Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Работа 5. Скорость химических реакций

    Скорость химической реакции А + + В О + Е будет определяться числом столкновений возбужденных молекул А и В, суммарная энергия которых должна быть выше энергии Е, необходимой для образования переходного состояния. Однако это условие является необходимым, но не достаточным. Для образования переходного состояния кроме избыточной энергии сталкивающихся молекул необходимо благоприятное расположение атомов в реакционных центрах реагирующих молекул. Следовательно, теория элементарного химического акта должна давать возможность расчета высоты энергетического барьера и вероятности образования переходного состояния исходя из строения и свойств реагирующих молекул. Одним из первых направлений в развитии теории элементарных реакций является теория активных столкновений. Ее основы разрабатывались на базе молекулярно-кинетических представлений и идеи, выдвинутой Аррениусом об активных столкновениях, заканчивающихся химическим актом. На современном этапе это направление развивается на базе квантовой теории химической связи и строения молекул. Начало этому было положено работами Эйринга, Эванса, Поляни и др., создавших новое направление в теории элементарных химических реакций, так называемую теорию абсолютных скоростей реакций. В этой теории ставится задача расчета высоты энергетического барьера и вероятности образования переходного состояния исходя из свойств реагирующих молекул. За последние три десятилетия получило развитие новое направление в теории элементарных химических реакций, в котором строение и свойства переходного состояния описываются на базе теории молекулярных орбиталей. [c.562]


    Всякое изменение состояния системы молекул (среднестатистическая функция распределения по уровням энергии) сопровождается стремлением к новому состоянию равновесия (релаксация). Поглощение зв)т<а всегда сопровождается релаксационными процессами, которые могут остановиться в состоянии неустойчивого равновесия (метастабильное состояние). Нахождение вещества в этом состоянии делает его весьма чувствительным к разнообразным трансформациям. В работе [443] показано, что в метастабильном состоянии субстанция склонна к быстрым химическим изменениям. В этой же работе приводятся сведения, что существует прямая пропорциональная связь между константой скорости химической реакции, энергией и энтропией активации и временем релаксации. [c.49]

    Математическое описание кинетики набухания полимеров (сополимеров) базируется на различных концепциях. К более ранним [19—24] относится описание кинетики набухания на основе кинетических уравнений скорости химической реакции первого и второго порядков. В работе [25] кинетика набухания полимеров описывается с использованием условий квазистационарности для случая, когда лимитирующей является скорость пространст- [c.298]

    При анализе устойчивости процесса в диффузионном режиме следует учесть, что в этом случае реакция локализуется в тонком слое близ внешней поверхности пористой частицы. Благодаря большой скорости химической реакции флуктуации концентрации должны чрезвычайно быстро затухать вне этого слоя, и только флуктуации температуры могут свободно распространяться по всему объему зерна путем теплопроводности. Переходные процессы в тонком реакционном слое должны протекать весьма быстро поэтому цри анализе устойчивости можно считать, что этот слой всегда работает в стационарном режиме и учитывать только наиболее медленный нестационарный процесс распространения тепловых флуктуаций в объеме пористого зерна. Исследуя процесс, протекающий в диффузионном режиме, следует уже учесть сопротивление тепло- и массо-нереносу на внешней поверхности зерна. Учитывая упомянутые выше допущения, записываем уравнения, описывающие нестационарный процесс, протекающий в диффузионном режиме, в виде [c.362]

    Оствальд был среди тех европейских ученых, которые открыли и оценили работы Гиббса. В 1892 г. он перевел статьи Гиббса по термодинамике на немецкий язык. Оствальд почти сразу же начал применять теории Гиббса при изучении катализа. Катализ (термин, предложенный Берцелиусом в 1835 г.) — изменение скорости химической реакции в присутствии небольших количеств веществ (катализаторов), которые не принимают видимого участия в реакции. Так, в 1816 г, Дэви установил, что порошкообразная платина [c.114]


    В заключение приведем примеры рассчитанных по алгоритму, приведенному в работе [18], зависимостей максимальной температуры во фронте от константы скорости химической реакции (рис. 3.6), величины адиабатического разогрева смеси (рис. 3.7) ж размера (рис. 3.8) зерна катализатора в условиях, когда величиной эффективной продольной теплопроводности по слою можно пренебречь [19]. Приведенные количественные зависимости согласуются с полученными ранее оценками. Отметим лишь влияние раЗ(Мера зерна катализатора в условиях, когда роль продольного переноса тепла пренебрежимо мала. Как видно из выражения (3.566), [c.94]

    Цитируемая работа однако, еще раз демонстрирует недостатки рассматриваемого метода если средние диаметры пузырей не могут быть рассчитаны заранее или непосредственно измерены, то константы скорости химических реакций не могут быть определены с приемлемой точностью по данным о превращении в псевдоожиженном слое. [c.403]

    Трактовка Франк-Каменецкого еш,е довольно осторожна, особенно если сравнить ее с трактовками других авторов (см., например, работы [12] или [35]), определяюш их диффузионную область как область, в которой скорость массопередачи значительно ниже скорости химической реакции. [c.15]

    Рассмотрим случай, когда скорость химической реакции достаточно велика по сравнению со скоростью молекулярной диффузии, т. е. выполняется условие /з > 10, где фактор определяется соотношением (12.25). Эта задача была решена в работе [55], авторы которой воспользовались для этого случая решением задачи о массопередаче через плоскую границу раздела фаз. [c.237]

    Пример V- . Структура математического описания платформинга получена в примере II1-3 в виде системы четырех дифференциальных уравнений балансов. В работах [18, 26] показано, что эту структуру можно использовать для расчетов процесса и получить кинетические уравнения скоростей химических реакций, входящих в описание  [c.142]

    Скорость химической реакции служит важнейшей количественной характеристикой химического взаимодействия, определяющей интенсивность работы печи. [c.22]

    Такая несимметричная форма записи столкновительного члена уравнения Больцмана при интегрировании по скоростям использована, например, в работе [41 ] при расчете неравновесных коэффициентов скорости химических реакций. У авторов используемой нами модели [445], несмотря на учет неупругих столкновений, проблемы дополнительных коэффициентов не возникает, поскольку они рассматривают лишь переходы частиц с уровня на уровень без изменения массы. [c.25]

    На рис. 6 приведены профили фильтрационной скорости V, максимальной температуры 0, степени превращения и скорости химической реакции на катализаторе в момент установления. Рост степени неравномерности V приводит к резким градиентам 0, I и по длине слоя, сосуществованию в одном слое катализатора диффузионных и кинетических режимов каталитического процесса и, как следствие, наличию горячей и холодной зон в реакторе. Естественно, это ухудшает эффективность работы реакторов с неподвижным слоем катализатора. [c.92]

    Основным показателем при оценке работы реактора является его производительность, выражаемая количеством продукта, образованным в единице объема реактора за единицу времени. Производительность определяется прежде всего скоростью, с которой развивается процесс. Обычно химическая реакция, проводимая в реакторе, сопровождается физическими явлениями массопередачи. Поэтому в отличие от скорост химической реакции пользуются понятием общей (глобальной) скорости процесса. Общую скорость получают суммированием скоростей всех химических и физических этапов процесса по определенным законам. Скорость реакции, общая скорость процесса и производительность реактора могут иметь одинаковые единицы измерения. [c.17]

    Наиболее распространенным в настоящее время методом определения ПКФ является химический метод, основанный на учете известной скорости химической реакции. Этот метод применим для режимов, когда массопередача в жидкой фазе не зависит от гидродинамики последней. С помощью химического метода обнаружено [381, 387], что разница между общей и эффективной межфазной поверхностью, полученной по скорости химической реакции существенна. Активная доля ПКФ, полученная в работе [381], оказалась равной 145—263 м /м . В работе [425] значения Ях,,.,, колебались в пределах 197—228 м м . [c.70]

    Следующим этапом в создании новых представлений о скорости химических реакций, касающихся и стерических факторов, явились работы, в которых был развит метод переходного состояния или активированного комплекса [232]. Этот метод был предложен для вычисления абсолютных величин констант скорости химических реакций (на решение этой задачи в двадцатых годах претендовал метод столкно вений). [c.169]

    Согласно теории окисления через перекиси скорость химических реакций процесса горения углеводородных смесей обусловливается интенсивностью возникновения активных перекисей, с одной стороны, и быстротой их исчезновения—с другой. В период индукции в горючем происходит первичное накопление перекисей. Увеличение количества молекул перекиси сопровождается повышением числа экзотермических реакций окисления, что вызывает возрастание температуры и, следовательно, большую интенсивность возникновения новых молекул перекиси. При достаточной концентрации активных перекисей скорость реакции окисления настолько возрастает, что появляется пламя. Между моментом достижения достаточной для воспламенения концентрации перекисей и самим воспламенением протекает некоторый интервал времени, в результате чего горючая смесь в момент появления пламени оказывается пересыщенной перекисями, почему реакция принимает чрезвычайно бурный характер, т. е. возникает детонация. Очевидно, что то горючее будет наиболее склонно к детонации, у которого возрастание скорости образования перекисей прл повышении температуры будет происходить наиболее интенсивно, так как в этом случае будет увели-чиваться возможность пересыщения смеси перекисями в момент воспламенения. Влияние перекисей на возникновение детонации в двигателе было показано Каллендаром экспериментально. Он испытывал влияние на работу двигателя добавляемых к топливу стойких (перекись бензоила) и нестойких (перекись ацетила, перекись метилэтилкетона и др.) перекисей и отметил различие в их влиянии. [c.354]


    Для обеспечения ритмичной работы предприятия с оптимальной скоростью химических реакций требуется поддерживать давление газа в элементах технологической линии постоянным. В пневматических воздушных системах предприятий также необходимо поддерживать давление на заданном уровне. Снижение давления в сети приводит к уменьшению полезной мощности и эффективности использования пневмоприемников повышение давления в сети обычно сопровождается срабатыванием автоматических устройств, обеспечивающих безопасность эксплуатации компрессорных установок. В результате эффективность использования энергии сжатого воздуха снижается. [c.275]

    РАБОТА № 7. СКОРОСТЬ ХИМИЧЕСКИХ РЕАКЦИЙ И ХИМИЧЕСКОЕ РАВНОВЕСИЕ [c.42]

    Для количественного выражения химического сродства были предложены различные способы. Например, предлагалось выражать меру химического сродства скоростью химической реакции. Однако такой способ оказался неудачным, потому что скорость химических реакций зависит не только от состояния реагирующих веществ (концентрация, температура), но и от других причин, например, от присутствия катализаторов. Другое предложение, согласно которому мерой химического сродства является убыль внутренней энергии или энтальпии, т. е. теплота реакции, также оказалось неудачным, так как наряду с экзотермическими реакциями известно много самопроизвольно и энергично протекающих эндотермических реакций. Теперь, следуя предложению Вант-Гоффа (1884), за меру химического сродства между реагентами принимают максимальную работу реакций. Максимальная [c.110]

    Примечательным является то обстоятельство, что и химики, и технологи в этот период отчетливо осознавали методологическое значение работ, направленных на исправление классической кинетики [27, с. 362], а точнее на ее синтез с физической кинетикой химических процессов и создание кинетики реальных химических процессов , [27, с. 356]. Так, например, рассмотрев тенденции развития химической кинетики, С. 3. Рогинский в 1941 г. обратил особое внимание на изменения, происшедшие в современной кинетике за последние десятилетия, превратившие кинетику из учения о скоростях химических реакций в упрощенных условиях в учение о химических процессах во всем их многообразии и сложности. Этот новый период в развитии кинетики только начался и неудивительно обилие нерешенных и спорных проблем [28]. [c.153]

    Смеси, принадлежащие к тому или иному классу, типу и подтипу, характеризуются специфическим поведением компонентов при осуществлении фазовых процессов, например, таких, как дистилляция и ректификация [29, 44, 45]. Так, в процессе непрерывной ректификации для смесей определенного класса, типа и подтипа характерны как специфическое поведение отдельных компонентов по высоте ректификационного аппарата, так и вполне определенная последовательность выделения фракций предельно возможного состава при переходе от одной колонны к другой в технологической схеме ректификации. В реакционно-ректификационных процессах, где скорость химической реакции конечна, зона реакции, как правило, сосредоточена в какой-то части аппарата, а в остальных частях идет обычная ректификация. Полный термодинамико-топологический анализ всей диаграммы в целом дает возможность не только разместить зону реакции в наиболее благоприятных условиях относительно концентраций реагентов, но и выявить определенные ограничения по составу конечных продуктов ректификации. Эти ограничения обусловлены тем, что в случае наличия азеотропов в рассматриваемой смеси, соответствующий этой смеси симплекс составов распадается на ряд ячеек, названных областями непрерывной ректификации [29], причем каждая ячейка характеризуется предельно возможными составами конечных фракций, которые можно получить в одном ректификационном аппарате непрерывного действия. Возможные конфигурации областей непрерывной ректификации и их границ рассмотрены в работах 29, 46]. [c.194]

    РАБОТА 9. ВЛИЯНИЕ КАТАЛИЗАТОРОВ НА СКОРОСТЬ ХИМИЧЕСКОЙ РЕАКЦИИ [c.223]

    Работа 9. Влияние различных факторов на скорость химических реакций [c.39]

    Работа 10. Катализ и его влияние на скорость химических реакций [c.43]

    Равновесное давление компонента на границе раздела фаз учитывает влияние свойств жидкой фазы и происходящих в ней процессов на скорость абсорбции и является функцией концентрации свободных молекул абсорбтива на границе раздела фаз. Последняя при прочих равных условиях уменьшается при увеличении концентрации хемосорбента, константы скорости химической реакции м коэффициента диффузии молекул активной части хемосорбента. Противоположное влияние наблюдается при увеличении коэффициента диффузии самих молекул абсорбтива. Значение Рр, может быть найдено из экспериментальных данных по зависимости скорости абсорбции от Р и С, как это показано в работах [248, 307, 335]. [c.143]

    Работа Уильямсона ознаменовала начало изучения химической кинетики — области химии, изучающей скорости химических реакций. Уильямсон ясно показал, что самопроизвольный характер хилшческой реакции в ряде случаев определяет не просто выделение теплоты, а нечто большее. Проводя свои [ногочисленные калориметрические измерения, Бертло и Томсен уже выявили это нечто большее , но, к сожалению, вопрос остался нерешенным из-за того, что работы Томсена были опубликованы на малодоступном ученым норвежском языке. [c.111]

    Во второй половине XIX века были разработаны начала учения о скорости химических реакций — химической кинетике—и учения о равновесиях в химических системах. Вскоре после указанных выше работ Бекетова шведскими учеными Гульд-бергом и Вааге (1867) был открыт закон, количественно выражающий зависимость скорости реакции от концентрации реагирующих веществ и выражающий соотношение между концентрациями веществ, участвующих в реакции при равновесии, — закон действия масс. [c.17]

    Для практической реализации режима бегущей волны фактически необходимо выполнить два условия температура газа на входе в слой катализатора должна быть настолько низкой, что скорость химической реакции при этой температуре пренебрежимо мала, а время контакта реакционной смеси в слое катализатора должно быть настолько большим, чтобы тепловой фронт успел сформироваться. Сравнительная простота осуществлеиия такого режима дает возможность исследовать его экспериментально, о чем свидетельствуют, например, работы [1 — 3]. [c.26]

    Поверхность контакта фаз взвешенного слоя определяют методом, основанным на известной скорости химической реакции [70, 264, 278], который позволяет вычислить интегральную величину межфазной поверхности [278]. По данным ряда работ величина удельной (отнесенной к площади решетки) поверхности контакта фаз А (м /м ) в аппарате ПАВН в 2,2—5 раз выше, чем в случае обычных ситчатых решеток, а величина объемной (отнесенной к объе слоя) поверхности контакта фаз а (м м ) примерно одинакова для сравниваемых аппаратов. Так, согласно данным [278] А = 100- -160 м7м для ПАВН, а для пенных аппаратов с противоточнымк решетками — 20—40 м /м . По данным [39], при режиме развитого взвешивания поверхность контакта фаз возрастает со скоро стью газа по соотношению  [c.247]

    В заключение полезно рассмотреть вопрос о соотношении объемов реакторов в каскаде. При прямом гидрогенолизе моносахаридов естественно было бы в первом же реакторе поддерживать максимальную температуру реакции, т. е. исключить из схемы подогреватель газо-жидкостной смеси при работе по такой схеме удается наиболее полно реализовать преимущества прямого гид-рогенолиза глюкозы — очень большую скорость химической реакции, и сократить время контакта до 20 мин (объемная скорость 3 ч 1) [35]. Это время реакции довольно близко к тому, которое достаточно при впрыскивании раствора глюкозы в автоклав, нагретый до температуры реакции, при периодическом процессе [32, 33]. [c.114]

    Отсюда видно, что безразмерный параметр ( /ВТ) л/гг ) / " характеризует влияние пульсаций температуры на скорость химических реакций. При (Е1ЦТ)((Т ) ) ЧТ 1 влияние пульсаций температуры незначительно. Однако так как химическая реакция обладает некоторым характерным временем, то априори понятно, что необходимо ввести по крайней мере еще один "временной" критерий для характеристики влияния пульсаций температуры, возможно аналогичный введенному авторами работы [245] критерию типа критерия Дамкелера (см. [20] ) для характеристики влияния пульсаций концентраций. [c.180]

    Рассмотрим температурную зависимость равновесной константы скорости химической реакции. В большинстве экспериментальных работ по определению констант скоростей реакции считается справедливым выражение Аррениуса. Однако при больших скоростях химических реакций системе нельзя приписать какую-либо температуру. При обработке экспериментальных данных значение температуры, входящее в выражение (8.54), определяют из уравнения баланса энергии системы [55]. В условиях нашей модели в формуле (8.54) следует поставить температуру термостата. Рас-Таблица 8.1 Энергии активации и предэкспонен- [c.212]

    В пособии рассматриваются классы гомо- и гетеросоедипений (простые вещества, оксиды, хлориды, гидриды бинарные и сложные, типа кислородных кислот, солей и оснований), виды химических реакций (фазовые превращения, реакции обменного разложения, окислительно-восстановительные и комплексносоединительные), учения о тепловых эффектах и скоростях химических реакций, о химическом равновесии и электрохимии. Вводятся представления об энтропии веществ в различном агрегатном состоянии, о максимальной работе химических реакций, о порядке реакции дается количественная связь между этими характеристиками и тепловым эффектом реакции, константой химического равновесия и температурой. [c.240]

    Для химической кинетики одним из наиболее важных является во1Прос о влиянии диффузионных факторов на константы скоростей химических реакций. Эта проблема рассматривалась в работах Смолуховского [1], Дебая [2], Нойеса [3]. Если диффузия частиц, участвующих в химической реакции, протекает медленнее по сравнению со скоростью самой реакции, то взаимное пространственное расположение реагирующих частиц не будет одинаковым, что приводит к различиям в скоростях реакции. Таким образом, уже из самого общего рассмотрения очевидна важная роль диффузии в химических реакциях. Ясно, что для протекания мономолекулярных реакций диффузия не имеет существенного значения. Тримолекулярные реакции маловероятны и факт их протекания в растворах не доказан окончательно. Следовательно, наибольший интерес представляет анализ роли диффузии в кинетике бимолекулярных процессов. [c.264]

    В 1867 г. после работ Н. И. Бекетова шведскими учеными К. Гульдбергом и П. Вааге был сформулирован закон действия масс. Впоследствии Я. Вант-Гоффом было разработано математическое выражение кинетических закономерностей, Н. А. Меншуткиным (1887) исследована кинетика химических реакцин в растворах и выяснена роль растворителя С. Аррениусом разработана теория электролитической диссоциации (1887) и исследовано влияние температуры на скорость химических реакций (1889). [c.7]

    В развитии учения о скоростях химических реакций большую роль сыграли работы Я- Вант-Гоффа, С. Аррениуса, Н. А. Меншут-кина, Н. А. Шилова, Н. Н. Семенова и др. [c.214]

    Книга является итогом многолетней работы лекционного кабинета кафедры неорганической химии химического факультета МГУ. В ней подробно описываются демонстрационные опыты, их подготовка и выполнение на. лекциях (свыше 350 экспериментов), Соде )-жание опытов охватывает основные теоретические н практические вопросы курса химические свойства свободных элементов н их сор днненин, скорость химических реакций, теория электролитической лиссоциации. химическое равиовесие, теория комплексообразования. [c.2]

    Работа № 3. Илияние температуры на скорость химической реакции в гомогенной системе [c.50]

    Автор выражает благодарность проф. В. П. Бараннику, который подготовил мате-иал к составлению работ по электролизу и никелированию, доц. Н. И. Подобаеву за покош,ь, оказанную в подготовке варианта работы по определению константы скорости химической реакции, по измерению электропроводимости, а также помощь в подготовке практикума. Выражаю большую признательность сотрудникам кафедры общей и аналитической химии МГПИ им. В. И. Ленина за все сделанные замечания при подготовке данного переиздания практикума к печати. [c.2]

    По мере течения реакции омыления этилацетата количество уксусной кислоты увеличивается и по ее увеличению можно судить о скорости химической реакции. Концентрацию уксусной кислоты удобно определять титрованием смеси раствором едкого натра. Поэтому сущность работы сводится к отбору и титрованию проб смеси через определенные, точно фиксированные промежутки времени. Определяя концентрации этилацетата в различные моменты, можно найти и константу скорости реакции по уравнению (2). Концентрация этилацетата а в момент взятия первой пробы равна увеличению концентрации уксусной кислоты за время от первой до последней пробы, т. е. пропорциональна разности между количеством миллилитров едкого натра, пошедшего на титрование этих проб. Если на титрование первой пробы пошло мл NaOH, а на титрование последней пробы — мл NaOH, то [c.149]


Смотреть страницы где упоминается термин Работа 5. Скорость химических реакций: [c.233]    [c.180]    [c.222]    [c.344]    [c.153]   
Смотреть главы в:

Лабораторный практикум по общей химии Издание 2 -> Работа 5. Скорость химических реакций




ПОИСК





Смотрите так же термины и статьи:

Работа химической реакции

Химические реакции скорость

Химические скорость



© 2025 chem21.info Реклама на сайте