Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Выделение ионов электролитов

    Для предотвращения выделения иона металла на аноде (цементации) катодное и анодное пространство разделяют пористой диафрагмой. В качестве анодов применяют относительно неблагородные металлы, погруженные в электролит с одноименным катионом. После окончания электролиза катод взвешивают и по увеличению его массы находят содержание металла. На рис. 16.3 изображена схема установки для определения меди. [c.549]


    Анодный процесс характеризуется выделением ионов металла из металла трубопровода в электролит, т. е. в почву, с одновременным выделением из металла свободных электронов. [c.335]

    Для электроосаждения сплавов в широком диапазоне составов обычно стремятся изменением состава электролита сблизить потенциалы выделения ионов металлов. Последнее достигается изменением соотношения концентраций ионов металлов, введением в раствор комплексообразователей, изменением pH и температуры, перемешиванием раствора. Необходимо учесть также, что при этом происходит обычно и изменение скорости параллельной реакции выделения водорода. Таким образом, любое изменение состава электролита и режима электролиза обычно приводит к изменению состава сплава. Поэтому как возможность электроосаждения сплава из заданного электролита, так и его состав трудно прогнозировать, и эти данные в настоящее время могут быть получены только экспериментальным путем. Однако имеются некоторые редкие случаи, когда состав сплава может быть заранее определен. Здесь можно указать два случая 1) когда электроположительный металл выделяется на предельном токе диффузии, а электроотрицательный — с замедленной стадией разряда 2) когда оба металла выделяются на предельном диффузионном токе. В последнем случае соотношение металлов в сплаве при 100 % выходе по току равно соотношению их концентраций в электролите, а состав сплава не зависит от плотности тока. [c.46]

    Электрическая поляризация может влиять на скорость растекания жидких металлов не только за счет электрокапиллярных эффектов. Большую роль в ряде случаев могут играть и другие физико-химические процессы, в особенности восстановление окисной пленки на поверхности твердого металла при катодной поляризации. Например, после предварительной катодной поляризации цинка и свинца в слабом электролите капля ртути сразу смачивает твердый металл и быстро растекается по нему [178]. На некоторых металлах (золоте, серебре, меди) растекание ртути в условиях катодной поляризации наблюдалось лишь при потенциалах, достаточных для выделения иона водорода Н+ механизм влияния водорода на возможность растекания не выяснен [260]. [c.155]

    Однако учет электролиза при номощи объемных источников является неправильным, так как при электролизе выделение или поглощение ионов происходит только на поверхности электродов. В объеме же раствора ни поглощения, ни выделения ионов не происходит, т. е. плотность объемных источников равна нулю. Она могла бы быть отличной от нуля, если бы в электролите шли какие-то объемные реакции, одпако в этом случае она выражалась бы совсем иным образом. Таким образом, при электро- [c.691]


    Практически наиболее важными являются коррозионные процессы, нротекающие в неокислительных кислотах за счет разряда водородных ионов с выделением газообразного водорода, и процессы, протекающие в нейтральных растворах солей за счет ассимиляции электронов растворенным в электролите кислородом. [c.38]

    Для устранения побочных процессов электролизу подвергают нейтральные растворы. Наличие свободной щелочи в электролите приводит к усилению выделения свободного кислорода за счет разряда ионов ОН , а присутствие свободной НС1 — к образ ов,ани 0. хлорноватистой кислоты [c.183]

    При пропускании тока чер з электролиты либо их растворы на электродах протекают электрохимические реакции, связанные с нейтрализацией ионов и выделением соответствующих веществ. Этот сложный процесс называют электролизом. Для его осуществления необходима электрохимическая ячейка, состоящая из проводника второго рода — электролита, в котором реагирующие вещества диссоциированы на ионы двух проводников первого рода, погруженных в электролит, — электродов электронного проводника первого рода, соединяющего электроды с внешним источником тока — внешней цепи. [c.361]

    Рассматривая катодные процессы, протекающие при электро-лизе водных растворов, нужно прежде всего учитывать величину потенциала процесса восстановления ионов водорода. Этот потенциал зависит, как указывалось выше, от концентрации ионов водорода (см. стр. 119) в нейтральных растворах (pH = = 7) ф = —0,059-7 = —0,41 В. Отсюда ясно, что если электролит образован металлом, электродный потенциал которого значительно положительнее, чем —0,41 В, то из нейтрального раствора у катода будет выделяться металл. Такие металлы находятся в ряду стандартных потенциалов вблизи водорода (начиная приблизительно от олова) и после него. В случае электролитов, металл которых имеет потенциал значительно более отрицательный, чем —0,41 В, на катоде будет выделяться водород. К таким металлам относятся металлы начала ряда стандартных потенциалов — приблизительно до титана. Наконец, если потенциал металла близок к величине —0,41 В (металлы средней части ряда — 2п, Сг, Ре, d, N1), то, в зависимости ог концентрации раствора, температуры и плотности тока, возможно как восстановление металла, так и выделение водорода нередко наблюдается совместное выделение металла и водорода. [c.124]

    Здесь в электролите присутствуют ионы Н+, 2п + и 504. На катоде желательно выделение цинка  [c.19]

    При полярографировании могут мешать сопутствующие ионы, имеющие близкие потенциалы выделения, а также растворенный в электролите кислород, который удаляют из нейтральных или кислых растворов продуванием инертного газа (водорода, азота), а из щелочных и аммиачных растворов— химическим путем. Влияние ионов примесей также может быть устранено химическим путем (осаждением или переводом в комплексы) или применением компенсации, при которой поля- [c.292]

    Главным анодным процессом является процесс растворения хрома и железа. Хром в раствор может переходить в виде ионов Сг и Сг +. Шестивалентный хром образует в сернокислом электролите раствор хромового ангидрида, трехвалентный — сульфат хрома Сг2(804)3. Железо переходит в раствор в виде Fea (804)3. На катоде наряду с основным катодным процессом выделения водорода может идти восстановление Сг + до Сг +. [c.108]

    При поляризации в первую очередь протекает реакция (14), как обладающая наименее отрицательным потенциалом. В отличие от хромовокислых растворов в сульфатном электролите ионы Сг устойчивы, и их концентрация может достигать высоких значений. По мере накопления ионов Сг " и сдвига потенциала катода в отрицательную сторону начинается протекание реакций осаждения (12) и (13). Одновременно на катоде происходит выделение водорода, снижающее выход по току хрома и вызывающее повышение pH прикатодного слоя. Уже при pH около 3 происходит выпадение гидроокиси трехвалентного хрома, поэтому нормальный ход процесса требует pH католита порядка 2,1—2,4. При более низких значениях pH процесс выделения водорода становится доминирующим, и выход по току хрома резко падает. При наличии буферной добавки (N4- 4)2504 кислотность католита удается стабилизировать в указанном выше интервале pH выход по току хрома в этих условиях достигает 40—45%- [c.109]

    Раньше считалось, что вредными примесями являются ионы Са + и Mg2+, которые, разряжаясь на катоде, образуют амальгамы и на них интенсивно выделяется водород. В настоящее время эти примеси считают безвредными, если в электролите содержится магния до 0,1 г/л и кальция до 1,5 г/л. Вместе с тем оказалось, что ничтожные количества солей хрома, ванадия, молибдена, тантала, титана и германия очень резко снижают выход по току. Повышенное содержание SOi в электролите ускоряет сгорание анодов так же, как и в ванне с твердым катодом. Образующиеся при сгорании кусочки графита падают на амальгаму и являются катодными участками с малым перенапряжением для выделения водорода. Таким образом, это приводит к снижению катодного выхода по току. Кроме того, к катоду конвекцией переносится растворенный в [c.402]


    Если процесс восстановления протекает на катоде с малым перенапряжением выделения водорода, первая стадия процесса не должна определять кинетику суммарного процесса, а потенциал катода можно считать близким к равновесному. В этом случае строение двойного электрического слоя и адсорбция поверхностноактивных веществ не будут сказываться на кинетике процесса, и определять закономерности последней будет замедленность химической стадии восстановления органического вещества атомарным водородом. Если же процесс протекает на катоде с высоким перенапряжением выделения водорода, определять кинетику восстановления будет замедленность первой электрохимической стадии, и кинетические закономерности восстановления не будут отличаться от наблюдаемых для перенапряжения выделения водорода на этом металле. Плотность тока в этом случае не будет существенно зависеть от концентрации органического вещества в электролите. Подобные кинетические закономерности наблюдаются также при использовании, так называемых, переносчиков водорода, каталитических добавок ионов металлов переменной валентности, таких как титан, ванадий, хром, церий и т. д. Подобные добавки применяют в тех случаях, когда электродный процесс восстановления органического соединения требует значительно большего перенапряжения, чем восстановление иона металла переменной валентности, например в то время как восстановление органического вещества происходит без затруднений в растворе под действием который окисляется до Естественно, что кинетика суммарного процесса восстановления органического соединения в этом случае будет определяться замедленностью процесса восстановления ионов металла переменной валентности. [c.445]

    При диссоциации молекул образуются положительно заряженный ион (катион) и отрицательно заряженный ион (анион). Если поместить в раствор электроды и приложить к ним разность потенциалов, то катионы будут двигаться к катоду, а анионы — к аноду. На электродах ионы разряжаются и происходит выделение вещества. Количество выделившегося вещества определяется законом Фарадея, согласно которому для выделения одного грамм-эквивалента веи ества через электролит требуется пропустить количество электричества, равное одному фарадею / = 96500 Кл. Таким образом, один фарадей электричества — это заряд одного грамм-эквивалента ионов [c.345]

    Выделение элементов или образование новых ионов в электролите при пропускании через него электрического тока называют электролизом. [c.206]

    Собрав установку и подготовив электролит, приступают к опыту. Вначале компенсационным методом с каломельным электродом сравнения определяют зависимость к —фк для суммарного процесса разряда ионов железа и водорода. Поляризационную кривую снимают в быстром темпе до достижения интенсивного выделения водорода и образования рыхлых катодных осадков. [c.261]

    Если системы (13,2) и (13.3) объединить в одну,соединив цинковую и медную пластины металлическим проводником с электронной проводимостью, а растворы гпЗО и СиЗО —электролитическим проводником с ионной проводимостью, то получится замкнутая неравновесная система— гальванический элемент, схема которого приведена на рис. 13.1. Поскольку потенциалы электродов различны, по соединяющему их металлическому проводнику (II) перемещается поток электронов—электрический ток. Для восстановления равновесного потенциала цинкового электрода цинк должен переходить в раствор. Увеличение же отрицательности потенциала медного электрода за счет переместившихся электронов повлечет разрядку части ионов и выделение из раствора металлической меди на медном электроде. В результате около цинкового электрода электролит приобретает избыточное число положительно заряженных ионов по сравнению с исходным, а около медного электрода образуется недостаток ионов 50 -. Результатом различия заряда ионных растворов будет ионный [c.141]

    В растворах щелочей, применяемых для электролитического разложения воды, не должны содержаться примеси, вступающие в электродные реакции и приводящие к коррозии отдельных элементов электролизера. Дистиллированная или обессоленная (деминерализованная) вода, используемая для приготовления раствора электролита, должна содержать не более ЫО-з кг/мз железа, 2-10 кг/м хлоридов и 3-10 кг/м сухого остатка. Несмотря на такие жесткие требования, в процессе электролиза все же имеет место накопление примесей, оказывающих вредное влияние. Ионы хлора вызывают разрушение анодных материалов. Накопление большого количества карбонат-ионов , образующихся при растворении в электролите диоксида углерода из атмосферного воздуха, приводит к увеличению электрического сопротивления электролита и, следовательно, повышает напряжение на электролизере. На катоде электролизера могут восстанавливаться ионы железа, образуя так называемую железную губку . Катодный осадок может достичь диафрагмы, отделяющей катодное пространство электролизера от анодного, и за счет восстановления присутствующего в ней гидроксида железа привести к металлизации диафрагмы. В результате в анодном пространстве электролизера возможно выделение водорода и образование взрывоопасной смеси газов. [c.21]

    В электролите, вероятно, присутствуют ионы Н+, К+, Нр2 , Р . Для катодного процесса выделения водорода на используемых катодах из мягкой стали или меди характерно высокое перенапряжение. Повыщенным перенапряжением характеризуется и процесс выделения фтора на графитовом аноде из-за покрытия его поверхности тонким слоем твердых фторидов углерода. [c.246]

    Сущность электролиза заключается в выделении из электролита при протекании через электролитическую ванну постоянного тока частиц вещества и осаждении их на погруженных в ванну электродах (электроэкстракция) или в переносе веществ с одного электрода через электролит на другой (электролитическое рафинирование). В обоих случаях цель процессов — получение возможно более чистых незагрязненных примесями веществ. В отличие от электронной электропроводности металлов в электролитах (растворах солей, кислот и оснований в воде и в некоторых других растворителях, а также В расплавленных соединениях) наблюдается ионная электро- [c.325]

    Если в электролите имеются ионы разных металлов, то первыми на катоде выделяются ионы, имеющие меньший отрицательный нормальный потенциал (медь, серебро, свинец, никель) щелочноземельные металлы выделить труднее всего. Кроме того, в водных растворах всегда имеются ионы водорода, которые будут выделяться ранее, чем все металлы, имеющие отрицательный нормальный потенциал, поэтому при электролизе последних значительная или даже большая часть энергии затрачивается на выделение водорода. Путем специальных мер можно воспрепятствовать в известных пределах выделению водорода, однако металлы с нормальным потенциалом меньше 1 Б (например, магний, алюминий, щелочноземельные металлы) получить электролизом из водного раствора не удается. Их получают разложением [c.327]

    Химическая поляризация. Химическая поляризация связана с замедленностью одной из стадий электрохимической реакции. Такая замедленная стадия ограничивает в целом весь электрохимический процесс и в конечном итоге лимитирует величину тока, который может проходить через электрод. Этот вид поляризации в отдельных случаях может проявляться даже при очень малых плотностях тока. Химическая поляризация часто наблюдается при разряде ионов водорода и кислорода. Она зависит от материала электрола, на котором происходит выделение водорода. Например, если в элементе Вольта заменить медный электрод на платиновый, то процесс разряда ионов водорода сохранится как токообразующий процесс, но напряжение элемента возрастет при этом на 0,45 В. Если заменить медный электрод на свинцовый, то напряжение, наоборот, уменьшится на 0,57 В. [c.22]

    Влияние концентрации водородных ионов. Процесс электроосаждения металла часто сопровождается выделением водорода. Распределение тока между реакциями разряда ионов металла и водорода определяется соотношением их концентраций В электролите, а также перенапряжениями выделения металла и водорода. Чем выше кислотность электролита, тем, при прочих равных условиях, ниже выход металлов по току. [c.245]

    На участке кривой от Л до 5 незначительное увеличе- ние разности потенциалов вызывает резкое возрастание силы тока. На этом участке протекает процесс электроли- за, в результате которого происходит интенсивное обедне- ние приэлектродного слоя. Когда все ионы в приэлектрод-ном слое будут разряжены, при этом скорость диффузии будет отставать от скорости выделения ионов, на кривой [c.265]

    На рис. 230 приведены данные о влиянии концентрации ионов кадмия и серной кислоты на потенциалы выделения кадмия при различных плотностях тока (кривые 1, 2, 3 и 4). На том же рисунке, на кривой 5, приведены данные о зависимости перенапряжения выделения водорода на кадмие от плотности тока. Из рисунка видно, что понижение концентрации ионов кадмия и повышение концентрации серной кислоты в электролите приводит к некоторому увеличению катодной поляризации. [c.498]

    Цианидные электролиты. В цианидном электролите медь в виде одновалентных ионов входит в состав комплексных анионов Си(СЫ), Си(СЫ)з и др. Выделение металла происходит в результате непосредственного восстановления комплексного аниона на катоде, для чего требуется большая энергия активации. Поэтому в цианидных электролитах катодная поляризация резко выражена, что обусловливает образование осадков с мелкокристаллической структурой. Цианргдные электролиты позволяют осаждать медь непосредственно на сталь, цинк и их сплавы, так как вследствие высокого отрицательного значения по-32 [c.32]

    Гетерогенная реакция разложения промежуточных комплексов с выделением гозообразных продуктов реакции, т. е. стадии (3) и (4), являются наиболее замедленными н определяющими значение анодного перенапряжения. Потенциал анода определяется соотношением активностей кислорода в хемосорбирован-ном состоянии на аноде (условно С.10) (аО и ионов кислорода в электролите на поверхности анода в комплексах АЮРг (сь)  [c.150]

    Электролит свинцового аккумулятора представляет собой раствор серной кислоты, содержащий сравнительно Majroe количество ионов РЬ +. Концентрация ионов водорода в этом растворе намного больше, чем концентрация ионов свинца. Крюме того, свинец в ряду напряжений стоит до водорода. Тем не менее при зарядке аккумулятора на катоде восстанавливается именно свинец, а не водород. Это происходит потому, что перенапряжение выделения водорода на свинце особенно велико (см. разд. 9.10, табл. 9.3). На электроде из РЬОз при зарядке идет процесс окисления [c.684]

    Введение поверхностно-активных веществ и коллоидов в электролит резко изменяет характер электрокристаллизации металла. Адсорбируясь на поверхности катода, поверхностноактивные вещества создают затруднения для проникновения разряжающих ионов металла, повышая энергию активации. Это приводит к значительному увеличению поляризации и, как следствие, к образованию мелкокристаллической структуры. Такие металлы, как олово, свинец, кадмий, которые при выделении на катоде из растворов их простых солей образуют игольчатые, не связанные между собой отдельные кристаллы, в присутствии повархностно-активных веществ образуют компактные плотные слои металла, обладающие высокими антикоррозионными защитными свойствами. В ряде случаев даже при не очень значительном увеличении поляризации поверхностно-активные вещества способствуют формированию мелкокристаллической структуры. [c.365]

    Потенциал поляризованного электрода, когда начинается пе-тферывное разряжение ионов, называют потенциалом разряжения (выделения, растворения) катода или анода соответственно. По-тенццал разложения, перенапряжение и потенциал разряжения зависят от концентрации раствора, его pH, материала, формы, размеров и характера поверхности электродов, температуры, плотности тока и других факторов. С увеличением площади катода (анода) прн прочих равных условиях уменьщаются плотность тока и перенапряжение. Перенапряжение вызывает увеличение расхода электроэнергии при электролизе и нагревание электролитической ванны. Перенапряжение имеет максимальное значение, когда продукты электролиза — газообразные вещества, например при электролизе воды с использованием 30%-ного раствора КОН шод действием тока протекает реакция Н2(ж) = Нг(г)+7202(г). которая является сум- мой катодной и анодной реакций 2Н20(ж)+2е = Н2(г) + 20Н- и 20Н- = Н20(ж) +7202(г)+2е. В биполярной ванне с железными катодом и анодом при 0° С и давлении газов 760 мм рт. ст. и плотности тока 1000 А/м2 электролиз идет при напряжении 2,31 В. В этих условиях °г.э= 1,233 В Т1к = 0,2 В т]а = 0,22 В падение напряжения. в электролите, диафрагме и проводниках первого рода 0,65 В. Следовательно, к. п. д. напряжения около 53%. Если принять, что на выделение 1 г-экв водорода, занимающего в газообразном состоянии при давлении 760 мм рт. ст. и 0°С 11,2 л, требуется 96 487 КлХ 202 [c.202]

    С водой возможна реакция лишь того иона, который с одним из ионов воды, Н+ или ОН , дает слабый электролит. Поэтому взаимодействие иона Na+ с водой неосуществимо (так как образовавшийся бы при этом NaOH являлся сильным электролитом), а протекает реакция между ацетат-ионами и водой с выделением слабой уксусной кислоты ,  [c.311]

    Уравнение Ильковича выведено для случая, когда концентрация исследуемого вещества в растворе очень мала. При таких именно условиях практически и применяют установки для полярографического анализа. При этом для повышения электропроводности в раствор добавляют в избытке какой-либо индифферентный электролит, например КС1, К2504, КМОз и т. п., потенциал выделения которого значительно больше, чем у определяемого иона. В этих условиях исследуемые ионы практически не переносят никакого тока и потому предельный их ток равен диффузионному а). [c.289]

    Очень велика ррль сульфата аммония. Он выполняет две функции является буферным агентом, поддерживающим постоянство pH раствора и предотвращающим выделение гидроокиси марганца, и увеличивает электропроводность раствора. Повышению катодного выхода по току способствует добавка в электролит небольших количеств иона SO3 (для этого через раствор перед электролизом пропускают сернистый газ SO2). Сульфит-ион восстанавливается у катода с образованием коллоидной серы, адсорбирующейся на участках катода, активных к выделению водорода. Это затрудняет его выделение. Наличие SO2 в растворе приводит к некоторому загрязнению катодного осадка серой. [c.105]

    Наряду с разрядом олова на катоде происходит разряд ионов водорода, однако значительное перенапряжение водорода на олове способствует преимущественному выделению олова. Щелочь в станнатных электролитах играет роль комплексообразователя увеличение щелочи заметно смещает равноаесие в сторону уменьшения концентрации и соответственно сдвигает потенциал в сторону электроотрицательных значений. По этим соображениям в электролите поддерживается умеренная концентрация свободной щелочи. Процесс осаждения -олова ведут при повышенных температурах (65—70°С) при более низких температурах получаются темные и рыхлые осадки. [c.204]

    Использование тока при заряде будет лучше, если процесс вести при большей концентрации ионов НРеОг", т. е. в более концентрированных растворах щелочи. При снижении плотности тока перенапряжение для выделения водорода падает резче, чем для выделения железа, поэтому уменьшается и выход железа по току. Применять при заряде очень большие плотности тока нельзя, так как у поверхности электрода раствор локально обеднеет ионами НРе02". Потенциал железного электрода в щелочи на А5мв отрицательней потенциала водородного электрода в том же растворе. Это является причиной непрерывного самопроизвольного растворения железного электрода в электролите. Перенапряжение для выделения водорода на железе, как уже сказано, невелико, поэтому скорость саморастворения железа получается заметной ( 40°/о за месяц). Большой саморазряд и быстрая пассивация при низких температурах — основные недостатки железного электрода, препятствующие полной замене им более дорогого кадмиевого электрода. Железный электрод очень чувствителен к примесям. Активирующее действие оказывают окислы никеля, мышьяк, сурьма и сульфидная сера. (Никель облегчает зарядный процесс, а сера — разрядный). [c.516]

    Электролитический способ. Электроосаждение из щелочных галлатных растворов, применяемое для получения галлия, идет в присутствии алюминия и, следовательно, пригодно для разделения этих двух металлов, так как алюминий не может быть выделен электролизом из водных растворов. Га.илатный анион относится к числу труд-новосстанавливаемых он начинает восстанавливаться лишь при сильно отрицательном потенциале, когда уже разряжается ион водорода. Поэтому со снижением концентрации галлия в электролите его выход по току резко уменьшается. Кроме того, присутствующие в производственных алюминатных растворах примеси, в том числе органические, быстро пассивируют катод. [c.255]

    В реальных электролитах раствор, помимо ионов основного металла, содержит катионы примеси. В ряде случаев предельно допустимые количества примесей в электролите не должны превышать Ю- —10 моль1л. Понижение концентрации приводит к резкому сдвигу равновесного потенциала примеси к электроотрицательным значениям. Естественно полагать, что малая концентрация примеси обусловливает большую величину перенапряжения при ее выделении. С другой стороны, процесс выделения примеси часто облегчается деполяризацией, вследствие чего примесь выделяется при потенциалах более положительных, чем это необходимо для ее выделения в чистом виде. [c.411]

    При хранении свинцовый аккумулятор теряет около 1% емкости в сутки. Основная причина саморазряда — коррозия губчатого свинца из-за воздействия вредных примесей в электроде и в электролите. К этим примесям относятся металлы с малым перенапряжением выделения водорода (Ре, Си, Аз, ЗЬ, Р1 и др.), ускоряющие коррозию с водородной деполяризацией. Сурьма и мышьяк появляются в электролите в результате разрушения решетки положительной пластины, а затем катодно выделяются на отрицательном электроде. Вредны металлы, которые могут образовать ионы переменной валентности, например М.пОс и Мп04 , Ре + и Ре +. Так, при взаимодействии с [c.88]

    Кроме комплексных анионов, е1 состав которых входит металл, восстанавливающийся на катоде, в электролите могут присутствовать комплерссы катионного характера. К таким электролитам, применяемым в гальваностегии, относятся растворы аммиачных солей (аммиакатов) цинка, кадмия и меди, аминокомплексных соединений с органическими лигандами. В некоторых случаях восстановление этих ионов не требует большой поляризации катода, так как они разряжаются как обычные гидратированные или сольватированные ионы. Константа нестойкости этих комплексов больше, чем цианидных комплексных анионов В присутствии избытка цианида. Выделение металла, например, [c.244]

    ГАЛЬВАНОПЛАСТИКА, см. Гальванотехника. ГАЛЬВАНОСТЕГИЯ, см. Гальванотехника. ГАЛЬВАНОТЕХНИКА, получение на пов-сти изделия или основы (формы) слоев металлов из р-тв их солей под действием постоянного электрич. токв. Различают 1) гальваностегию-нанесение на пов-сть изделия тонких, обычно до иеск. десятков мкм, металлич. покрытий и 2) гальванопластику-осаждение толстых, часто достигающих неск. мм, легко отделяющихся от основы (формы) слоев металла, точно воспроизводящих рельеф основы. При прохождении тока через р-р соли положит, иоиы металла, образующиеся На аноде, присоединяя электроны, образуют на катоде нейтральные атомы, металл кристаллизуется и покрывает катод сплошным слоем (см. Электрокристаллизация). Разряду ионов предшествует их миграция и диффузия в р-ре. Катодом служит покрываемое изделие или основа, анодом-обычно тот же металл, к-рый выделяется на катоде. Если применяют нерастворимые аноды, в электролит периодически добавляют соединения осаждаемого металла при этом вместо анодного растворения происходят др. анодные р-ции, напр, выделение Oj. Эффективное ср-во регулирования св-в покрытия-введение в электролит орг. добавок, к-рые, адсорбируясь на пов-сти осаждаемого металла, меняют условия его кристаллизации. Ми, металлы выделяются на катоде совместно с Н], к-рый понижает выход металла по току и изменяет св-ва покрытий. Скорость выделения Hj обычно регулируют добавлением в электролит буферирующих неорг. соединений. Для повышения электропроводности р-ров в них дополнительно вводят неорг. соли. [c.499]


Смотреть страницы где упоминается термин Выделение ионов электролитов: [c.172]    [c.616]    [c.257]    [c.151]    [c.25]    [c.431]    [c.13]    [c.184]    [c.412]   
Смотреть главы в:

Поверхностные разделение веществ  -> Выделение ионов электролитов




ПОИСК





Смотрите так же термины и статьи:

Выделение ионов



© 2024 chem21.info Реклама на сайте