Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение активности рибонуклеазы

    Работа 100. Определение активности, рибонуклеазы Принцип метода [c.324]

    Объясните принцип метода определения активности рибонуклеазы. [c.326]

    В моче человека можно обнаружить активность ряда ферментов липазы, рибонуклеазы, ЛДГ, аминотрансфераз, урокиназы, фосфатаз, а-амила-зы, лейцинаминопептидазы и др. Основные трудности при определении активности ферментов мочи, кроме а-амилазы и некоторых других, заключаются в необходимости сгущения (концентрирования) мочи и предотвращении ингибирования ферментов в процессе этого сгущения. [c.622]


    В настоящее время установлено, что специфичность и каталитические свойства многих ферментов обусловлены наличием в молекуле фермента определенных активных центров или активных участков полипептидной цепочки. В ряде случаев установлен характер и порядок чередования остатков аминокислот в этих функционально наиболее важных участках. Так, особенно важную роль играет фрагмент полипептидной цепи, имеющий строение аспарагиновая или глютаминовая кислота —серин — глицин или аланин (холинэстераза, трипсин, тромбин и др.). От некоторых ферментов оказалось возможным отщепить часть молекулы без существенного снижения их каталитической активности. К числу таких ферментов принадлежат, например рибонуклеаза и ряд протеолитических ферментов. [c.124]

    В противоположность далеко идущему гидролизу окисленной рибонуклеазы при действии пепсина в определенных условиях на нативный белок гидролизуется только одна пептидная связь с отщеплением от С-концевого участка тетрапептида и образованием вещества, лишенного ферментной активности [8]. [c.210]

    Предполагают, что формирование активного центра фермента начинается уже на ранних этапах синтеза белка-фермента (см. главу 14) на рибосоме, когда линейная одномерная структура пептидной цепи превращается в трехмерное тело строго определенной конфигурации. Образовавшийся белок приобретает информацию совершенно нового типа, а именно функциональную (в частности, каталитическую). Любые воздействия, приводящие к денатурации, т.е. нарушению третичной структуры, приводят к искажению или разрушению структуры активного центра и соответственно потере ферментом каталитических свойств. Если при подходящих внешних условиях удается восстановить нативную трехмерную структуру белка-фермента (ренатурировать его), то восстанавливается и его каталитическая активность. Это было показано впервые на примере рибонуклеазы поджелудочной железы (см. рис. 1.13). [c.125]

    Не всегда удобно относить дисульфидные связи к первичной структуре. В случае инсулина, в котором две полипептидные цепи (не обладающие активностью, если они отделены друг от друга) соединены друг с другом дисульфидными связями, такая классификация, по-видимому, разумна. Есть основания считать, что рибонуклеаза обладает ферментативной активностью лишь при наличии определенной системы четырех пар дисульфидных связей в ее молекуле. Если в качестве критерия выбрать ферментативную активность, то правильную систему дисульфидных связей в рибонуклеазе можно также рассматривать как часть первичной структуры. Вместе с тем в тех случаях, когда возможна сульфгидрил-дисульфидная реакция обмена по схеме [c.273]


    В определенных условиях молекулу рибонуклеазы можно расщепить с помощью фермента субтилизина. При этом разрывается связь между 20-м (аланин) и 21-м (серии) остатками и образуется два пептида — короткий (называемый 5-пептидом), содержащий 20 остатков, и более длинный (называемый 5-белком) из 104 остатков. Поскольку первый остаток цистеина находится в молекуле на 26-м месте, отщепление 5-пептида, состоящего из 20 первых аминокислотных остатков, равнозначно отщеплению хвоста фермента. По отдельности ни хвост , ни 5-белок не проявляют ферментативной активности, но их экви-молярная смесь активна. Очевидно, несмотря на разрыв связи между 20-м и 21-м остатками, благодаря взаимодействию боковых цепей образуется активная третичная структура. Если, так же как это делалось в случае нативного фермента, восстановить, а затем вновь окислить 5-белок, то получающийся продукт ничем не отличается от первоначального 5-белка. После добавления к реконструированному 5-белку 8-пептида активность в большой степени восстанавливается. По-видимому, правильное образование дисульфидных связей происходит и в отсутствие 5-пептида. Однако он все же несет какую-то определенную функцию, так как в его присутствии уменьшается количество осадка, состоящего, как предполагают, из молекул, связанных поперечными связями. Если опыт по восстановлению и последующему окислению производится с раствором, содержащим как 5-пептид, так и 5-белок, процент растворимого активного материала оказывается более высоким. [c.280]

    В результате изучения взаимодействия ферментов с субстратами и ингибиторами удалось выяснить ряд важных вопросов, касающихся механизма ферментативных реакций. Детальное рассмотрение всех этих исследований увело бы нас слишком в сторону. Поэтому мы остановимся только на некоторых выводах, имеющих непосредственное отношение к предмету этой книги. Прежде всего рассмотрим свойства самого фермента. Активность фермента, как правило, зависит от целостности его третичной структуры. Под действием денатурирующих агентов, изменяющих конформацию фермента, его активность либо уменьшается, либо исчезает полностью. По меньшей мере в одном случае — для рибонуклеазы — установлено, что связывание фермента с субстратом способствует сохранению его конформации даже в присутствии агентов, которые в отсутствие субстрата вызывают денатурацию. Вместе с тем не вся первичная структура необходима для обеспечения активности. Например, фермент папаин, по своим свойствам подобный протеолитическим ферментам, сохраняет свою активность при отщеплении 3/5 его молекулы. Активный фрагмент папаина сохраняет чувствительность к действию денатурирующих агентов, и это свидетельствует о том, что для обеспечения активности необходима определенная третичная структура. В свете этих данных вЪз-никает вопрос почему молекулы ферментов так велики  [c.395]

    Мы уже видели, что связывание субстратов и ингибиторов с лизоцимом и рибонуклеазой изменяет резонансные сигналы пептидных групп ароматических аминокислот, расположенных вблизи места связывания (см. разд. 14.2.2 и 14.2.3). Особенно важна информация, полученная при изучении резонансных сигналов от гистидиновых и триптофановых остатков лизоцима. Мы теперь рассмотрим прямые наблюдения резонансных сигналов малых молекул. Можно обнаружить изменения химических сдвигов и ширины линий для многих систем. Для определения положения активного центра эти наблюдения, по меньшей мере, столь же полезны, как и изучение резонансных сигналов протонов аминокислотных остатков белка. Однако, поскольку основное внимание в этой книге сосредоточено главным образом на самих полимерах, наше обсуждение этого аспекта исследований белков с помощью ЯМР будет относительно кратким. [c.387]

    Балластные белки обычно осаждают одним из известных методов фракционирования — избирательной денатурацией. Если фермент устойчив к нагреванию (например, рибонуклеаза выдерживает нагревание до 90° С без инактивации), проводят термическую денатурацию инертных белков, нагревая экстракт определенное время при 50—70° С. Применяют также кислотную денатурацию (подкисляют экстракт до pH 5 или ниже), если выделяемый фермент не инактивируется при данном pH используют и обработку экстракта хлороформом или смесью хлороформа и спирта. Денатурированные балластные белки отделяют от фермента центрифугированием или фильтрацией, а затем из водного раствора путем дробного осаждения (в основе которого лежит различная растворимость белков-ферментов) выделяют фракцию, обладающую наибольшей ферментативной активностью. [c.200]

    В случае обратимой денатурации восстанавливается исходная строго определенная макроструктура полипептидной цепи и регенерируется каталитическая активность фермента. Так, например, нарушение третичной структуры рибонуклеазы восстановлением четырех дисульфидных мостиков тиогликолевой кислотой в 8 М растворе мочевины приводит ж полной дезактивации фермента. Однако при последующем окислении сульфгидрильных групп кислородом каталитическая активность восстанавливается, т. е. регенерируется исходная макроструктура фермента. Дисульфидные связи образуются в тех же местах, что и в нативной молекуле. [c.204]


    Панкреатическая рибонуклеаза быка (мол. в. 14 ООО) представляет собой одиночную полипептидную цепь, построенную из 124 аминокислот, причем в настоящее время определена их последовательность В определенных местах полипептидная цепь сшита четырьмя дисульфидными мостиками (см. раздел Белки ). Расщепление дисульфидных мостиков приводит к потере каталитической активности фермента. [c.297]

    Интересные результаты были получены при изучении рибонуклеазы. Этот фермент содержит в молекуле четыре дисульфидные связи, при восстановлении которых образуются восемь тиоловых групп. При окислении восстановленного фермента в определенных условиях был получен продукт, каталитическая активность которого составляла 62% от активности исходного соединения [84]. Так как возможно 106 сочетаний, в которые могут вступать восемь тиоловых групп, образуя четыре дисульфидные [c.40]

    В табл. 14а приведены синтезированные фрагменты S-nen-тида, а также указаны их молярные количества на 1 моль S-белка, необходимые для проявления продуктами рекомбинации активности S-рибонуклеазы. Наиболее активным из всех фрагментов S-пептида является пептид с последовательностью аминокислотных остатков 1—13 (IV) (табл. 146). Продукт комбинации этого тридекапептида с 8-белком обладает 50%-ной активностью рибонуклеазы уже при их молярном соотношении 3 1. В случае фрагмента (1—12) (VIII) 50% активности сохраняется при молярном соотношении компонентов 88 I. Однако в случае фрагмента (1—И) (IX), содержащего всего лишь на один аминокислотный остаток меньше, на 1 моль S-белка требуется уже 8000 молей этого пептида. Приведенные данные определенно показывают важную роль остатка гистидина и не очень существенное значение аминокислотной последовательности 13—20 S-пептида для проявления ферментативной активности рибонуклеазы. Наличие остатка глутаминовой кислоты в положении 2 (от N-конца), по-видимому, существенно для [c.360]

    Денатурация белка в классическом смысле определялась как любая непротеолитическая модификация уникальной структуры нативного белка, приводящая к определенным изменениям химических, физических и биологических свойств [388]. Из этого определения исключаются изменения состояния ионизации, если только они не сопровождаются конформационными переходами. Денатурация может происходить в результате нагревания, изменения pH и добавления неполярных растворителей или некоторых специфических денатурирующих реагентов, например мочевины или солей гуанидина. Она также может быть вызвана восстановительным или окислительным разрывом дисульфидных связей, которые стабилизуют нативные конформации некоторых белков. Денатурация, как правило, сопровождается уменьшением растворимости белка. Это можно легко понять, так как гидрофобное взаимодействие, стабилизующее нативную конформацию, приводит к межмолекулярной агрегации, если полипептидные цепи принимают вытянутые конформации. Другим характерным последствием денатурации является раскрытие реакционноспособных групп, которые расположены внутри третичной структуры и становятся доступны воздействию реагентов при разрушении этой структуры. К числу наиболее пригодных методов наблюдения за процессами денатурации принадлежат спектроскопические измерения, измерения оптической активности и определение каталитической активности ферментов или биологической активности гормонов. Конформационные переходы при денатурации включают ряд процессов, которые в различной степени могут сказываться на каждом из наблюдаемых изменений, и поэтому понятие степени денатурации бессмысленно, если не будет установлен критерий, с помощью которого денатурация измеряется. Эта точка зрения иллюстрируется рис. 44, на котором изображено изменение оптической активности, поглощения света и ферментативной активности рибонуклеазы [389]. [c.136]

    Активный центр — щель в глобуле рибонуклеазы имеет довольно сложное строение, а каталитический участок содержит остатки гистидина, лизина, серина и треонина. На рис. 32 по данным работы [19] показано на модели строение активного центра рибонуклеазы после адсорбции различных ингибиторов. Гистидиновые остатки (His 12 и His 119) в комплексе с двумя первыми ингибиторами заряжены положительно. В состав активного центра входят лизиновые остатки (Lys 41 и Lys 7), оксигруппы Ser 123 и Tlir 45. Фенилаланин 120 играет большую роль в адсорбционном центре. Механизм действия рибонуклеазы рассматривается в гл. V. Недостаточное разрешение рентгенограмм не позволяет пока с такой определенностью, как для лизоцима, установить молекулярный механизм действия фермента. Однако имеющиеся данные позволяют считать достоверным тот факт, что каталитическая активность рибонуклеазы связана со щелевой адсорбцией молекулы субстрата и стерически обусловленными (жесткими) конформациями каталитически активных аминокислотных остатков относительно молекулы субстрата. [c.118]

    По данным Шматько и Рубанюк [513], суммарное содержание РНК и ДНК в четырехдневных проростках пшеницы под влиянием значительного дефицита влаги (до 53%) уменьшалось на 7—10 % и более. Дифференцированное определение содержания РНК показало, что в результате повышения активности рибонуклеазы в первую очередь уменьшалось количество информационной РНК, причем у растений менее устойчивого засухе сорта Белоцерковская 23 интенсивнее, чем у более устойчивого сорта Одесская 16 (табл. 32). По-видимому, белок, [c.188]

    Примером химического строения ферментов может служить рибонуклеаза. Первый ферментный белок, первичная структура которого была определена в 1960—1962 гг.,— рибонуклеаза — фермент, катализирующий расщепление рибонуклеиновой кислоты, В 1969 г. осуществлен его химический синтез. Молекулярная масса кристаллической рибонуклеазы равна 13 683. Поли-пептидиая цепь этого фермента состоит из 124 аминокислотных остатков и четырех дисульфидных мостиков, которые, по-видн-мому, связывают между собой отдельные участки. полипептидной цепи рибонуклеазы и поддерживают третичную структуру белка. Концевыми аминокислотами рибонуклеазы являются лизин и валин. Установлено, что каталитическая активность рибонуклеазы зависит главным образом от наличия В ней двух гистидиновых остатков, а молекула фермента свернута таким образом, что эти два аминокислотных остатка — один в начале, другой в конце полипептидной цепи — оказываются в непосредственной близости один от другого. Если блокировать свободную аминогруппу остатка лизина, то также происходит полная потеря каталитической активности фермента. Это свидетельствует о том, что ферментативные свойства рибонуклеазы, а также других ферментов зависят от структуры определенных участков полипептидной цепи и их взаимодействия, т. е. от структуры активного центра фермента. [c.76]

    В период между 1944 н 1954 гг. развивались аналитические исследования по выделению, очистке и определению строения пептидов с высокой биологической активностью, а также методические разработки в области синтеза, например в 1950 г. был разработан метод смешанных ангидридов (Виланд, Буассона, Воган). Эти успехи сделали возможным химический синтез природных пептидов, обладающих биологической активностью. В 1953 г. дю Виньо удалось синтезировать первый пептидный гормон — окситоцин. Эта работа была удостоена Нобелевской премии за 1955 г. В следующие годы наступило бурное развитие синтетической пептидной химии, было предложено несколько новых защитных групп, эффективные методы кои-деисаш1и и иовые методические варианты, такие, как разработаниь й Меррифилдом в 1962 г. пептидный синтез иа полимерных носителях. Химический синтез инсулина и рибонуклеазы ознаменовал переход к белковому синтезу. [c.100]

    Ферменты, как правило, работают в определенном диапазоне pH и. чарактери-зуются некоторым оптимальным значением pH, при котором при прочих равных условиях скорость реакции имеет наибольшее значение. Причины такого характера зависимости можно пояснить на примере кинетики гидролиза цитидин-2, 3 -фосфата, катализируемого панкреатической рибонуклеазой. Как следует из рис. 60, изображающего активный центр фермента на второй стадии реакции расщепления РНК, каталитически активной является форма фермента, у которой остаток имидазола, принадлежащий Н1з-12, протонирован и способен подать протон на атом 2 -0 циклофосфааного фрагмента, а остаток имидазола, принадлежащий Н18-119, не протонирован и способен принять протон у атакующей 212 [c.212]

    За последние годы достигнуты определенные успехи в изучении молекулярного механизма действия ферментов, участвующих в переносе фосфорильной группы. Так, в результате исследования строения активного центра рибонуклеазы поджелудочной железы быка было показано, что в состав активного центра этого фермента входят две имидазольные группы, одна из к-рых находится в виде основания, а другая — протонирована. Предполагается, что первое имидазольное кольцо участвует в образованш водородной связи с молекулой воды или оксигруииой спирта, в то время как вторая имидазольная группа, находящаяся в протонированном состоянии, образует водородную связь с эфирным кислородом. [c.254]

    Полученные результаты позволили сделать определенные выводы о трех группировках активного центра, значения р/С для которых составляли 5, 6 и 6, 7. На основании зависимости этих величин от температуры был сделан вывод, что наименьшее значение р/С относится к карбоксильной группе (слабая температурная зависимость), а наибольшее — к имидазольной группировке (сильная температурная зависимость). Природа группировки с промежуточным значением р/С, равным 6, оставалась (и остается до сих пор) неясной. Сама величина р/С 6 может быть отнесена к имидазолу, но вместе с тем она не зависит от температуры, что характерно для карбоксила. Авторы предполагают, что это имидазол с аномальной величиной АН ионизации, однако признают, что для окончательного доказательства этого предположения, нужны дополнительные данные. В этой работе были установлены детали механизма действия рибонуклеазы, в том числе обнаружены реакции изомеризации свободного фермента и комплекса фермент—продукт. Тшатель-ность кинетического анализа, проведенного в этой работе, позволяет отнестись с доверием к предложенному авторами химическому механизму действия рибонуклеазы, хотя не вполне ясно, действительно ли все обнаруженные реакции изомеризации входят в последовательность каталитических реакций. [c.218]

    Субстратная специфичность заключается в доступности точек контакта в белке для пиримидиновых или пуриновых оснований специфическое действие (расщепление связи 3 — О —Р или 5 —О — — Р) состоит не во внутримолекулярном образовании водородных связей в субстрате, а в нуклеофильной атаке на определенную сторону атома фосфора (определяемую конформацией фермента и расположением точки контакта воды), обеспечивающей вытеснение определенной группы с противоположной стороны. На схемах специфичность субстрата указывается наклоном контуров фермента. Общая схема предполагает, что панкреатическая рибонуклеаза может обладать очень низкой активностью по отнощению к пуриновым производным. Далее, рассмотрение химии диэфиров и моноэфи- [c.383]

    Хороших способов препаративного разделения смесей различных молекул ДНК и РНК пока не существует. Да и получать эти вещества в нативном состоянии, не повреждая их, научились лишь в самые последние годы. При выделении нуклеиновых кислот имеется целый ряд технических препятствий. Самое бо.льшое препятствие — это ферменты рибонуклеаза и дезоксирибонуклеаза, расщепляющие их с огромной скоростью и трудно поддающиеся инактивации. Второе осложнение — чрезвычайная чувствительность макромолекул этих полимеров к гидродинамическим возмущениям. Как указывалось вьппе, достаточно иногда струи, возникающей при быстром выдувании раствора ДНК из пипетки, чтобы вызвать заметную деполимеризацию. Поэтому некоторые из применявшихся до сих пор методов разделения нуклеиновых кислот, дававших пестрые и неясные результаты, были скорее методами разделения частично фрагментированных молекул друг от друга. Это относится, например, к хроматографии препаратов ДНК на колонках с целлюлозным сорбентом EGTEOLA или с глиноземом, покрытым гистоном. Тот факт, что фракционирование ДНК с трансформирующей активностью дало ряд активных фракций, показывает, что здесь имело место не разделение различных молекул ДНК (нет сомнений, что трансформирующая активность по определенному локусу присуща одному типу молекул ДНК), а разделение фрагментов молекул, несущих локус с данной трансформирующей активностью (этот локус может занимать всего 0,1 длины молекулы). То обстоятельство, что при хроматографии осколки разного молекулярного веса будут основательно делиться, не вызывает удивления. Однако это не решает методической задачи фракционирования ДНК на химически индивидуальные вещества. [c.257]

    Выяснение их строения облегчалось в значительной мере благодаря тому, что строение самого инсулина уже было установлено. При определении стрепогениновой активности выделенных пептидов оказалось, что активность H-Ser-His-Leu-Val-Glu-OH (фрагмент 9—13 цепи В инсулина) составляет 85 единиц/мг, H-Ser-His-Leu-Val-Glu-Ala-Leu-OH (фрагмент 9—15 цепи В инсулина) — 98 единиц/мг и H-Leu-Val- ys-Gly-Glu-Arg-ОН (фрагмент 17—22 цепи В инсулина) в окисленной форме — 200 единиц/мг. Другие пептиды, также обладающие стрепогениновой активностью, были выделены позднее из гидролизатов, полученных ферментативным расщеплением казеина [123, 124, 827, 1557], рибонуклеазы [1539] и гемоглобина [1155]. Довольно высокая стрепогениновая активность была обнаружена у биологически активных пептидов окситоцина и вазопрессина [2584], а также у нескольких фрагментов окситоцина [2587] (ср. табл. 14). [c.348]

    Е. соИ содержит рибонуклеазу (эндонуклеазу), поэтому использовани неочищенного фермента может привести к неправильному определению концевых групп. Из своего опыта [22] мы знаем, что фосфодиэстераза селезенки обладает некоторой эндонуклеазной активностью, что также приводит к ошибочному определению концевых остатков. Описанный выше метод достаточно надежен при анализе коротких олигомеров (до гексануклеотидов), однако его нельзя рекомендовать для длинных олигомеров, содержащих 20 и более нуклеотидных остатков. [c.14]

    В непрерывной полипептидной цепи рибонуклеазы попарно связаны дисульфидными мостами остатки цистеина, обозначенные одинаковыми номерами. Очевидно, что сама по себе последовательность аминокислот в молекуле рибонуклеазы еще совершенно ничего не говорит о ее каталитическом действии на связь фосфорной кислоты с рибозой в РНК. В высшей степени интересны исследования рибонуклеазы, выполненные Анфинсеном. Если подействовать р-оксиэтилмеркаптаном на раствор рибонуклеазы в водном 50%-ном растворе мочевины (где а-спираль нарушена полностью) и таким образом разорвать все S-S-мосты, то каталитические свойства ферментов полностью исчезают. Однако если полученный белок, содержащий 8Н-группы на месте S—S-мостов и освобожденный от мочевины, окислить воздухом, то все SH-группы попарно окисляются в S—S-мосты, структура рибонуклеазы воссоздается, и вновь приобретается активность. Следовательно, S-S-мосты в данном белке (и это типично) возникают на прежних местах и, несомненно, одновременно воссоздается не только вторичная, но и третичная структура, свойственная рибонуклеазе. Если же окисление производить в растворе мочевины, где обычные водородные связи вторичной структуры нарушены, то сшивание происходит в беспорядке или в ином порядке и активного фермента не получается. Таким образом, как оказалось в этом случае, пе дисульфидные мосты, а водородные связи вторичной структуры предопределяют третичную структуру, сближающую определенные цистеиновые SH-группы и создающие возможность окисления их в цистиновые мосты S—S. Вместе с тем ясно, что за ферментативную активность ответственна совокупность первичной, вторичной и третичной структур. [c.743]

    Определение креатинкиназной активности используется при диагностике некоторых заболеваний. Интересно, что уже в первые часы после инфаркта миокарда в крови резко нарастает содержание креатинкиназы Рибонуклеаза. Различают два основных вида нуклеаз эндонуклеазы и экзонуклеазы. Экзонуклеазы по своему действию относятся к классу гидролаз. Они катализируют реакцию последовательного гидролитического отщепления нуклеотидов от полинуклеотидной цени путем разрыва фосфодиэфирной связи. Эндонуклеазы катализируют расщепление фосфодиэфирных связей внутри молекулы нуклеиновой кислоты, проявляя определенную специфичность к одному из двух типов нуклеиновых кислот в соответствии с этим различают рибонуклеазы и дезоксирибонуклеазы, рассматриваемые в разделе Гидролазы . [c.296]

    Е. со/г-единственный объект, для которого есть надежда получить достаточное количество данных для определения всего набора клеточных рибонуклеаз. В этом случае не только можно изучать ферменты биохимически, но также можно определить их действие in vivo путем селекции бактерий с мутацией по синтезу определенного фермента. В действительности часто бывает необходимо использовать оба подхода, чтобы установить различие между ферментами или показать, что два совершенно разных вида активности присущи одному и тому же ферменту. (Возможно, со временем аналогичные данные будут получены и для дрожжей.) [c.310]

    При сравнении рибонуклеазы В с рибонуклеазой А было показано, что они сходны по аминокислотному составу и спектрам поглощения в ультрафиолетовой области оба фермента имеют одинаковую удельную активность, когда в качестве субстрата используют циклический цитидилат и дрожжевую рибонуклеиновую кислоту. Молекулярный вес рибонуклеазы В, определенный методом равновесных систем в ультрацентрифуге, был равен 14 700 + 300. [c.243]

    При комнатной гемпературе в облученных молекулах всех еще содержится много нестабильных продуктов. При растворении фермента (.необходимом для определения его активности) нестабильные (Промежуточные продукты превращаются в стабильные пораженные структуры. Это может быть связано с реакцией белковых радикалов или лабильных х1имических связей с водой либо с увеличением подвижности в растворе отдельных полипептидных цепей. В опытах с рибонуклеазой было показано, что растворение облученной молекулы приводит к ее денатурации. Появление свободных амидных групп и фрагментов лосле раскручивания облученных белков указывает на существование замаскированных разрывов полипептидной цепи. В случае с лизоцимом при дозе 300 кГр не обнаружено изменения аминокислотного состава (/ зт инактивации — 266 кГр). Однако выявлены конформационные изменения. Вероятно, они и приводят к инактивации. [c.84]

    Чтобы предупредить нежелательные последствия активности чужеродных рибонуклеаз, следует соблюдать определенные меры предосторожности при приготовлении растворов, при работе с пробирками, автоматическими пипетками и т.д. Растворы, выдерживающие нагревание, необходимо автоклавировать и хранить в стерильном виде. Бычий сывороточный альбумин, дитиотрейтол и другие растворы, не выдерживающие автоклавирования, следует готовить на стерильной воде и хранить в стерильных пробирках или бутылях. При работе с РНК желательно также стерилизовать пластиковую посуду и регулярно чистить стержни автоматических пипеток. [c.145]

    Значение средней плотности упаковки во внутренних областях рибонуклеазы S примерно равно 0,75, что лежит в пределах, найденных для кристаллов типичных небольших органических молекул. Напрнмер, для кристаллов Gly—Phe—Gly плотность упаковки равна 0,749. Однако она немного колеблется, даже если усреднение проноднтся по достаточно большим областям белка. Надо отметить, что в областях, соседних с бороздкой активного центра, плотность упаковки невелика, тогда как в областях, расположенных рядом (т.е. дальше от актинного центра), она намного пренышает среднюю величину. Это может играть определенную функциональную роль. Более рыхлые области обладают большей гибкостью, что допускает внутренние движения, повороты боковых групп и т.д. Области с высокой плотностью упаковки, по всей вероятности, обладают очень большой [c.109]


Смотреть страницы где упоминается термин Определение активности рибонуклеазы: [c.265]    [c.130]    [c.136]    [c.277]    [c.405]    [c.219]    [c.359]    [c.210]    [c.184]    [c.315]    [c.129]    [c.702]    [c.86]    [c.56]   
Смотреть главы в:

Практикум по биохимии -> Определение активности рибонуклеазы




ПОИСК





Смотрите так же термины и статьи:

Активный рибонуклеазы

Определение ХПК активного ила

Рибонуклеаза



© 2025 chem21.info Реклама на сайте