Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий, определение отделение от железа

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]


    Едкий натр, примененный в избытке (0,5 п.), позволяет отделить галлий от индия который осаждается в виде гидроокиси. Некоторое количество индия остается в растворе, а некоторое количество галлия увлекается в осадок, но от большого количества индия отделение можно произвести вполне удовлетворительно (ср. стр. 196). Отделение железа (III) едким натром идет хуже, так как много галлия осаждается с гидроокисью железа кроме того, осаждение железа бывает далеко не полным, если только в качестве коллектора не применен гидрат двуокиси марганца. Можно ожидать, что в присутствии алюминия соосаждение галлия будет уменьшаться и вместо последнего гидроокисью железа будет адсорбироваться алюминий. Для отделения железа от галлия применяют а-нитрозо-Р-нафтол, который осаждает железо в уксуснокислом растворе эта реакция может надеть значение при определении следов галлия. [c.193]

    Главными методами отделения железа от остальных элементов являются 1) обработка сероводородом в кислом растворе (стр. 83), в результате которой металлы группы сероводорода, например висмут или мышьяк, осаждаются, а железо остается в растворе 2) осаждение сульфидом аммония в растворе, содержащем тартрат аммония (стр. 115) нри этом железо осаждается в виде сульфида железа, а алюминий, титан и другие элементы остаются в растворе 3) осаждение едким натром (стр. 109), в результате которого железо переходит в осадок и отделяется от ванадия, вольфрама, молибдена, мышьяка, алюминия и фосфора 4) сплавление с карбонатом натрия с последующим выщелачиванием плава водой (стр. 511), дающее практически тот же результат, что и предыдущий метод, с тем лишь различием, что алюминий в этом случае обычно отделяется не полностью, хром окисляется и переходит в раствор, а уран частью остается в остатке, частью переходит в раствор 5) извлечение эфиром из разбавленного солянокислого раствора (стр. 161), которое применяется главным образом для удаления большей части железа, если оно присутствует в таких больших количествах, что создаются затруднения при определении других элементов. [c.437]

    Краситель эриохромцианин R образует с алюминием в ацетатном буферном растворе имеющем pH = 5—6, красно-фиолетовый лак. В присутствии более 2,5 мг л железа (III) получаются повышенные результаты . Эта реакция применена для определения алюминия в сталях после отделения железа электролизом с ртутным катодом. [c.579]

    Отделение мешающих элементов. Практическое значение имеют методы определения алюминия, в присутствии железа и титана, разделение алюминия и магния, алюминия и меди и др. Для определения алю , иния в первом случае предварительно осаждают железо оксихинолином из сильно уксуснокислого раствора (20% СН3СООН), содержащего винную кислоту. Винную кислоту приливают для того, чтобы связать титан в ком плекс и предотвратить гидролиз его солей. После отделения железа осаждают оксихинолином титан. Осадок оксихинолината титана образуется только в слабокислом растворе при рН>5, однако в этом случае может также осаждаться и алюминий. Для удержания алюминия в растворе туда приливают раствор щавелевокислого аммония (или малоновой кислоты). К фильтрату после осаждения титана приливают избыток гидроокиси аммония (до щелочной реакции) и осаждают алюминии оксихинолином. Этим методом можно определить все три элемента при их совместном присутствии. [c.185]


    Определение алюминия основано на измерении интенсивности флуоресценции соединения алюминия с салицилаль-о-аминофенолом [1, 2] при pH 6,2—6,4 без отделения больших количеств кадмия. Определению мешают железо в количестве, большем I мкг, и медь в количестве, большем 5 мкг, в 10 мл раствора. [c.415]

    Превращение железа (1П) в устойчивый золь в результате добавления к его разбавленным растворам аммиака при комнатной температуре делает невозможным полное отделение железа, которое в основном остается в вытекающем растворе. Для некоторых аналитических определений это обстоятельство может оказаться полезным. Золи гидроокиси алюминия менее устойчивы, и поглощение алюминия из щелочных растворов остается количественным при условии, что скорость протекания невелика [6]. [c.275]

    А. В. Виноградов отмечает ряд недостатков приведенного выше хода анализа по Кольтгофу (стр. 219). При малом содержании магния и относительно большом количестве кальция (что имеет место в природных известняках) приходится брать большую навеску пробы, и тогда при добавлении едкой щелочи в таком количестве, чтобы свести к минимуму растворимость Mg(0H)2, может выпасть осадок гидроокиси кальция. Кольтгоф не указывает далее, как произвести отделение железа, алюминия и т. п. катионов, мешающих определению, как нейтрализовать раствор перед определением и т. д. Вызывает возражение также и метод отбирания пипеткой 50 мл прозрачной жидкости непосредственно из общего объема в 100 мл в этих условиях трудно не захватить частицы осадка гидроокиси магния. А. В. Виноградовым был разработан метод определения магния в известняках, в котором устранены эти недостатки метода Кольтгофа. [c.221]

    Вместо гидроокиси аммония иногда применяют едкую щелочь. Однако осадок гидроокиси железа адсорбирует заметные количества щелочей, поэтому таким методом обычно пользуются только для отделения железа (например, от алюминия), но не для его определения. Отделение железа от катионов И аналитической группы и ряда других катионов достигаете значительно лучше, если в качестве осадителя применяют некоторые с.табые органические основания, как, например, пиридин СЛ4,Ы. [c.153]

    Электролизом на ртутном катоде отделяются следующие металлы Ре, Сг, Со, N 1 Си, 2п, Мо, Сс1, 5п, РЬ, В , Н , Т1, 1п, Ga, Ge, Ag, Аи, Pt, Рс1, КЬ, 1г, Ке. Не отделяются А1, Т , 2г, V, и, ТЬ, Ве, NЬ, Та, W, Р, Аз, 8с, У, РЗЭ, Mg, щелочные и щелочноземельные металлы. Марганец отделяется неполностью, часть его окисляется до МпОа и выделяется на аноде, может также окислиться до Мп04", окрашивая раствор в малиновый цвет. Дюбель и Флюршютц [689] считают, что если во время электролиза в электролит добавить несколько капель 30%-ной перекиси водорода, то достигается количественное отделение марганца. Хром медленно удаляется при электролизе. Поэтому при анализе сталей, содержащих > 5% хрома, большую часть его рекомендуется отделять до электролиза в виде хлорида хромила [555]. Небольшая часть железа всегда -остается в электролите. Однако эти остающиеся количества железа не мешают во многих фотометрических методах определения алюминия, если восстановить железо аскорбиновой кислотой до Ре (П). В электролите могут остаться также следы хрома и молибдена. [c.191]

    Согласно ГОСТ 11658—65, алюминий в чугуне и нелегированной стали определяется алюминоном без отделения. Железо восстанавливают аскорбиновой кислотой до Fe (И), которое не мешает определению алюминия. В сталях при наличии в них титана и ванадия этот ГОСТ предусматривает предварительное удаление железа экстракцией эфиром и отделение титана и ванадия осаждением в виде купферонатов, т. е. также, как и в методе Шорта [11621. [c.212]

    По методу У. Шиффелина и Т. Каппона [28], который использовался в США [13, 15, 30], тонкоизмельченный (- 0,09 мм) лепидолит смешивали в стальном реакторе с концентрированной серной кислотой, взятой в количестве 110% (от массы минерала). Смесь выдерживали в течение 30 мин, а затем медленно, в течение более 8 ч, нагревали от 110 до 340° С по специальной прописи с фиксированной по времени выдержкой при определенных значе-ниях температур (степень разложения минерала достигала 94%). Скомковавшуюся массу еще в теплом состоянии обрабатывали водой, и, если из раствора выделялась двуокись кремния, ее отфильтровывали. В раствор переходили соли всех щелочных металлов, алюминия, марганца и железа. Для удаления алюминия в раствор вносили сульфат калия в количестве, рассчитанном на образование калиевых квасцов, первые порции которых особенно богаты рубидием и цезием, так что, проводя дробное выделение квасцов, можно было получать концентрат соединений рубидия и цезия. После отделения квасцов маточный раствор нейтрализовали карбонатом кальция. При этом отделяли остаток алюминия в виде гидроокиси. Далее осаждали кальций, магний, железо и марганец (щавелевой кислотой и раствором аммиака). Это обеспечивало получение чистого раствора сульфата лития. Из него с помощью карбоната калия осаждали технический карбонат лития, который промывали и высушивали при 60° С. [c.231]


    Выполнение определения. К раствору, упаренному до объема 5—10 мл, после отделения железа и алюминия, добавляют 50 мл воды, 5 мл раствора оксида иттрия, что соответствует 25 мг Y2O3. Раствор осторожно нейтрализуют ам.миаком до появления мути ее растворяют, прибавляя по каплям разбавленную 1 1 соляную кислоту. К полученному раствору добавляют 50 мл 40%-ного раствора тартрата аммония или винной кислоты и нагревают раствор до кипения, после чего прибавляют несколько капель раствора нейтрального красного и аммиака (при помешивании) до резкого перехода окраски индикатора. Затем к раствору прибавляют еще 1,5 мл аммиака и помещают его на 30 мин в водяную баню, после чего нагревание прекращают. [c.211]

    Определение кобальта спектральным методом после обога-ш,ения экстракцией пирролидиндитиокарбаминатов [637]. Авторы рекомендуют проводить обогащение микроэлементов с селективным отделением железа, алюминия, щелочноземельных и щелочных металлов. Анализируемую пробу переводят в растворимое состояние каким-либо известным методом. К 25 мл раствора пробы в 7 N соляной кислоте прибавляют 1 каплю 30%-ного раствора перекиси водорода и взбалтывают с равным объемом метилозобутилкетона 30 сек. Органический слой содержит около 94% железа в виде хлорида, а также хлориды галлия, олова, ванадия, молибдена и др. Его взбалтывают 1 мин. с 25 мл водного раствора аскорбиновой кислоты для восстановления трех- [c.212]

    Натрия (калия) гидрокид (едкий натр, едкое кали). NaOH, Т , = 328 °С. (КОН, Т л = 360 °С.) Щелочной плавень. Применяют при определении олова в оловянном камне, при отделении титана от алюминия в присутствии железа и т. д. Сплавление проводят с 8-10-кратным количеством плавня в железных, никелевых и серебряных тиглях. [c.48]

    Схема анализа. Приступая к анализу неизвестного вещества или к определению составных частей сложной смеси нескольких веществ, химик-аналитик должен обстоятельно продумать ход анализа. Метод, дающий вполне удовлетворительные результаты при определении того или иного вещества в одном случае, может оказаться совершенно неудовлетворительным в другом. Особенно сильно искажаются результаты определений при анализе сложных смесей. Примеры несостоятельности хорошо известных методов весьма многочисленны. Например, метод определения кремневой кислоты путем выпаривания досуха солянокислого раствора анализируемого вещества и последующего обезвоживания сухого остатка дает хорошие результаты, если кремневой кислоте не сопутствуют примеси, выпадающие вместе с нею в осадок. Но этот метод нельзя применять в присутствии таких элементов, как бор, фтор, сурьма, титан, висмут и др. Осаждением смесью едкого натра и карбоната натрия можно хорошо отделить ионы алюминия от houob железа и кальция, выпадающих в осадок е виде Ре(ОН)з и СаСОд. Но тот же метод непригоден для отделения ионов алюминия от ионов железа и цинка. Оксалатный метод, который обычно применяют для определения кальция в присутствии магния, неприменим, если ионы кальция содержатся в незначительном количестве, а ионы магния—в большом количестве. Определение свинца в виде сульфата дает вполне хорошие результаты, если это определение проводят в отсутствие ионов бария, кальция, серебра и сурьмы. [c.287]

    ПортландцвьЕнтшй клинкер и технологический газ чаще всего получают во вращающихся печах. Добавками служат различные материалы, содержащие углерод, оксиды алюминия, кремния и железа, которые часто являются попутными продуктами химических и иных производств (кокс, магнетит, П1фитные огарки, золы, глины). Кальцинированный фосфогипс и добавки измельчают, смешивают в определенных пропорциях и обжигают. Готовый клинкер охлаждают воздухом и измельчают. Газ из П0ЧИ, состоящий из 5 , , 4 > и водяного пара, очищают от шиш в циклонах, электрофильтрах и скруббере. Влажный газ после мокрых электрофильтров осушают и подают в контактный аппарат о ванадиевым катализатором, а затем в абсорбционное отделение, где завершается цикл производства серной кислоты. На установке производительностью 1000 т/сут расходные коэффициенты на 1 т серной кислоты составляют Са 01 - 1,611 т глина - 0,144 т песок - 0,080 т кокс - 0,115 т вода - 85 м электроэнергия - 140 кВт/ч топливо - 63 МДж /Вэ/. Клинкерные щ-нералы образуются при температуре на 50 - 70 °С ниже, чем обычно, что объясняется к аталитическим влиянием восстановительной среди и наличием соединений фосфора и фтора. Клинкер отличается пористой структурой и легче размалывается /ВО/. [c.22]

    Однако, как правило, определяемую примесь выделяют из раствора в виде тверддй фазы (или экстракцией). При этом часто также трудно достичь полного отделения если даже это возможно, то количество осадка настолько мало, что его не удается отфильтровать. В таких случаях вводят дополнительный компонент, который не мешает дальнейшему анализу, но облегчает технически отделение микропримеси. Такой осадок, содержащий определяемый компонент и часть основного вещества или специально введенную добавку, называют аналитическим концентратом. Специально введенную добавку называют коллектором. Например, для определения примеси железа во многих реактивах предварительно получают аналитический концентрат железа, осаждая его с коллектором— гидроокисью алюминия. В некоторых случаях коллектором может служить осаждаемая часть основного материала [1, 2]. [c.156]

    Способ осаждения аммиаком зависит от элементов, которые содержатся в растворе. При осаждении алюминия, а также фосфора вместе с железом или алюминием и, вероятно, таких менее обычных элементов, как бериллий, скандий и галлий, требуется тщательное соблюдение определенной концентрации ионов водорода в растворе, и в этом случае может быть допущен только очень небольшой избыток аммиака (см. гл. Алюминий , стр. 565). Так как алюминий присутствует почти всегда, то такой способ осаясдения Применяется наиболее часто. Нужно, однако, иметь в виду, что в столь тщательной нейтрализации нет необходимости при осададении элементов, которые количественно осаждаются и при более высокой концентрации ионов водорода (железо, титан и цирконий). Тщательная нейтрализация не требуется и во всех тех случаях, когда полнота выделения алюминия, не имеет значения, например при предва )итель-ном отделении железа для его определения объемным методом. [c.103]

    Алюминий не осаждается ацетатом так полно, как железо, но чем больше преобладает последнее, тем полнее вместе с ним осаждается алюминий. Поэтому метод редко применяется для отделения алюминия в отсутствие железа и он совершенно не применяется для отделения хрома, урана и большинства редкоземельных металлов Фосфор осаждается полностью, если он не содержится в избытке по сравнению с тем количеством, которое необходимо для образования нерастворимых фосфатов с осаждаемым металлом или металлами. Если фосфор находится в избытке, его осаждение можно сделать полным, вводя предварительно в раствор Известное количество чистого железа в виде РеС1з. Такое предварительное удаление фосфора значительно облегчает определение ш елоч-ноземельных металлов и магния при анализе некоторых фосфатов. [c.104]

    Купфероновый метод вполне надежен для определения железа, титана, циркония, ванадия и в отдельных случаях — олова, ниобия, тантала, урана (IV), галлия и, вероятно, гафния. Этим методом можно определять также медь и торий, но осаждать их следует из слабокислых растворов результаты определения этих элементов менее удовлетворительны, чем при обычно принятых методах. Из числа элементов, мешающих применению кунферонового метода, следует упомянуть таллий (III), сурьму (III), палладий, ниобий, тантал, молибден, висмут, церий, торий, вольфрам и большие количества кремния, фосфора, щелочноземельных и щелочных металлов Торий и церий частично выделяются купфероном даже из растворов, содержащих 40% (по объему) серной кислоты. Уран (VI) не влияет на осаждение купфероном. Число элементов, мешающих определению купфероном, может показаться очень значительным, но нужно принять во внимание, что часть из них относится к группе сероводорода и может быть легко отделена перед осаждением купфероном, а некоторые элементы встречаются редко. Здесь следует указать на представляющие интерес разделения, которые можно осуществить этим методом, а именно 1) отделение железа, титана, циркония, галлия и ванадия при анализе чистых алюминия, никеля, цинка и т. п. 2) отделение осаждающихся купфероном элементов от алюминия, хрома, магния и фосфора при анализе различных руд и горных пород 3) отделение ванадия (V) от урана (VI), разделение урана (IV) и урана (VI) и отделение ванадия от фосфора. Осажденяе купфероном может быть осуществлено в присутствии винной кислоты, что дает возможность предварительно отделять железо в виде сульфида. Для этого в раствор вводят достаточное количество винной кислоты, чтобы он оставался прозрачным нри последующем добавлении аммиака. В кислом растворе восстанавливают железо сероводородом и затем подщелачивают аммиаком. Выделившийся осадок сульфида железа отфильтровывают, как описано нри осаждении сульфидом аммония (стр. 115), фильтрат подкисляют серной кислотой, удаляют сероводород кипячением и после этого проводят осаждение купфероном. [c.144]

    Отделение железа, алюминия, тирна и других элементов осаждением их путем установления определенной концентрации ионов водорода в растворе — аммиаком (стр. 102), ацетатом натрия (стр. 103), сукцинатом натрия (стр. 106), окисью цинка (стр. 108) или карбонатом бария (стр. 108). [c.458]

    Желтая окраска раствора оксихинолята алюминия в хлороформе используется для определения малых количеств алюминия в стали. После отделения железа и др. осаждением на ртутном катоде в буферном ацетат- [c.578]

    Ю. Ю. Лурье и 3. В. Николаева показали возможность отделения оксихинолята железа от оксихинолята алюминия экстракцией хлороформом при pH = 1,8—1,9. После отделения железа оксихинолят алюминия извлекают хлороформом из ацетатного раствора и определяют колориметрическим способом. Метод применен авторами для определения алюминия в природных и нромышленных сточных водах. Доп. перев.  [c.579]

    Предложен [460] метод разделения циркония и алюминия при помощи анионита дауэкс-1. Метод основан на различной адсорбционной способности фторидных комплексов циркония и алюминия на этой смоле. Если пропускать через колонку со смолой дауэкс-1 раствор циркония и алюминия в 0,6 М НС1 и 0,8 М HjFa, то цирконий полностью адсорбируется на смоле, а алюминий переходит в фильтрат. Цирконий может быть вымыт 3 N раствором НС1. Вместе с алюминием в фильтрат перейдут и другие элементы, не образующие достаточно устойчивых фторидных комплексов. Поэтому перед определением алюминия производится отделение купфероном. Купферонаты железа и других элементов отделяют от алюминия экстракцией хлороформом. [c.101]

    Прямое оиределение железа осаждением его аммиаком редко бывает возможным вследствие присутствия других осаждаемых этим реактивом элементов. Вместе с тем хром, например, препятствует о5ъел1ио.му определению железа. Отделеное железа экстракцией из солянокислых растворов никогда не приводит сразу к количссгвси-ному извлечению железа. Поэтому приходится проводить ряд экстракций, не говоря уже о затруднениях, связанных с точныл разделением водной и органической фракций. Определение железа в растворе, содержащем хром и алюминии,. дюжет быть выполнено методом изотопного разведения. [c.288]

    Катионообменное отделение хромат-ионов от щелочных металлов описано на стр. 304. Если раствор содержит такие металлы, как железо и алюминий, то отделение проводится в слабокислой среде. На этом принципе основаны простые методы определения хрома в минералах [26] и сплавах [49, 98]. Для этих разделений должны использоваться химически стойкие иониты время контакта растворов с ионитом не должно быть слишком большим. В противном случае мон<ет происходить восстановление хромат-ионов, нскан а-ющее результаты анализа. [c.351]

    При помощи смеси ТБФ с ДЭЭ (3 7) железо полностью извлекается из 0,5 М ИС1 в присутствии избытка NH4S N, что было использовано для отделения железа от теллура [805]. Неразбавленный ТБФ использовали для концентрирования и фотометрического определения примеси железа в никеле и его солях [800, 802]. Экстракционная хроматография с ТБФ в качестве неподвижной фазы была использована для отделения железа и некоторых других элементов от алюминия (pH 2—6,1 М NHIS N) [804]. Фотометрирование при 520 нм экстракта железа в дибутилсульф-оксиде (8%-ный раствор его в метиленхлориде) позволило определять железо в дюралюминии, бронзе и других материалах [807]. [c.144]

    Если желательно определить железо в фильтрате после осаждения гидроокиси титана, то в зависимости от содержания железа выбирают различные способы. Небольшое количество железа можно после подкисления определять непосредственно купферроном по Бильцу и Гедке [74а] после разрушения комплексона. Другой способ, пригодный также и для определения алюминия, состоит в следующем к подкисленному раствору прибавляют для связывания комплексона эквивалентное количество нитрата кальция и при нагревании осаждают. аммиаком. Однако объем раствора не должен превышать 60—80 мл, в противном случае осаждение неполное (фильтрат имеет слабокрасную окраску от присутствия комплексоната железа). В последнем случае раствор следует упарить до небольшого объема и повторить осаждение аммиаком. При соблюдении приведенных условий выделяются в пригодном для фильтрования виде гидроокиси железа и алюминия, не содержащие кальция. В третьем способе, пригодном только для определения железа, фильтрат после выделения гидроокиси титана осаждают непосредственно едким натром. Выделившуюся Ре(ОН)з вследствие окклюдирования ею щелочи, нужно растворить в соляной кислоте и снова осадить аммиаком. Последний способ пригоден также для одновременного отделения железа от алюминия. [c.95]

    Усатенко Ю. И., Гренберг Е. И. и Копелиович В. М. Фотоколориметрическое определение алюминия в сталях реагентом стиль-базо без предварительного отделения железа. Зав. лаб., 1952, 18,№ 9, с. 1063—1065. Библ. 11 назв. 5911 [c.226]

    Фотоколориметрнческое определение алюминия в сталях при помощи алюминона без предварительного отделения железа, В. Д. Конкин, Зав, лаб., 20, № 4, 414 (1954). [c.422]

    Фотоколориметрнческое определение алюминия в сталях реагентом стильбазо без предварительного отделения железа, Ю. Н. У с а т е н к о, [c.422]

    Определению марганца во всех случах должно предшествовать осаждение окисей железа и алюминия. Для отделения марганца от железа и алюминия пользуются или ацетатным способом или методом извлечения эфиром по Rothe. [c.35]

    Комплексометрическим определением железа в силикатах подробно занимался также и Сайо [143]. Его метод заслуживает особенного внимания и дальнейшей экспериментальной проверки, так как он позволяет определять алюминий непосредственно тюсле разложения пробы (например, боксита), без отделения железа, титана, марганца, кальция и магния. Автор приводит несколько способов определения алюминия, которые проводятся в общем обратным титрованием в слабокислых растворах в присутствии эриохромцианина Е (см. стр. 364), бензидина или 3,3-диметил-нафтидина в качестве индикаторов (стр. 351). [c.490]


Смотреть страницы где упоминается термин Алюминий, определение отделение от железа: [c.157]    [c.152]    [c.137]    [c.57]    [c.180]    [c.140]    [c.302]    [c.219]    [c.278]    [c.28]    [c.116]    [c.381]   
Основы аналитической химии Часть 2 (1965) -- [ c.358 ]

Основы аналитической химии Кн 2 (1965) -- [ c.358 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий отделение

Алюминий, определение в железе

Ванадий, определение в железе отделение от алюминия

Железо алюминии

Железо отделение

Определение алюминия с предварительным отделением железа при помощи электролиза с ртутным катодом



© 2025 chem21.info Реклама на сайте