Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворитель для природного материала

    Результаты исследования Цветом различных органических растворителей привели к выводу, что для извлечения каротиновых красящих веществ наиболее подходящим растворителем является петролейный эфир (иногда с примесью этилового эфира), не растворяющий другие пигменты зеленого листа. Для извлечения последних применяются водный метиловый или этиловый спирты. Прием извлечения пигментов из природного материала, примененный Цветом, в настоящее время является основным при исследованиях каротиноидов. [c.92]


    Растворитель для природного материала [c.108]

    Основное назначение процесса — удаление асфальтенов из гудрона перед его дальнейшей углубленной переработкой, в частности гидрогенизационной. Нефтяной асфальтит может быть подвергнут газификации в схемах безостаточной переработки нефтяного сырья его используют в производстве нефтяных битумов и большого ассортимента различных нефтехимических продуктов, а также взамен природного асфальтита в производстве различных сплавов и в качестве теплогидроизоляционного материала. При температурах 140—150 С и давлении 2,2—2,5 МПа при обработке остаточного сырья легкой бензиновой фракцией (технической пентановой фракцией) в колонном экстракционном аппарате — экстракторе — образуются два слоя раствор деасфальтизата (около 70 % масс, бензиновой фракции и 30 % масс, деасфальтизата), который отводится с верха экстрактора, и раствор асфальтита (около 37 % масс, растворителя и 63 % масс, асфальтита), который откачивается из экстрактора снизу. Экстрактор снабжен тарелками из просечно-вытяжного листа. Кратность растворителя к сырью (по объему) составляет примерно 3,5 1 при выходе асфальтита в количестве 12—15 % (масс.) на гудрон [12]. [c.69]

    Вопрос об истинных значениях массы молекул асфальтенов, или об их молекулярном весе, имеет принципиальное научное значение для понимания важнейших физических свойств самых сложных по химическому составу и наиболее высокомолекуляр-ных по размерам молекул неуглеводородных составляющих нефти. Не менее важное значение имеет и знание истинных величин их молекулярных весов для решения вопроса о химической структуре и физическом строении этих твердых аморфных компонентов нефти. Неудивительно поэтому, что разработкой методов определения молекулярных весов асфальтенов и установлением связи между размерами их молекул и рядом фундаментальных физических их свойств, прежде всего реологическими свойствами и растворимостью, с образованием как истинных, так и коллоидных растворов, занимались многие исследователи на протяжении более 50 лет. Накоплен большой экспериментальный материал по изучению молекулярных весов смол и асфальтенов, выделенных из сырых нефтей, из тяжелых остатков продуктов переработки, из природных асфальтов. Если для нефтяных смол нет существенного расхождения в значениях молекулярных весов, полученных разными исследователями (обычно значения молекулярных весов лежат в пределах 400—1200), то для асфальтенов уже можно наблюдать большие расхождения. Данные, полученные различными методами, лежат в весьма широких пределах от 2000—3000 до 240 000—300000. Совершенно ясно, что самые низкие значения должны быть отнесены к собственно молекулам асфальтенов, т. е. истинным молекулярным их величинам. Значения же молекулярных весов в пределах от 10000 до 300 ООО соответствуют надмолекулярным частицам асфальтенов, т. е. ассоциатам молекул асфальтенов различной степени сложности. Значения молекулярных весов этих ассоциатов, или мицелл, зависят от многих факторов, но прежде всего от растворяющей способности и избирательности применяемых растворителей и концентрации асфальтенов в растворах. Весьма существенно на значениях найденных молекулярных весов частиц сказываются чистота и степень разделения по размерам молекул [c.69]


    Вода — важнейший растворитель, и именно это нас более всего интересует. О значении этого химического соединения кислорода с водородом превосходно сказал В. И. Вернадский Вода стоит особняком в истории нашей планеты. Нет природного тела, которое могло бы сравниться с ней по влиянию на ход основных, самых грандиозных, геологических процессов. Нет земного вещества — минерала, горной породы, живого тела, которое ее бы не заключало. Все земное вещество... ею проникнуто и охвачено . Свойства воды обуславливают особенности живой и неживой материи Земли. Вода образует множество природных, биологических и производственных растворов, в которых создаются благоприятные условия для прохождения химических реакций, многие из которых протекают в прямом участии воды. [c.407]

    Лакокрасочные материалы наносят вручную, валиком или распылением пневматическими пистолетами. Последний способ является наиболее распространенным, им наносят примерно 40% всех покрытий. Это объясняется его универсальностью и высоким качеством получаемого покрытия. Недостатками метода пневматического распыления являются потери лакокрасочного материала из-за распыления за пределами окрашиваемого объекта, необходимость подвода воздуха для фильтрации и обеспечение требований к рабочей среде. В настоящее время начинают применять пистолеты с управляемым распылением, которые позволяют непрерывно регулировать ширину распыляемой струи нажатием кнопки управления пистолета и приспосабливаться к форме окрашиваемого объекта. Выпускается широкий ассортимент пистолетов (от ручных до пистолетов для автоматических лакировочных линий). Определенные трудности представляет обезвреживание органических растворителей, которые выбрасываются в атмосферу в значительных количествах и из-за своей высокой химической стабильности очень медленно разрушаются в природных условиях. [c.85]

    Таким образом, переработка полимеров через растворы имеет определенные ограничения, связанные с формой изделия (пленки и волокна пли подобные нм тонкослойные изделия). С другой стороны, существуют полимеры, которые могут быть переработаны только чер з растворы (целлюлоза и другие природные полимеры, некоторые виды синтетических термостойких полимеров). Естественно, что высокая производительность и экономичность процессов переработки через расплав выгодно отличают этот метод от метода переработки через раствор, когда требуется рекуперация растворителя, более сложная аппаратура и, как правило, значительные объемы ироизводственных помещений. Тем ие менее через растворы ежегодно перерабатывается свьппе 3,5 млн. т полимерных материалов в волокна и около 0,2 млн. т в упаковочные и изоляционные пленки. Количество полимерных материалов, перерабатываемых через растворы в пленки-подложки для светочувствительных слоев, достигает также сотен тысяч тонн. Кроме того, очень большие количества полимеров используются в виде растворов в качестве пленкообразующего материала для покрытий (пленки, эмали, краски)и в качестве основы для клеев. [c.12]

    Экструзия раствора ацетата целлюлозы на плунжерном прессе имеет ряд преимуществ перед экструзией расплава. Так как целлюлоза является природным продуктом, в ней часто содержатся примеси в виде твердых частичек. В процессе ацетилирования не всегда удается получить чистый полимер, а экструзия расплава не способствует его очистке от примесей. Экструзия же раствора благодаря размягчению полимера и эффекту вызревания растворителя позволяет повысить однородность материала и изготовлять изделия лучшего качества. [c.20]

    К органическим растворителям относят органические соединения или их смеси, применяемые для растворения жиров, масел, восков, природных и синтетических смол, каучука, нитроцеллюлозы, алкалоидов и многих других органических веществ. Органические растворители должны обладать достаточной способностью растворять полностью то или иное соединение. В ряде случаев применяют так называемые избирательные растворители, которые извлекают в раствор какую-либо составную часть растворяемого материала и не растворяют другие составные части этого материала. [c.761]

    Очистка белка, полученного из природного источника, представляет собой в большинстве случаев нелегкую задачу. Интересующий нас белок составляет иногда ничтожную часть исходного материала —менее 0,1% сухого веса. Ненужный материал — это часто тоже белки и притом нередко близкие по своим свойствам к выделяемому белку. Из-за больших размеров и неустойчивости белковых молекул для очистки белков невозможно использовать многие обычные методы очистки органических соединений, например такие, как перегонка или экстракция органическим растворителем. Трудно представить себе химика-органика, пытающегося выделить продукт реакции, идущей с выходом всего лишь 0,1% и к тому же дающей сотни побочных продуктов. Между тем именно такая задача часто стоит перед биохимиком, желающим исследовать физико-химические свойства или биологическую активность определенного белка. [c.79]


    В текстильной промышленности в качестве загустителей печатных красок и в процессах отделки волокон и тканей применяются природные коллоиды, продукты переработки природных веществ и искусственные вещества. Для разбавления и улучшения качества моющих средств при изготовлении нх, наряду с поверхностно-активными веществами, применяются и вещества, не обладающие поверхностно-активными свойствами. Для проклеивания материала (шлихта) в процессе подготовки пряжи к прядению и ткачеству применяются как природные коллоиды, например крахмал или клей, так и полусинтетические вещества, например продукты этерификации крахмала и целлюлозы, и синтетические вещества, например поливиниловые спирты, соли полиакриловой кислоты. Масла, например льняное, наносят на ткань (или волокно) в растворе органических растворителей или в виде эмульсии. [c.511]

    Смачивание, играющее важную роль в протекании большого числа природных и промышленных процессов, представляет собой одно из наиболее распространенных физико-химических явлений, происходящих при контакте твердых и жидких (газообразных) фаз в результате молекулярного взаимодействия между ними. Характер смачивания определяется свойствами трех фаз 1) жидкость 2) твердое тело (или другая жидкость, не смешивающаяся с первой) и 3) среда, в которой находятся первые две фазы (воздух или жидкость). Закономерности смачивания определяются не только свойствами трех контактирующих фаз, но и их взаимодействием. Основное значение при смачивании имеют так называемые капиллярные силы, происхождение которых связано с особым энергетическим состоянием поверхностного слоя любых тел, находящихся в конденсированном состоянии. При подборе комбинированных растворителей необходимо учитывать существование гистерезисной петли при изменении насыщенности пористых материалов жидкостью. Другими словами, следует уметь определять величину остаточной насыщенности материала при удалении (отжиме) из него жидкой фазы. Это существенно как при промывке или пропитке, так и при разделении суспензий фильтрованием или центрифугированием. [c.116]

    Клеи оптические, являются, кроме бальзама (природный термопластичный материал), синтетическими, термореактивными и представляют собой вязкие и прозрачные растворы низко- или высокомолекулярных веществ в органических растворителях без добавок или с добавками отвердителей. [c.62]

    Исходными продуктами для производства лакокрасочных материалов (лаков, красок, эмалей) служат пленкообразующие вещества, пигменты, наполнители, пластификаторы, отвердители, растворители, разбавители и сиккативы. Пленкообразующие вещества являются основой лакокрасочного материала. Это — природные вещества растительные масла, естественные и искусственные (синтетические смолы). Растворы пленкообразующих веществ в летучих органических растворителях называются лаками. [c.176]

    Несмотря на многочисленные экспериментальные трудности, связанные с высокой вязкостью полимерных систем, полидисперсностью большинства синтетических и природных полимеров, сильным влиянием малых количеств примесей и прочими факторами, осложняющими изучение фазового равновесия, такой подход к исследованию систем полимер — растворитель (пластификатор) оказывается весьма плодотворным, поскольку он дает наиболее полное представление о состоянии системы в широком диапазоне температур и концентраций в условиях переработки и эксплуатации полимерного материала или изделия. [c.8]

    Наполнители — высокодисперсные неорганические вещества, нерастворимые в воде, растворителях и пленкообразующих. В отличие от пигментов наполнители не придают покрытию укрывистость. В качестве наполнителей используют природные (например мел, слюда, тальк, каолин) и синтетические (оксид алюминия, сульфат бария) продукты. Наполнители вводят главным образом для улучшения таких свойств лакокрасочных материалов, как вязкость, розлив и т. д., а также для повышения прочности, влаго-, свето-, термостойкости и других эксплуатационных свойств покрытий. Наполнители значительно дешевле большинства пигментов, поэтому их часто добавляют для экономии последних и снижения стоимости лакокрасочного материала. [c.10]

    Экстракция твердых веществ является первой ступенью изучения органических компонентов высушенных листьев и коры, а также некоторых горных пород и почв. Ткани растений можно иногда удовлетворительно экстрагировать в делительной воронке, но для более тяжелых и тонкоизмельченных неорганических материалов обычно требуется экстракция в приборе Сокслета. С целью экстракции возможно большего количества органического материала необходимо выбрать растворитель, в котором легко растворимы как умеренно полярные, так и неполярные соединения (например, алканы с длинной цепью). Неполярный растворитель, такой, как гексан, не годится для этого, поскольку экстракция многих полярных соединений (например, фенолов) будет неэффективной. Вместе с тем алканы с длинной цепью будут плохо экстрагироваться метанолом. Хлороформ был бы хорошим компромиссом, но при анализе следов требуется специальная очистка его. Хорошим экстрагентом оказывается смесь бензола с метанолом. Выбор растворителя для природных образцов не является единственным затруднением— даже тонко измельченные твердые вещества, первоначально свободно диспергированные в экстракционной гильзе, могут образовывать плотную массу, в которой контакт фаз будет затруднен. Поэтому часто проводят ультразвуковую экстракцию диспергированного в растворителе неорганического материала, помещая стакан с суспензией в ультразвуковую камеру на несколько минут. Это лучше всего делать после приблизительно часового перемешивания твердого вещества с растворителем, при этом необходимо принять меры предосторож-, ности, чтобы в результате использования звуковой энергии не произошел нежелательный синтез микроколичеств примесей на уровне следовых количеств вследствие разложения растворителя однако для смеси бензола с метанолом такая опасность исключена. [c.515]

    Каротиноиды настолько широко распространены в природе, что в дальнейшем изложении невозможно привести все содержащие их природные источники. Как правило, ксантофиллы в растениях этерифицированы высшими жирными кислотами. Поэтому после экстрагирования сухого природного материала в атмосфере инертного газа (Hj, Nj) растворителями (бензолом, петролейный эфиром, эфиром, метанолом, этанолом и т.д.) и удаления растворителя остаток гидролизуется метанольным раствором КОН. Первое разделение полученных при этом сырых каротиноидов осуществляется распределением между двумя песмешивающимися растворителями, например между петролейным эфиром и метанолом. Некоторые каротиноиды остаются растворенными в неполярном растворителе (эпифааоеые каротиноиды, к числу которых относятся все углеводороды), а другие переходят в полярный растворитель гипофааовые каротиноиды ксантофиллы с двумя гидроксилами, эпоксиды). Каротиноиды с одним гидроксилом распределяются приблизительно равномерно между обеими фазами. Тонкая очистка осуществляется, наконец, [c.873]

    Если же непосредственное хроматографирование невозможно, природный материал предварительно подвергается некоторым подготовительным операциям, имеющим целью произвести извлечение пигментов и хотя бы грубое разделение смеси, с тем чтобы облегчить последующие операции хроматографического разделения. Для этого широко применяется метод распределения компонентов природного экстракта между двумя несмешивающимися растворителями, что по существу является принци--пом раснределительной хроматографии. [c.92]

    Пусть сегодня вы пользовались карандашом. Из че1х 1 он был сделан Если это обычный простой карандаш, то он сделан из древесины и графита (одной из форм элементного углерода, получаемой пря переработке дерева или некоторых других природных материалов), а такх е, вероятно, краски. Краска может состоять из некоторых природных или синтетических пигментов (красящих веществ), которые необходимо диспергир звать в растворителе, прежде чем нанести на материал. Растворитель, скорее ьсего, должен быть сделан из нефти. У карандаша часто имеется ластик из каучука (может быть растительного или синтетического происхождения), который соединяется с самим карандашом при помощи металлического ободка. Среди упомянутых материалов дерево, графит, натуральный каучук, растительные пигменты относятся к возобновляемым ресурсам, в то время как синтетические пигменты и растворители, а также металлы - к невозобновляемым. [c.114]

    Между лабораторным и промышленным синтезом органических соединений имеется ряд принципиальных различий. Например, цена химикатов, использованных в лабораторном синтезе, обычно не имеет решающего значения, поскольку синтез проводится в сравнительно малых масштабах. Поэтому при лабораторном восстановлении кетонов в спирты можно использовать сравнительно дорогой алюмогидрид лития, в то время как в промышленности для этих целей применяют сравнительно дешевые водород и никелевый катализатор. Другим примером дешевого реагента является кислород воздуха, с помощью которого в промышленности осуществляется ряд процессов каталитического окисления. Исходный материал для промышленных синтезов также должен быть дешевым и легкодоступным в больших количествах. Поэтому такой материал в большинстве случаев получают с помощью простейших методов из указанных выше источников сырья, прежде всего из природного газа и нефти. Применяемые растворители тоже должны быть дешевыми, а кроме того (по возможности), негорючими или хотя бы малогорючими. В то время как в лабораторных условиях не составляет проблемы провести синтез с использованием в качестве растворителя нескольких литров диэтилового эфира, применение этого растворителя в промышленном производстве вызывает большие трудности, связанные с его горючестью (складирование больших количеств растворителя, соблюдение строгих предписаний техники безопасности всеми работниками и т. д.), так что он применяется только в исключительных случаях. [c.241]

    Определить понятие липид" не так просто — в зависимости от того предмета, где этот материал рассматривается, это понятие может быть разным. Чаще всего под этим классом природных веществ рассматривают все природные соединения, нерастворимые в воде и растворимые в органических растворителях. Конечно, признак слишком обширный под это определение попадают природные соединения различной структуры и различной биологической функциональности. Иногда их подразделяют на омыляемые липиды — те, которые при щелочном гидролизе дают жирные кислоты и на неомыляе-мые липиды — те, которые не подвергаются гидролизу. Но это мало облегчает задачу, так как вторая группа по-прежнему остается слишком неопределенной. В настоящем издании мы будем придерживаться определения липидов как жирных кислот и их производных, рационального как с химических, так и с биологических позиций. [c.103]

    Каучук синтетический (СК) — высокополимерный каучукоподобный материал. К. с. обычно получают полимеризацией или сополимеризацией бутадиена, стирола, изопрена, хлорпрена, изобутилена, нитрила акриловой кислоты. Подобно натуральному каучуку К. с. имеет длинные макромолекулярные цепи, иногда разветвленные, со средней молекулярной массой, равной сотням тысяч и даже миллионам. Полимерные цепи К. с. в большинстве случаев имеют двойные связи, благодаря которым при вулканизации образуется пространсвеииая сетка, получаемая при этом резина приобретает характерные физико-механические свойства. Некоторые виды К. с. (напр., полиизобутилен, силиконовый каучук и др.) представляют полностью предельные соединения, и поэтому для их вулканизации применяют органические пероксиды, амины и др. Отдельные виды К. с. по ряду технических свойств превосходят натуральный каучук (по устойчивости к растворителям, термостойкости, сопротивлению к истиранию, светостойкости). В отличие от натурального каучука, содержащего природные защитные вещества, для переработки К. с. в резину требуется вводить антиоксиданты. К. с. применяют для изготовления резин и резиновых изделий для автомашин, транспортных лент, обуви, изделий для работы с органическими растворителями и др. [c.65]

    Начиная с середины нашего столетия широкое применение получают реставрационные композиции на основе модифицированных природных синтетических полимеров. Применяют нитрат целлюлозы (целлулоид), зпоксидные и полиэфирные смолы. Наполнителями служат мраморный лорошок или другой измельченный неорганический материал. Нитрат целлюлозы растворяется в токсичных органических растворителях, пожароопасен, со временем темнеет. Эпоксидные и полиэфирные смолы цают прочные склейки и мастики, но в случае необходимости их очень грудно удалить, так как они нерастворимы во многих органических рас-гворителях. [c.81]

    Липиды не являются однородным классом веществ. Эта фуппа природных соединений включает в себя достаточно разнообразные по химическому строению соединения. Общим свойством, позволившим на ранних этапах исследования объединить эти соеданения в единую группу, явилась их растворимость липиды не растворялись в воде, но, проявляя гидрофобные свойства, растворялись в спирте, эфире, хлороформе, бензоле или петролейном эфире, поэтому под липидами подразумевали материал, извлекаемый из животной или растительной ткани обработкой её органическими растворителями. Разнообразие химического строения чрезвычайно осложняет классификацию липидов, вследствие чего единая строгая система классификации отсутствует. Липиды можно разделить на две группы, различающиеся отношением к щелочному гидролизу омылению). Те липвды, которые легко расщепляются в щелочных условиях, называют омыляемыми липидамщ липиды, устойчивые к действию щелочей, относят к неомыляемым липидам. [c.120]

    Методы переработки для выделения подвергаемых хроматографическому разделению экстрактов определяются свойствами исходного материала, формой применения и количеством находяш ихся в нем витаминов. В природных продуктах витамины находятся не в свободном состоянии, а каким-то образом связаны. Искусственно полученные препараты для стабилизации часто заключают в желатину. Из однородных проб (раствор, порошок) витамины известным способом экстрагируют непосредственно или после гидролиза. Полученные таким образом экстракты после концентрирования и дальнейшей очистки (например, методом вымораживания или колоночной хроматографии) наносят на пластинки для ХТС и подвергают одно- или двумерному хроматографированию, используя соответствующ ие растворители. Обнаружение витаминов на пластинке осуш ествляют либо при рассматривании в свете с различной длиной волны, либо при опрыскивании соответствую-пщми реактивами . Для количественных расчетов целесообразно проводить сравнение со стандартом, прошедшим стадии хроматографического разделения, элюирования и последуюш,его физико-химического определения. Для определения витаминов можно использовать также биоавтографию, т. е. [c.212]

    Природа пористого материала. Перед использованием в молекулярноситовой хроматографии пористый материал должен набухнуть и впитать жидкую фазу, чтобы образовалась наполненная растворителем губка , в которую молекулы могут диффундировать. Поскольку молекулярно-ситовая хроматография проводится с различными жидкими фазами, начиная от воды и кончая углеводородными растворителями, то необходим большой набор различных пористых материалов — от гидрофильных, которые набухают в воде, до липофильных, которые впитывают неполярные органические растворители. Наиболее широко используемым гидрофильным материалом является искусственно сшитый полисахарид, полученный при обработке декстрана (природного полимера глюкозы) различными количествами эпихлоргидрина для получения определенной степени сшитости между цепями. Существует по крайней мере восемь различных степеней сшитости между цепями самый плотный гель будет исключать соединения с молекулярными массами свыше 700. Для полного исключения соединений на большинстве открытых гелей их молекулярные массы должны быть свыше 200 000. Пределы ситового исключения других пористых материалов, включая полиакриламид (имеющий десять различных степеней пористости) и гели агарозы, достигаются для соединений с молекулярными массами до 150000 000. Могут быть также использованы твердые , жесткие материалы, такие как стеклянные зерна с контролируемой пористостью. Молекулярно-ситовую хроматографию, в которой пример няют водную подвижную фазу, иногда называют гель-фильтрационной хроматографией. [c.597]

    Из характеристики асфальтенов, выделенных при помощи разных растБОрктелей из одного и того же селениццкого асфальта, видно, что по отношению С Н асфальтены заметно различаются между собой (от 6,8 до 10,2), тогда как содержание их колеблется в сравнительно узких пределах (8,8—9,4%). По величине отношения С Н асфальтены, извлеченные из асфальта разными растворителями, можно разделить на несколько близких груии. Это свидетельствует о том, что асфальтены даже из такого неизменного материала, как природный асфальт, представляют собой крайне многообразную и сложную смесь веществ разного молекулярного веса и химического строения. Избирательность отдельных растворителей в отношении асфальтенов проявляется не только с количественной стороны, но, что не менее важно и интересно, сильно сказывается и на качестве извлекаемых асфальтенов, например, на отношении С Н, являющемся показателем степени цикличности и конденсированности полициклических ароматических структур, к числу которых, несомненно, относятся асфальтены. Это видно на примере селениццкого асфальта (табл. 128). Количество и качество (но отношению С Н) в нем асфальтенов, извлеченных одними и теми же растворителями из самого [c.532]

    Методом, устраняющим недостатки молекулярнюй перегонки, является азеотропная дистилляция, которая была предложена для перегонки смол, природных битумов, аСфальтено совместно с низкомолекулярным растворителей, стабильным при температуре перегонки и способным образовывать азеотропную смесь с перегоняемым продуктом [78]. Эта смесь перегоняется при более низких температурах, чём высокомолекулярное составляющие исходного вещества В качестве растворителей рекомендованы галогенированные кар - и, гетероциклические соединения, содержащие два или более конденсНрованных кольца (например, дихлорфенантрен), или галогенированные алифатические соединения с числом углеродных атомов больше трех. На заключительном этапе азеотропной перегонки растворитель возвращают в процесс, а остаток от дистилляции используют для получения кокса. Таким образом можно отогнать до 70—г80% исходного материала  [c.30]

    Из характеристики асфальтенов, выделенных при помоцц разных ра створителей из одного и того же селениццкого асфальта, что видно по отношению в них С Н, асфальтены заметно различаются между собой (6,8 до 10,2), тогда как содержание Н колеблется в сравнительно узких пределах (8,8— 9,4%). По величине отношения С Н в асфальтенах, извлеченных из асфальта разными растворителями, можно разделить асфальтены на несколько близких групп. Это свидетельствует о том, что асфальтены даже из такого неизменного материала, как природный асфальт, представляют собою крайне многообразную и сложную смесь веществ разного молекулярного веса и химического строения. Избирательность отдельных растворителей в отношении асфальтенов проявляется не только с количественной стороны, но, что не менее важно и интересно, сильно сказывается и на качестве извлекаемого тем или иным раство- [c.360]

    По внешнему виду АБЦ представляет собой белый волокнистый материал, растворимый, в зависимости от соотношения бутирильных и ацетильных групп, в ацетоне, хлорсодержащих углеводородах, спиртобензоле и других органических растворителях. АБЦ обладает большой пластичностью, вследствие чего требует меньшего количества пластификаторов, чем АЦ. Он совместим со многими природными и искусственными смолами. Его гигроскопичность значительно меньше, чем гигроскопичность АЦ. Хорошо окрашивается в разные цвета и светостоек. Его электроизоляционные свойства также довольно высоки. [c.60]

    Здесь же, возможно, кроется и объяснение происхождения известкового цемента в известковых месторождениях. Вышезгномянутые растворы карбоната кальция оставлялись до кристаллизации вместе с частицами кластического кварца. Степень агрегации была не слишком убедительной, однако имеются другие возможности повторения таких экспериментов в более реальных условиях. Тем не менее интересно было сравнить полученный остаток с природным известко-вистым песчаником (рис. 7). В качестве примера был выбран нефтесодержащий песчаник из системы Вентерсдорп (докембрий) в Южной Африке. Как обычно для таких месторождений, известковый цемент не только сплачивает вместе смежные частицы кварца и полевого шпата, но также заполняет полости, образуемые в этих частицах вновь поступающим раствором. Природа битуминозного материала была определена парофазной хроматографией, которая показала, что этот остаток очень похож на обычную нефть биогенного происхождения. Примеры такого типа можно найти почти во всех нефтеносных известковистых песчаниках. Аналогия, которая существует между разрушением продуктами разрушения Na-АТФ и битумом этих очень древних песчаников, наводит на мысль, что последние могли выполнять фзгнкцию растворителя в отношении цементов осадочных образований. [c.39]

    Лигнин в его естественном состоянии в древесине называют протолигиипом. Небольшое количество лигниноподобного материала удаляется из древесины при экстракции этиловым спиртом. Его называют по-разному лигнином Браунса, природным лигнином или растворимым лигнином. Однако ббльшая часть протолигнина нерастворима в нейтральных растворителях и может быть удалена только путем обработки в кислых или щелочных условиях. В общем, существуют два пути получения препаратов лигнина. [c.359]

    Опианоловые пленки ВА были специально разработаны для изоляции строительных сооружений от сырости, а также от напорных и природно-агрессивных вод. Эти пленки служат в качестве изоляции подземных и надземных сооружений, в металлоконструкциях мостов, рудниках и туннелях, гидротехнических сооружениях и шахтах. Пленки ВА выпускаются толщиной 1 мм [383] 1,5 и 2мм [384], при ширине листа м ъ каждом слз чае, и отличаются хорошей податливостью, высокой растяжимостью и сопротивляемостью давлению. Они могут применяться в пределах температур от —30 до +60° С и от —30 до +70° С. Они обладают электроизоляционными свойствами и не подвержены воздействию блуждающих токов. В природно-кислых или щелочных водах пленки не набухают даже в ненапряженном состоянии и обнаруживают полную водонепроницаемость. В то же время соприкосновение пленок с бензином, керосином, дизельным топливом, нефтью, бензолом, некоторыми растворителями лаков и жирными маслами ведет к набуханию или медленному растворению и, следовательно, разрушению пленки. В качестве изоляционного материала для строительных сооружений эти пленки вот уже в течение 15 лет обнаруживают высокую иротивостарительную и противогнилостную стабильность. Соответствие свойств и характеристик оп-паноловых пленок ВА техническим условиям на изоляционные материалы согласно Временной инструкции по изоляции инженерных сооружений железных дорог ФРГ гарантируется фирмой. [c.302]


Смотреть страницы где упоминается термин Растворитель для природного материала: [c.532]    [c.257]    [c.56]    [c.711]    [c.42]    [c.225]    [c.321]    [c.190]    [c.37]    [c.15]    [c.96]    [c.6]    [c.98]   
Смотреть главы в:

Вирусология Методы -> Растворитель для природного материала




ПОИСК





Смотрите так же термины и статьи:

Природные материалы



© 2025 chem21.info Реклама на сайте