.2]

    Во многих европейских странах получила распространение комбинированная схема производства азотной кислоты, при которой конверсия аммиака происходит при атмосферном давлении, а абсорбция — при среднем давлении (3—4 ат). В США почти на всех заводах конверсию аммиака и абсорбцию окислов азота проводят при высоком давлении (8 ат). Основным преимуществом этого способа является снижение объема капиталовложений на 30%. К недостаткам процесса следует отнести большой расход электроэнергии, меньшую степень конверсии аммиака, значительные потери катализатора [70]. [c.358]

    Справочная книжка азотчика. Москва, 1944. В сжатой форме приведены основные данные по сырью, конечным продуктам, процессам и аппаратам производства азотной кислоты. [c.139]

    ГЛАВА III. ОСНОВНЫЕ ПРОЦЕССЫ ПРИ ПРОИЗВОДСТВЕ АЗОТНОЙ КИСЛОТЫ [c.20]

    Окисление сернистого ангидрида и абсорбция окислов азота являются основными процессами в производстве серной кислоты нитрозным методом поэтому скорость этих процессов определяет интенсивность башенных систем. Для увеличения скорости окисления ЗОг необходимо повышать температуру и нитрозность орошающей серной кислоты для улучшения же процесса абсорбции окислов азота следует, наоборот, снижать эти показатели. Поскольку орошающая кислота находится в общем цикле системы, то рациональное разрешение указанного противоречия и определяет интенсивность башенного процесса, расход азотной кислоты и другие качественные показатели работы башенных систем. [c.370]

    Процесс абсорбции окислов азота жидкостями представляет собой промышленную задачу большой важности, существенную не только при производстве азотной кислоты, но и при контроле атмосферных загрязнений. Эта задача характеризуется также значительной сложностью, что следует из обширной литературы, посвященной данной проблеме. Несмотря на такие большие усилия, по-прежнему, не совсем ясно, какая из стадий определяет скорость протекания реакций. Следствием сказанного является в основном эмпирический подход к конструированию промышленного оборудования. [c.380]

    Абсорбционные процессы широко применяются в химической технологии, например абсорбция 50з при получении серной кислоты, абсорбция окислов азота при производстве азотной кислоты и т. д. Абсорбция является основным процессом при очистке от вредных примесей выпускаемых в атмосферу отходящих газов. [c.65]

    Отравление катализатора. Платиновые катализаторы чувствительны к действию ряда примесей, которые могут содержаться в аммиаке и в воздухе. Воздух на химических заводах часто бывает загрязнен сернистыми соединениями, фосфористым водородом, содержит много пыли. Фосфористый водород отравляет катализатор необратимо при очень малом содержании его в газовой смеси (порядка 0,00001%), сероводород — менее сильный яд обратимого действия. Синтетический аммиак иногда содержит взвешенные частицы катализаторной пыли, увлеченной газом из колонн синтеза аммиака. Коксовый аммиак содержит много вредных для данного процесса загрязнений, что и послужило основной причиной отказа от его применения для производства азотной кислоты. А.ммиак, воздух и их смеси по пути к контактному аппарату могут загрязняться смазочными маслами при сжатии газа в компрессорах и насосах, и мелкими частицами окислов железа (ржавчины), образующихся на стальных стенках газопроводов и аппаратуры. Все перечисленные вещества отравляют катализатор или, оседая на его поверхности, снижают активность и избирательные свойства. Указанный выше максимальный выход окиси азота на платиновых катализаторах получается только при условии работы на чистых аммиаке и воздухе. Поэтому необходимо исключить возможность отравления катализатора и загрязнения его. Это достигается применением синтетического аммиака и забором из атмосферы чистого воздуха, а также надлежащей очисткой газовой смеси и изготовлением всей коммуникации и аппаратуры до контактного аппарата не из стали, а из алюминия. [c.345]

    Широко используются непрерывные процессы в органических и неорганических производствах (синтез этилового спирта, фенола, ацетона, производных этилена, пропилена синтез аммиака производство серной кислоты и др.). К крупнотоннажным производствам относятся азотное, хлорное, основной химии, химических волокон, пластических масс, органического синтеза, горно-химическое и др. Объем крупнотоннажной продукции составляет более 75 % общего выпуска продукции. [c.14]


    Селективное, избирательное, действие катализаторов оказывается благоприятным в очень многих производственных процессах. Примером тонкой избирательности катализатора может служить процесс каталитического окисления аммиака в производстве азотной кислоты. Платиновый катализатор резко ускоряет основную реакцию окисления аммиака до окиси азота  [c.114]

    Применение внутренних теплообменников на полках пенного аппарата открывает большие возможности. Специальные исследования показали [2], что коэффициент теплопередачи в змеевиковом холодильнике, помещенном на решетке в слое пены, может достигать 2000 ккал/м -час-град, а интенсивность основного процесса массо-или теплопередачи между газом и жидкостью при этом не уменьшается. Принцип отвода тепла с помощью внутренних теплообменников положен Государственным институтом азотной промышленности (ГИАП) в основу оригинального аппарата (рис. 17) для охлаждения нитрозных газов в производстве азотной кислоты. [c.65]

    Современное производство азотной кислоты из аммиака включает следующие основные стадии очистка аммиака и воздуха, контактное окисление аммиака до окиси азота, охлаждение нитрозных газов, окисление окиси азота и поглощение образующейся двуокиси азота водой. Выделяющаяся при этом окись азота возвращается в процесс и снова подвергается окислению. [c.86]

    Металлургический кокс составляет важнейший компонент сырья в доменном процессе и транспортировка его экономически невыгодна. Кроме того, коксохимические заводы часто кооперируют с производствами аммиака и азотной кислоты, основного органического синтеза, красителей, взрывчатых веществ и ракетных топлив, пластических масс, в которых в качестве сырья используются продукты коксохимии. [c.161]

    Качество фосфатного сырья является важным, но не единственным из сырьевых факторов. Не менее серьезное внимание следует уделить качеству и доступности и других видов сырья, в том числе сырья, используемого в производстве кислот,— агентов для разложения фосфатов. Периодически возникающий на мировом рынке дефицит серы — сырья для производства серной кислоты, постепенно сокращающиеся запасы природного газа — основного на сегодняшний день сырья для получения водорода в производстве аммиака (т. е. сырья для производства азотной кислоты) вызывают необходимость разработки процессов производства удобрений с экономным расходованием этих кислот (или вообще без их использования), а следовательно и изменения ассортимента удобрений и их технологии. [c.41]

    Бештауниты и андезиты в основном применяются в качестве футеровочного материала для промывных, сушильных и абсорбционных башен в производстве серной кислоты по контактному способу, а также в производствах азотной и соляной кислот. Они считаются лучшими материалами для футеровки аппаратов барабанного типа для концентрирования серной кислоты, а также для изготовления колосниковой части реакционных и абсорбционных башен, где в процессе участвуют серная или соляная кислота и агрессивные газы. Бештауниты и андезиты также пригодны для изготовления колосниковой части абсорбционных башен в производстве азотной кислоты. Из андезитов и бештаунитов делают корпусы электрофильтров, устанавливаемых при концентрировании серной кислоты. [c.351]

    Процессы непрерывной адсорбции в аппаратах с кипящими и движущимися слоями адсорбента нашли широкое применение при переработке технических углеводородных газов, которые служат источником получения непредельных углеводородов. Удается эффективно выделять отдельные чистые компоненты из смесей газов, разделять исходные газы на фракции и полученные фракции на отдельные компоненты. Наряду с этим процессы непрерывной адсорбции получили также распространение в технологии связанного азота при обогащении нитрозных газов производства азотной кислоты, а также при выделении азота, водорода, хлористого водорода, двуокиси углерода и других газов во многих процессах. В настоящей главе рассматриваются основные случаи применения непрерывного адсорбционного метода для указанных целей. [c.206]

    Применение. Вода находит самое широкое применение в жизни человека, животных, растений. Без воды не было бы жизни. Вода является сырьем для получения водорода, участвует в органических синтезах, используется для газификации твердого топлива, служит катализатором ряда химических процессов. Вода применяется в главнейших областях основной химической промышленности (производство серной кислоты, азотной и т. д.), [c.167]

    Окислители, имеющие большое значение в технике и лабораторной практике. Кислород. Применяется для интенсификации производственных процессов в металлургической и химической промышленности (в доменном процессе, в производстве серной и азотной кислот и т.д.). Кислород используется в смеси с ацетиленом для получения высоких температур (3500 °С) при сварке и резке металлов. Кислород широко применяется в медицине. Вдыхание 40—60 %-ной смеси кислорода с воздухом ускоряет процессы окисления в организме, при этом уменьшается нагрузка на сердце и легкие. Мозг и сердце — основные органы управления нашим организмом — являются и основными потребителями кислорода, доставляемого кровью. Причем мозг потребляет почти в 20 раз больше кислорода, чем сердце. Лучшее средство борьбы с кислородной недостаточностью — пребывание на свежем воздухе. [c.128]

    Абсорбционные процессы широко распространены в химической технологии и являются основной технологической стадией ряда важнейших производств (например, абсорбция SO3 в производстве серной кислоты абсорбция НС1 с получением соляной кислоты абсорбция окислов азота водой в производстве азотной кислоты абсорбция NH , паров Hj, HjS и других компонентов из коксового газа абсорбция паров различных углеводородов из газов переработки нефти и т. п.). Кроме того, абсорбционные процессы являются основными процессами при санитарной очистке выпускаемых в атмосферу отходяи их газов от вредных примесей (например, очистка топочных газов от SOj очистка от фтористых соединений газов, выделяющихся в производстве минеральных удобрений, и т. д.). [c.434]

    Действие бол ьшинства катализаторов специфично. Специфичность каталитического действия выражается в том, что универсальных катализаторов, пригодных для ускорения любой химической реакции, нет. Каждая группа сходных реакций, а в ряде случаев одна определенная реакция ускоряется своими специфичными, наиболее активными для нее катализаторами. Со специфичностью каталитического действия связан избирательный катализ. Некоторые катализаторы избирательно увеличивают скорость одной реакции, не влияя заметно на скорость других реакций, возможных для тех же исходных веществ. Избирательное (иначе селективное) действие основано на различной активности катализатора по отношению к разным реакциям. Под влиянием катализатора могут меняться относительные скорости последовательных или параллельных промежуточных стадий суммарной реакции и тем самым может изменяться ее направление. Таким образом, избирательный катализ дает возможность изменять направление химических реакций, т. е. управлять им. Примером тонкой избирательности катализатора является процесс окисления аммиака в производстве азотной кислоты. Платиновый катализатор резко ускоряет основную реакцию окисления аммиака до окиси азота  [c.168]

    Основные научные исследования посвящены прикладной химии и химической технологии. Разработал (1915) способ получения азотной кислоты окислением аммиака в присутствии платинового катализатора, построил (1916) для этой цели опытно-промышленную установку в Макеевке. По его проекту в Юзовке (ныне Донецк) введен в эксплуатацию (1917) первый в России завод по производству азотной кислоты и аммиачной селитры. Изучал скорость роста и растворения кристаллов (1908), растворение золота в цианистом калии (1908), воздействие ультрафиолетовых лучей на химические процессы (1911—1914). Разрабатывал (с 1914) проблему получения синтетического каучука. Исследовал адсорбцию газов и паров в противогазе, описал свойства при- [c.19]

    Основные направления научных исследований — технология связанного азота, кинетика химических процессов, разработка теоретических основ химической техг логии. В годы Великой Отечег венной войны разработал и вн. рил в производство способ окис, ния аммиака воздухом, обогащс ным кислородом, а также промыи ленный метод очистки электролитического кислорода от щелочного тумана, что позволило значительно увеличить выпуск дефицитной азотной кислоты. Разрабатывал вопросы интенсификации производства азотной кислоты и ее солей. Изучал влияние давления на каталитические и массообменные процессы. [c.28]

    Титан часто подвергается травлению как для снятия альфиро-ванного слоя, так и для глубокого травления (химическое фрезерование). Ввиду того что титановые сплавы склонны к наводо-роживанию, при их травлении стараются применять азотную и фтористоводородную кислоты, ненаводороживающне титан (основным катодным процессом в азотной кислоте является не реакция разряда ионов водорода, а реакция восстановления азотной кислоты). Однако в некоторых случаях для непродолжительного травления, а также в ряде химических производств титан н его сплавы находятся в контакте с серной и соляной кислотами. Поэтому изыскание ингибиторов коррозии для титана представляет определенный интерес. [c.216]

    Около 90 % платины потребляется для научных и промышленных целей 10 % — для приготовления ювелирных изделий. Из платины делают лабораторные приборы, применяемые в аналитических н физнко-хнмичес-кнх исследованиях. Платина служит материалом для фильтров, фильер, термопар для измерения высоких температур, термометров сопротивления, используется в качестве проволоки для обмотки печей электросопротивления и т. д. Уникальная каталитическая активность, достаточная пластичность и жаропрочность сделали платину иаилучшнм катализатором для процесса окисления аммиака до азотной кислоты и в процессах производства серной кислоты контактным способом, в реакциях гидрогенизации, восстановления, производства витаминов и др. Платина с небольшими добавками нридия является основным конструкционным материалом для емкостей оптического стекловарения. На основе платины разработан ряд сплавов с уникальными свойствами для растяжек особо точных приборов, для изготовления магнитов сложной формы, для [c.526]

    Основным конструкционным материалом для аппаратурного оформления процесса получения разбавленной 50—57%-ной НМОз является сталь типа Х18Н10Т. Множество аппаратов, изготовленных из стали Х18Н10Т, длительное время (около 15 лет) успешно эксплуатируются в цехах производства азотной кислоты, однако нередки случаи сравнительно быстрого выхода из строя оборудования вследствие коррозии. Число таких случаев особенно возросло в связи с интенсификацией процесса получения разбавленной азотной кислоты путем повышения температуры и давления до 3,5 ат и выше. [c.69]

    Окисление окиси углерода с окисномедным катализатором [1], а также окисление этилена в присутствии серебряного катализатора [2] являются классическими примерами реакций гетерогенно-каталитического окисления. Непрерывные и тщательные исследования поверхностных реакций с участием окиси углерода привели к лучшему пониманию роли, которую играет катализатор. Совсем недавно изучение каталитического окисления различных углеводородов с помощью окиснометаллических катализаторов позволило получить дополнительные сведения о механизме реакций гетерогенного окисления [3]. Многие гетерогенно-каталитические реакции окисления служат основой важных промышленных процессов. В настоящее время каталитическое окисление толуола, ксилола и нафталина с использованием окислов металлов в качестве катализаторов [4] прочно вошло в практику как удобный метод крупномасштабного производства фталевого и малеинового ангидридов. Каталитическое окисление аммиака в присутствии платинового катализатора дает окись азота и поэтому используется при производстве азотной кислоты [5, 6]. Промышленное значение имеет также реакция окисления двуокиси серы в присутствии либо платинового катализатора [7], либо пятиокиси ванадия [8]. Так как все эти реакции были изучены в значительной степени, в данном разделе рассматриваются лишь отдельные примеры, достаточные для того, чтобы продемонстрировать основные принципы, играющие в катализе важную роль. [c.315]

    В книге описаны теоретические основы и технология процессов окисления аммиака и переработки полученных окислов азота в разбавленную и концентрированную азотную кислоту. Рассмотрена аппаратура азотнокислотных систем и ее специфические особенности, освещены методы обезвреживания отходящих нитрозных газов лри-ведены методики расчетов основных технологических узлов и аппаратов даны краткие сведения о контроле производства, технике безопасносги и охране труда, а также рекомендации к выбору конструкционных и антикоррозионных материалов, применяемых в производстве азотной кислоты. [c.2]

    Реакции (а) — (г) практически необратимы и поэтому направление процесса определяется соотношением скоростей реакций. В отсутствие катализаторов окисление аммиака идет в основном с образованием азота по реакции (в). Для производства азотной кислоты необходимо наиболее полное окисление аммиака по реакции (а), поэтому применяют катализаторы, избирательно ускоряющие ее. На практике степень окисления аммиака кислородом воздуха до окиси азота, т. е. селективность процесса, достигает 98%. Процесс окисления проходит только при высоких температурах, Ъднако излишне высокая темп.ература (свыше 900° С) приводит к образованию элементарного азота. В качестве избирательных катализаторов, ускоряющих процесс окисления аммиака до окиси азота, могут служить платина и ее сплавы с металлами платиновой группы, окислы железа, марганца, кобальта и др. До настоящего времени платина и ее сплавы являются непревзойденными по своей активности катализаторами для этой реакции. Поэтому большинство заводов, производящих азотную кислоту из аммиака, работает с применением платиновых катализаторов. Неплатиновые катализаторы, хотя и менее активные, но более дешевые также широко применяются во второй стадии окисления аммиака. Неплатиновые катализаторы (например, железохромовые) применяются в виде таблеток размером 5x4 мм, которые засыпаются в контактный [c.54]

    СИД железа, содержащий в качестве промоторов оксид алюминия, кальций, калий и, вероятно, немного оксида кремния. В патентной литературе в качестве промотора предлагается также оксид церия. Если это окажется усовершенствованием катализатора, то оно будет единственным за последние 75 лет. Но это не тот рекорд, которым могут гордиться каталитики. В настоящее время процесс ведут иод давлением лишь 2000 фунт/дюйм , тогда как на первых заводах во время второй мировой войны оно составляло 5000 и даже 12 000 фунт/дюйм . Аммиак является одним из основных продуктов химической промышленности его мировое производство составляет 70 млн. т в год. Большая часть аммиака идет на производство удобрений, значительную часть его перерабатывают в азотную кислоту и нитраты. Реактор синтеза аммиака очень похож на реактор синтеза спиртов (рис. 1—3). Более подробную информацию об этом можно найти в гл. 4 т. 3. [c.124]

    Азот относится к группе химических элементов, играющих исключительно важную роль в живой природе и жизни человека. Азот участвует в основных биохимических процессах. В составе белков он образует важнейшие питательные вещества для человека и животных. Но в синтезе белков в растительных и животных организмах участвует не элементарный азот, имеющий очень прочную межатомную связь (энергия диссоциации N2 940 кДж/моль), а его химические соединения, прежде всего аммиак. Из аммиака получают азотную кислоту и азотные удобрения. В условиях мирного времени подавляющее количество соединений азота расходуется на производство удобрений. Соединения азота также широко применяются в производстве промежуточных продуктов и красителей, для изготовления пластических масс (например, аминоплас-тов), химических волокон, фотографических препаратов, медика- [c.83]


Смотреть страницы где упоминается термин Основные процессы при производстве азотной кислоты: [c.2]    [c.142]    [c.84]    [c.2]    [c.84]   
Смотреть главы в:

Технология связанного азота  -> Основные процессы при производстве азотной кислоты




ПОИСК





Смотрите так же термины и статьи:

Азотная кислота, производство азотная кислота, производство

Основность кислот

Производство азотной кислоты

Производство процесса



© 2025 chem21.info Реклама на сайте