Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы определения серебра металла

    ПРОБИРНЫЙ АНАЛИЗ — метод определения благородных металлов (золота, серебра, платины и др.) в рудах, продуктах их переработки, в сплавах, готовых изделиях с использованием химико-металлургических процессов (выплавка, купелирование и др.). [c.204]

    Получили распространение методы определения серебра взвешиванием в виде металла. Серебро выделяют внутренним или обычным электролизом или восстанавливают неорганическими и органическими реагентами. [c.64]


    Наиболее распространенные титриметрические методы определения серебра основаны на реакциях осаждения, комплексообра-зования и реакциях окисления-восстановления. В методах титрования по реакциям осаждения в качестве титрантов используют растворы галогенидов, роданидов или цианидов щелочных металлов. Титрование можно вести как без индикатора (метод Гей-Люссака) [16671, так и в присутствии индикаторов — хромата калия (метод Мора) или железоаммонийных квасцов (метод Фоль-гарда). Последний метод получил наибольшее распространение. [c.77]

    Известны методы определения серебра в почвах, растениях, природных и сточных водах, в рудах, минералах, силикатах и горных породах, в чистых металлах и неметаллах, в сплавах, полупроводниковых материалах, в гальванических ваннах, в реактивах и фармацевтических препаратах, в фотографических материалах, в смазочных маслах и других объектах. За небольшими исключениями, особенность этих материалов состоит в том, что содержание серебра в них обычно невелико, поэтому главное значение имеют методы определения микроколичеств серебра. Из физических методов наибольшее распространение имеет спектральный анализ. В последние годы публикуется много работ в области радиоактивационного определения серебра и атомноабсорбционных методов. В химических методах чаш,е всего применяется экстракционно-фотометрическое определение серебра в виде дитизоната, реже используется и-диметиламинобензилиденроданин и некоторые другие органические реагенты. [c.172]

    Сходный метод определения тяжелых металлов в химических реагентах основан на использовании дитизона [520]. Определяемые элементы извлекают раствором дитизона в СС , удаляют избыток дитизона и обрабатывают экстракт титрованным водным раствором нитрата серебра. При этом происходит обменное разложение дитизонатов Си, В1, РЬ, С(1, гп, Со и № переходят в водную фазу, а эквивалентное количество серебра — в экстракт. Избыток серебра определяют титрованием раствором дитизона в СС . В сумму определяемых элементов не входят Рс1, Ап, Р1 и Нд, дитизонаты котор лх серебром не разлагаются. [c.177]

    Амперометрическое определение палладия(II) основано главным образом на реакции осаждения. Реагентов для этой цели предложено очень много. Один из самых простых и доступных методов — осаждение палладия(II) иодидом калия [1], с которым палладий (II) так же, как и серебро, дает осадок, практически нерастворимый в воде, но сильно отличающийся по растворимости в аммиаке константы устойчивости аммиачных комплексов палладия (II) и серебра(I) различаются больше чем на 20 порядков. Отсюда следует, что из аммиачной среды в осадок будет выпадать только иодид серебра, а палладий останется в растворе. Золото (III) не может мешать при этом титровании, равно как не мещают ему и ионы цветных металлов, даже в 100—1000-кратном избытке (см. описание иодидного метода определения серебра в разд. Серебро ). [c.228]


    Приводимый ниже метод определения серебра можно применять-в присутствии щелочных, щелочноземельных металлов, магния, алюминия,, сурьмы, мышьяка и других металлов, которые не реагируют с дитизоном, так же как и в присутствии таких металлов, как свинец, цинк и кадмий, которые мало или совсем не реагируют с дитизоном в кислой среде. Специальные растворы [c.734]

    При определении ионов серебра в разбавленных растворах (до М) серебро предварительно накапливают на поверхности графитового электрода в виде металла и затем анодно растворяют при изменении потенциала. Максимальный ток электрорастворения серебра является линейной функцией объемной концентрации ионов Ag+. Определению не мешают значительные количества Си +, поэтому метод можно применять для определения серебра в меди и медных сплавах. При полярографировании следует использовать выносной каломельный электрод во избежание попадания ионов С в анализируемый раствор. [c.152]

    Из методов прямого титрования необходимо отметить прежде всего методы определения катионов различных металлов рабочим раствором этилендиаминтетрауксусной кислоты или другими комплексонами (см. 121). Кроме того, практическое значение имеет определение некоторых металлов (медь, никель и др.) с помош,ью рабочего раствора цианистого калия. В качестве индикатора применяют, например, коллоидный раствор йодистого серебра при избытке цианистого калия йодистое серебро переходит в раствор вследствие связывания ионов серебра в цианистый комплекс K[Ag( N)2]. Часто определяют содержание анионов хлора путем титрования солями двухвалентной ртути. Несколько особое место занимают методы, основанные на образовании или разложении простых и комплексных фторидов. [c.418]

    Известно много косвенных методов определения основанных на применении электродов второго рода. Металл, погруженный в раствор, содержащий мало растворимую соль данного металла, является электродом второго рода по отношению к аниону этой соли. Так, серебряная проволока в растворе с осадком хлорида серебра представляет собой электрод второго рода. Металл электрода, как и в случае электрода первого рода, изменяет потенциал в соответствии с изменением концентрации ионов серебра в растворе однако концентрация ионов серебра в свою очередь зависит от концентрации ионов хлора. Поэтому в конечном счете потенциал такого электрода изменяется с изменением концентрации ионов хлора. Действительно [c.463]

    Во времена алхимии выполнен огромный объем экспериментальных работ, что обеспечило развитие техники химических операций и накопление обширной конкретной информации о свойствах веществ. Было найдено много способов различать вещества. Был отработан метод определения золота и серебра, основанный на пробирной плавке — плавлении в присутствии восстановителя и металла-носителя (обычно свинца), в расплаве которого хорошо растворяются драгоценные металлы. Во Франции в XIV в. этот способ был детально описан в королевском декрете Филиппа VI (1343 г.) — всем было предписано пользоваться именно этим методом. [c.14]

    Метод применен для определения индия в сплавах, употребляемых в зубоврачебном деле и содержащих золото, серебро, металлы группы платины, медь и цинк (после отделения последних в форме сульфидов). [c.55]

    Фотометрические методы. Ионы многих металлов образуют довольно устойчивые коллоидные сульфиды, которые можно применять для количественного определения S . Описано фотометрирование окрашенных в желтый цвет золей сульфидов кадмия [420, 839] белых — цинка [839], оранжево-желтых — висмута [781, 957, 1013], палладия [1013], мышьяка [758] черных — серебра [504, 895], свинца [137, 139, 198, 442, 1064, 1154, 1424] ртути [1231]. Во многих случаях для стабилизации золей добавляют защитные коллоиды желатин, гуммиарабик, глицерин, поливиниловый спирт. Чаще всего фотометрируют золи серебра, висмута и свинца или сравнивают со стандартами окраску пятен на бумаге, импрегнированной солями этих элементов после обработки ее испытуемым раствором или газовой смесью, содержащей сероводород. [c.118]

    Таким образом, осаждение серебра в форме металла после восстановления органическими реагентами можно использовать при анализе в отсутствие и в присутствии посторонних ионов в последнем случае необходимо вводить маскирующие реагенты. Однако методы восстановления органическими реагентами не имеют каких-либо существенных преимуществ по сравнению с гравиметрическим определением серебра в виде хлорида. [c.72]


    Метод пригоден для определения серебра в отсутствие посторонних ионов, так как в щелочной среде с комплексоном взаимодействуют многие другие металлы. [c.84]

    Определение в форме металла после выделения электролиаом. Вследствие высокого положительного стандартного потенциала серебро легко и количественно осаждается электролизом на платиновом катоде при постоянной силе тока до начала выделения водорода. Выделение серебра электролизом является настолько хорошо воспроизводимым процессом, что его часто используют для первичной калибровки. Металл можно удовлетворительно выделять электролизом из азотнокислых [1077, 1100, 1151], сернокислых [662], цианидных [914, 1099, 1151], аммиачных [913, 10941 и других растворов. В качестве примера приводим метод определения серебра из цианидных растворов, содержаш их комплексные ионы Ag( N)2. [c.68]

    Прямые титриметрические методы определения серебра, основанные на реакциях окисления-восстановления, не находят широкого применения. Предложен метод определения серебра, основанный на его восстановлении до металла с помощью титрованного раствора Ге304 в присутствии фторидов щелочных металлов при pH 4,10—4,65 с использованием в качестве окислительно-восстановительного индикатора вариаминового синего [840] или в присутствии этого же индикатора посредством восстановления аскорбиновой кислотой [835]. Метод использован для анализа монет. [c.82]

    Для определения серебра в сплавах с золотом применим [691] весовой метод, при котором серебро осаждают в виде Ag l и взвешивают осадок. При химическом анализе золотин серебро восстанавливают до металла гидроксиламином и взвешивают в виде металла остатки серебра выделяют электролизом цианистого раствора [424]. Известен и пробирный метод определения серебра в сплавах с золотом [299]. [c.188]

    Термометрическое титрование применяется при изучении реакций комплексообразования, а также при определении ионов металлов путем измерения тепловых эффектов реакций образования комплексных соединений. В последнем случае обычно выделяют катионы металлов из раствора в виде нерастворимого соединения или используют реакции образования растворимых анионных комплексов. В некоторых случаях эти реакции протекают последовательно. Примером последнего может служить метод определения серебра по реакции ионов серебра с цианид-ионами. Образующийся вначале нерастворимый цианид серебра затем растворяется в избытке цианида калия, образуя ион дициапида серебра. [c.80]

    Операций по отделению золота и серебра можно избежать, титруя палладий (II) раствором-иодида калия , с которым палладий (II), так же,как и серебро, дает осадки, практически нерастворимые в воде, но сильно отличающиеся по растворимости в аммиаке константы нестойкости аммиачных комплексов палладия и серебра отличаются больше чем на 20 порядков. Отсюда следует, что из аммиачной среды в осадок будет выпадать только иодид серебра (/( ест = 5,89 10 ), а палладий останется в растворе (К нест = 2,5 10 °). Золото (III) не может мешать при этом титровании, равно как не мешают ему и цветные металлы, даже в 100—1000-кратном избытке (см. описание иодидного метода определения серебра в разделе Серебро ) не Ьказывают влияния и ионы платины. [c.279]

    Эта цветная реакция была также использована для колориметрического определения серебра [57]. Согласно Эллену и Холлоуэю [58], этот метод очень чувствителен, но недостаточно точен. Ринг-бом [59] определяет серебро следующим образом выделенный осадок серебряной соли с роданином очищают от соосажденного реактива промыванием осадка горячим спиртом, затем растворяют ссадок в цианиде калия и измеряют интенсивность окраски образовавшегося желтого раствора. Определению серебра мешает ряд других металлов, также образующих с реактивом нерастворимые комплексные соли. В присутствии комплексона все мешающие катионы полностью маскируются, поэтому реакция становится специфической в отношении серебра. По-видимому, определению мешает только палладий. Ниже приводится метод определения серебра в рудах по Рингбому [60]. [c.218]

    В последнее время появились объасше методы определения серебра, основанные на окислительно-восстановительных реакциях между ионом серебра и аскорбиновой кислотой или сульфатом двухвалентного железа. Серебро восстанавливается до металла. Для нахождения кoнeqнoй точки титрования в этом случае используют органические окислительно-восстановительные индикаторы. Сравнительно недавно был описан метод комплексонометрического определения серебра с тимолфталексоном в качестве ивдикатора /66/, однако этот метод, вероятно, не найдет применения, так как серебро взаимодействует с комплексоном Ш в щелочной среде, где многие ионы должны мешать определению. [c.12]

    При определении серебра роданиновьш методом недопустимо присутствие в растворе ионов платины, золота, меди и ртути, а также анионов, связывающих серебро тяжелые металлы могут быть замаскированы комплексом И1 [16]. Применение родани-нового метода определения серебра к сложным объектам требует практически полного отделения серебра от сопутствующих ионов и строгого контроля кислотности конечных растворов. [c.47]

    Тот же принцип лежит в основе метода определения серебра с бриллиантовым зеленым [22], с нильским голубым [23]. Максимум оптической плотности бензольного экстракта бриллиантового зеленого с цианид-ионом находится при 640 нм. Закон Бера выполняется для концентраций серебра 0,05—0,9 мкг1мл. Метод не селективен и требует тщательного сохранения порядка добавления реагентов. Нильский голубой образует с иодид-ионом в слабокислой среде комплекс с Я аах=626 нм, экстрагируемый хлороформом. Молярный коэффициент погашения 52 000. Серебро может быть определено по ослаблению окраски экстракта с чувствительностью, по Сендэлу, 0,002. Определению мешают галогены и тяжелые металлы. [c.48]

    В последнее время предложены более чувствительные и точные методы определения суммы металлов, основанные на экстракции дитизонатов [1] или диэтилдитиокарбаминатов (Ме ДЭДТК) [2]. Затем соединения разных металлов переводят в соединение одного металла (дитизонат серебра или диэтилдитиокарбаминат меди), после чего измеряют окраску. [c.117]

    Тиоцианат серебра AgS N образуется в виде белого нерастворимого осадка при взаимодействии раствора, содержащего ионы серебра, с растворимым тиоцианатом. На этой реакции основан объемный метод определения серебра (по Фольгарду). В качестве индикатора при этом титровании используется нитрат железа(1П). Как только заканчивается осаждение тиоцианата серебра, небольшой избыток тиоцианат-ионов образует тиоцианат железа ) Fe(S N)3, окрашенный в ярко-красный цвет и растворимый в воде. Эта цветная реакция применяется также для качественного обнаружения ионов железа(И1). Тиоцианат ртути ) Hg(S N)2 представляет собой нерастворимый осадок, образующийся при осаждении соли ртути тиоцианатом щелочного металла горит, когда его поджигают, оставляя объемистый остаток, состоящий из углерода, азота и серы (фараоновы змеи). [c.501]

    Г рупповое концентрирование следовых количеств серебра, золота и металлов платиновой группы при анализе геохимических объектов (ультраосновные породы, медно-никелевь[е руды, хромиты, молибдешггы), обеспечивающее, при использовании эмиссионно-спектрального метода определения, пределы их обнаружения на уровне 10 -10 % [34, 35]. [c.28]

    Впервые метод амперометрического титрования с двумя индикаторными электродами описан Саломоном (1897—1898) для количественного определения серебра и других металлов с серебряными электродами путем титрования до прекращения тока. [c.239]

    Используя различные методы определения атомных масс элементов, Я. Берцелиус в 1826 г. дал повую систему атомных масс (см. стр. 152). В этой таблице атомные массы большинства металлов оказались очень близкими к современным соответствующие оксиды лшогих из них получили правильную формулу, Вместо прежних формул РеОг, РеОз, СиО и СиОг оп принял формулы FeO, ГегОз, СпгО, СиО, СаО, ВаО, АЬОз, МнгОз, СггОа и др. Однако атомные массы щелочных металлов были установлены неточно, так как для их оксидов Я. Берцелиус принимал такой состав NaO, КО и т. д. В 1841 г. В. Реньо внес коррективы в эти формулы, после чего в системе атомных масс Я. Берцелиуса почти не было принципиальных ошибок. Из 54 элементов, известных к концу жизни шведского химика, неправильными оказались атомные массы серебра, бора, бериллия, кремния, ванадия, циркония, урана, церия, иттрия и тория многие из них были исправлены лишь в результате открытия периодического закона Д. И. Менделеева. [c.136]

    Сорбционные методы можно применять также для концентрирования, разделения и определения благородных металлов (серебра, золота, металлов платиновой группы — рутения, осмия, родия, иридия, палладия, платины), содержащихся в малых количествах в природных водах и в различных растворах. При этом происходит концентрирование определяемого металла из большого объема раствора в небольшой массе сорбента за счет сорбции соединений этого металла на сорбенте. Сорбентами служат органические полимеры, силикагели, химически модифицированные ионообменными или комгаексообразующими группами (четвертичными аммонийными и фосфониевыми основаниями, производными тиомочевины), привитыми на поверхности силикагеля. [c.236]

    Для определения серебра в сплаве методом фототурбидиметрического титрования навеску анализируемого металла массой 3,17 г растворили в кислоте и довели до 100,0 мл водой. В мерные колбы вместимостью 100,0 мл поместили по 10,00 мл этого раствора, 5 мл желатина, 5 мл 0,1 М HNO3 и V (мл) раствора КС1 (Т = 0,0080). Оптическая плотность этих растворов составила  [c.214]

    Уран (VI) может быть отделен от ш,е 1очных и щелочноземельных металлов, магния, марганца и цинка осаждением его с помощью изатин-р-оксима из растворов, содержащих ацетатный буфер [613, 614, 617]. Для отделения урана от больших количеств кобальта и никеля добавляют виннокислый калий [6161. Мешающее влияние серебра, свинца и меди устраняют при помощи тиосульфата натрия [611]. В случае присутствия ртути полное отделение урана достигается введением хлоридов. Соответствующие методики описаны в разделе Весовые методы определения . [c.282]

    Пробирный модифицированный метод определения золота в присутствии Р(1, Зп, Си, Ъп, № описан Донау [9181. Перед пробирным анализом отделяют сульфатизацией Ге, N1, Си, а Аз, ЗЬ, Зп, Зе и Те удаляют хлорированием в присутствии КаС], предупреждающего потери платиновых металлов и золота с возгонами [17]. Особенности пробирного анализа материалов, обогащенных окисью железа или окисью хрома, указаны Масленицким и Полиевским [3471. Применение пробирного анализа для исследования различных продуктов, содержащих платиновые металлы, золото и серебро, пути расширения областей его использования и усовершенствования указаны в [131. [c.195]

    Чжен Гуан-лу [304] разработал быстрый и точный прямой метод определения небольших количеств индия титрованием раствором динатриевой соли этилендиаминтетрауксусной кислоты при pH 2,3—2,5 или при pH 7—8 в присутствия 1-(2-пиридил-азо)-2-нафтола. Пря pH 2,3—2,5 не мешают щелочные и щелочно-гемельные металлы, алюминий и марганец. При pH 7—8 не мешают медь, цинк, кадмяй, никель, серебро, ртуть и некоторые другие элементы, если к титруемому раствору добавить достаточное количество цианида калия. Трехвалентное железо связывают фторидом калия в присутствии тартрата и небольших количеств цианида. Не мешают хлориды, сульфаты, нитраты, перхлораты, фториды, тартраты и цитраты. Мешают свинец, висмут, галлий и олово. [c.107]

    Косвенные комплексонометрические методы определения основаны также на реакциях восстановления ионов серебра до металла амальгамами висмута, кадмия, цинка [543] и металлической медью [969]. Переходящие в раствор ионы, количество которых эквивалентно содержанию серебра, титруют раствором ЭДТА. [c.85]

    Амперометрические методы определения основаны главным образом на реакциях образования ионами серебра труднорастворимых осадков с органическими и неорганическими реагентами. В качестве титрантов используются преимущественно органические серусодержащие соединения или иодид-ионы. Титрование проводят с платиновым вращающимся электродом, так как металлическая ртуть взаимодействует с ионами серебра, восстанавливая их до металла. Известны два варианта титрования катодный, основанный на восстановлении ионов серебра или органического реагента, и анодный,— при котором фиксируется ток окисления иодид-ионов или серусодержащих реактивов на аноде [357]. [c.86]

    Избирательность дитизонатного метода можно повысить введением в раствор комплексообразующих веществ [226, 837, 838]. Фотометрическому определению серебра с дитизоном не мешают 100 000-кратные количества Си, В1, 2п, Сс1 и РЬ, если их маски-роват комплексоном III [837, 838, 879]. В присутствии комплексона Ц1 при pH 4—5 [92] экстрагируют Ag, Hg, Аи из растворов, содержащих большие количества Си, В1, 2п, Сс1, N1 и РЬ нагревание при pH 4,7 до кипения в течение 2 мин. этого раствора, содержащего Аи и Нд, приводит к восстановлению золота до металла. Содержание серебра определяют методом одноцветной или смешанной окраски. [c.109]

    Ниже приведена методика определения серебра по методу одноцветной окраски [869]. Метод используется в присутствии в исследуемом растворе щелочных и щелочноземельных металлов, а также Мд, А1, Zn, 8Ъ, Аз, РЬ и Сс1, которые не мешают определению в кислой среде. [c.109]


Библиография для Методы определения серебра металла: [c.161]   
Смотреть страницы где упоминается термин Методы определения серебра металла: [c.205]    [c.150]    [c.105]    [c.563]    [c.455]    [c.106]    [c.76]    [c.20]    [c.87]   
Аналитическая химия серебра (1975) -- [ c.68 , c.70 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы определение методом ААС

Металлы серебро



© 2025 chem21.info Реклама на сайте