Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия активации гомогенных химических реакци

    Химическая кинетика. Скорость химических реакций. Факторы, влияющие на скорость химической реакции. Закон действующих масс. Физический смысл константы скорости. Правило Вант-Гоффа. Понятие об энергии активации, ее влияние на скорость химической реакции. Уравнение Аррениуса, Явление катализа. Гомогенный и гетерогенный катализ. Катализаторы, ингибиторы, промоторы, каталитические яды. Химическое равновесие. Реакции обратимые и необратимые. Состояние химического равновесия. Принцип Ле Шателье. [c.4]


    Гетерогенные процессы, сопровождаемые химической реакцией, могут быть трех типов 1) когда реакция протекает на поверхности раздела фаз, этот тип характерен для процессов с участием твердой фазы Т — Ж Т—Г Г — Ж — Т и др. 2) когда реакции протекают в объеме одной из фаз после переноса в нее вещества из другой такие процессы наиболее распространены и могут идти с участием любых фаз в системах Г — Ж, Ж — Ж (несмешивающиеся), Т — Ж, Г — Ж—Т и др. 3) когда реакция происходит на поверхности вновь образующейся фазы этот тип возможен для процессов взаимодействия твердых фаз. Если гетерогенный процесс идет в кинетической области, то для первых двух указанных типов справедливы законы кинетики гомогенных процессов. При этом скорость процесса лимитируется скоростью химических реакций, описывается кинетическими уравнениями реакций, порядок которых зависит от числа и природы реагентов. Для кинетики гетерогенных процессов в диффузионной области характерны следующие особенности а) сравнительно малые величины условной энергии активации б) сравнительно малое влияние температуры на скорость процесса, что видно хотя бы из значений температурных коэффициентов диффузии, которые для жидкостей и газов колеблются в пределах 1,1—1,5 (если только повышение температуры не меняет фазового состояния реагентов) в) большое влияние турбулизации системы (перемещивания) на скорость процесса. [c.153]

    В третьем способе изменение состава раствора нарушает ионное равновесие и вызывает химическую реакцию, в ходе которой происходит восстановление ионного равновесия. Ионные реакции в растворах электролитов представляют собой частный случай гомогенных химических реакций и изучаются в основном химической кинетикой. Отличительной особенностью многих из них является большая скорость по сравнению с другими процессами в растворах. Некоторые из ионных реакций, например ассоциация аниона кислотного остатка и иона гидроксония, идут без энергии активации и характеризуются константами скорости порядка 10 л/моль-с. [c.53]

    Тема 2 Закономерность протекания химических реакций (4 час). Лекция 9. Скорость химических реакций. Классификация реакций. Молеку-лярность и порядок реакции. Зависимость скорости реакции от температуры энергия активации. Понятие о гомогенном и гетерогенном катализе. Примеры каталитических процессов, в нефтеперерабатывающей промышленност Лекция 10. Обратимые и необратимые процессы. Химическое равновесие [c.179]


    Однако в большинстве случаев увеличение скорости реакции, наблюдаемое в присутствии катализатора, связано с уменьшением энергии активации Е данной реакции. Для того чтобы это имело место, катализатор должен изменить свойства молекул одного из реагирующих веществ, вступив с ним в химическое соединение. При гомогенном катализе происходит либо взаимодействие катализатора с одним из реагирующих веществ с образованием молекулярного соединения, либо обмен электроном между катализатором и той молекулой, на которую он оказывает свое влияние. При гетерогенном катализе происходят сходные явления. Когда молекула одного из реагирующих веществ [c.19]

    Роль гомогенных химических реакций в электрохимической кинетике была выявлена впервые в ходе полярографических измерений на капельном ртутном электроде (Р. Брдичка и К. Визнер). При полярографическом восстановлении некоторых слабых органических кислот при небольших pH наблюдается лишь волна восстановления недиссоциированных молекул этих кислот. При увеличении pH высота этой волны уменьшается, а при более отрицательных потенциалах появляется волна восстановления анионов кислот. Высота первой волны ниже, чем рассчитанная по уравнению Ильковича для концентрации недиссоциированных молекул кислоты в растворе. Ток этой волны практически не зависит от высоты ртутного столба, что указывает на его кинетическую природу. Последнее подтверждается также высокой энергией активации процесса, соответствующего первой волне. Эти факты говорят о том, что ток первой волны лимитируется скоростью гомогенной химической реакции протонизации А 4-Н+ НА. Ско-. рость электродных процессов может лимитироваться и другими медленными химическими реакциями (дегидратации, диссоциации или образования комплексных частиц). [c.206]

    Гомогенный катализ. Механизм гомогенного катализа хорошо объясняется теорией промежуточных химических соединений. По этой теории катализатор с реагирующим веществом образует неустойчивое реакционноспособное промежуточное соединение. Энергия активации этого процесса ниже энергии активации некаталитической основной реакции. В дальнейшем промежуточное соединение распадается или реагирует с ноной молекулой исходного вещества, освобождая при этом катализатор в неизмененном виде. Эти превращения также характеризуются сравнительно малой энергией активации. [c.215]

    В растворах гомогенно-каталитические реакции протекают обычно по механизму молекулярных реакций с образованием сложных, активных комплексов или промежуточных соединений с участием катализатора, который снижает энергию активации реакции. Это объясняется тем, что в сложном активном комплексе с участием катализатора уменьшается энергия связей и облегчается их разрыв. Особенно выгодным является образование циклических активных комплексов, так как чередование рвущихся и возникающих химических связей, а также перемещение электронов, образующих химическую связь, по циклическому активному комплексу (миграция связей в молекуле) способствует снижению энергии активации при разрыве химических связей. Кроме того, энтропия активации при образовании в растворе сложных активных комплексов может увеличиться за счет освобождения некоторого числа молекул растворителя, связанных с молекулами исходных веществ и с катализатором. [c.414]

    Как видно из уравнения, при быстрой химической реакции, завершающейся на внутренней поверхности пограничной пленки, эффективная константа скорости равна среднему геометрическому из коэффициента диффузии и константы скорости химической реакции. При этом кажущийся порядок реакции по реагенту А равен 0,5, а порядок по У — единице. Эффективная энергия активации будет равна примерно половине энергии активации той же реакции в гомогенной среде. [c.260]

    Представляет определенный интерес сравнение численных значений энергии активации для гомогенных и гетерогенных химических реакций. [c.245]

    Роль гомогенных химических реакций в электрохимической кинетике была выявлена впервые в ходе полярографических измерений на капельном ртутном электроде (Р. Брдичка и К. Визнер). При полярографическом восстановлении некоторых слабых органических кислот при небольших pH наблюдается лишь волна восстановления недиссоциированных молекул этих кислот. При увеличении pH высота этой волны уменьшается, а при более отрицательных потенциалах появляется волна восстановления анионов кислот. Высота первой волны ниже, чем рассчитанная по уравнению Ильковича для концентрации недиссоциированных молекул кислоты в растворе. Ток этой волны практически не зависит от высоты ртутного столба, что указывает на его кинетическую природу. Последнее подтверждается также высокой энергией активации процесса, соответствующего первой волне. Эти факты говорят [c.244]


    Каждая из стадий каталитического процесса должна характеризоваться величиной энергии активации, значительно меньшей, чем энергия активации гомогенной реакции. В противном случае, если энергия активации хотя бы одной из химических стадий будет больше, чем для гомогенной реакции, протекание процесса каталитическим путем может [c.21]

    Сабо 3. Г. Классификация гомогенных газовых реакций и расчет энергии активации Ц Химическая кинетика и ценные реакции,— М. Наука, 1966.— С. 46-60, [c.36]

    Интересно, отметить, что так как сорбция является экзотермической в большинстве случаев, то скорость сорбции обычно превышает скорость десорбции. Это означает, что молекулы продукта реакции в гомогенной фазе обычно находятся в равновесии с адсорбированной фазой. Это не всегда справедливо в отношении реагирующих веществ, так как сорбция во многих случаях является химической реакцией с атомами поверхности. Поэтому сорбция может иметь некоторую энергию активации и протекать очень медленно. [c.536]

    Для промежуточных значений 0,3математическим описанием процесса в соответствии с уравнениями (V-14) и (V-16). Из них по экспериментальным данным вычисляют Y, 1 и ад. Коэффициент диффузии Dy можно найти при проведении специальных опытов в отсутствие химической реакции, после чего определяют толщину пограничной пленки из соотношения Py=I>y/o. Затем оценивают и величины a, i и k, причем кажущийся порядок по реагенту А в этой области может меняться от 0,5 до 0,8—0,9, а эффективная энергия активации — от 0,5 до 0,8—0,9 от энергии активации той же реакции в гомогенной среде. [c.261]

    Гомогенный катализ. Механизм гомогенного катализа хорошо объясняется теорией промежуточных химических соединений. По этой теории катализатор с реагирующим веществом образует неустойчивое реакционноспособное промежуточное соединение. Энергия активации этого процесса ниже энергии активации некаталитической основной реакции. Например, при полимеризации в присутствии серной кислоты таким промежуточным соединением, даже легко выделяемым в чистом виде, является кислый эфир, образованный серной кислотой и непредельным мономером. В дальнейшем промежуточное соединение распадается или реагирует с новой молекулой исходного вещества, освобождая при этом катализатор в неизмененном виде. Эти превращения также характеризуются сравнительно малой энергией активации. [c.196]

    Это ясно указывает на химическую природу адсорбции. Изменения величин энергии активации для разных поверхностей зависят не только от элементарных деформаций адсорбированных молекул, но и от дополнительной энергии, доставляемой атомами поверхности. С. 3. Рогинский (1935 г.) считает, что влияние свободной энергии поверхности очень велико, специфично и способствует снижению активационных барьеров. При хемосорбционных процессах химические реакции поверхностных атомов решетки требуют поэтому меньших энергий активации, чем в гомогенной газовой системе. Это видно из табл. 13. [c.119]

    Пространственное разделение электрохимических реакций придает им ряд специфических качеств, которых нет у обычных химических реакций. Так, условием протекания обычных гомогенных химических реакций в растворе является взаимодействие реагирующих комионентов (молекул, атомов, ионов) при их столкновении друг с другом в любой точке раствора. В момент столкновения становится возможным переход электронов с одного вещества на другое. Совершится ли этот переход или нет, зависит от запаса энергии реагирующих веществ и ее соотношения с энергией активации, которая является функцией природы химической реакции. Следовательно, необходимость контакта реагирующих частиц в растворе — первая характерная особенность гомогенного химического процесса. Вторая особенность заключается в том, что путь электрона при этом оказывается очень малым, длина его не превышает радиуса атома или молекулы. [c.10]

    Поверхность катализатора является неоднородной. Полагают, что на ней имеются так называемые активные центры, на которых главным образом и протекают каталитические реакции. При этом реагирующие вещества адсорбируются на этих центрах, в результате чего увеличивается концентрация их на поверхности катализатора. А это отчасти приводит к ускорению реакции. Но главной причиной возрастания скорости реакции является сильное повышение химической активности адсорбированных молекул. Под действием катализатора у адсорбированных молекул ослабляются связи между атомами и они делаются более реакционноспособными. И в этом случае (как и в случае гомогенного катализа) в присутствии катализатора требуется меньшая энергия активации, чем для той же реакции без катализатора. [c.85]

    Сопротивление в уравнении (1Х-1) для данного процесса также будет характеристической величиной. В случае диффузионного массообмена образуется пленка, через которую и происходит диффузия следовательно, сопротивление будет пропорционально толщине этой пленки. При теплопередаче величина сопротивления пропорциональна толщине стенки, разделяющей. две среды. В случае химической реакции в гомогенной системе с сопротивлением связана энергия активации процесса и т. д. [c.348]

    Химическое взаимодействие катализатора с исходными веществами направляет реакцию по пути, отличному от того, что осуществляется в отсутствие катализатора. В результате этого уменьшается энергия активации протекающего взаимодействия и увеличивается его скорость. В общем виде схему гомогенной каталитической реакции можно представить себе так  [c.143]

    Измерения скорости газовыделения пли потери веса вещества при пиролизе твердых топлив часто используются для расчета энергии активации процесса пиролиза. Эта величина входит в показатель степени в уравнении Аррениуса, определяющем зависимость константы скорости реакции от температуры. Первоначально оно было предложено для химических реакций в гомогенной среде, и величина энергии активации имела физический смысл как показатель затраты энергии на активацию реагирующих молекул. [c.148]

    Роль гомогенных химических реакций в электродных процессах была впервые выяснена в ходе полярографических измерений на капельном ртутном электроде на примере процессов, скорость которых определяется предшествующей реакцией рекомбинации анионов кислот с ионами водорода (Р. Брдичка, К. Визнер). При достаточно низких значениях pH на полярограммах электровосстановления пи-ровиноградной и фенилглиоксалевой кислот на ртути имеется лишь одна волна, отвечающая электровосстановлению недиссоциированных молекул кислоты (рис. 165). При увеличении pH высота волны уменьшается и одновременно появляется при более отрицательных потенциалах волна восстановления анионов кислоты. Высота первой волны оказывается ниже, чем рассчитанная по уравнению Ильковича, исходя из соответствующей концентрации недиссоциированных молекул кислоты в растворе. Кроме того, ток этой волны не зависит от высоты ртутного столба кне, тогда как величина предельного диффузионного тока пропорциональна / /lнg. Наконец, ток первой волны резко возрастает при увеличении температуры, так что энергия активации процесса, соответствующего первой волне, оказывается значительно выше, чем энергия активации процесса диффузии. Все эти факты указывают на то, что ток первой волны имеет кинетическую природу, а именно, обусловлен медленным протеканием реакции про- [c.305]

    Стенки реакционного сосуда оказывают каталитическое действие на многие газовые реакции. Для реакций на поверхности температурный коэффициент скорости обычно мал, потому что энергии активации низки и наиболее медленным процессом является диффузия продуктов реакции от стенок. Повышение температуры на десять градусов при температурах порядка 300 К приводит к увеличению скорости диффузии приблизительно на 3%, в то время как скорость химической реакции, как уже говорилось, часто может увеличиваться на 300%. Поскольку гомогенные реакции имеют обычно более высокие энергии активации, чем соответствующие гетерогенные, при более высоких температурах преобладают гомогенные реакции, а при более низких— гетерогенные. [c.324]

    Прежде чем приступить к изложению и обсуждению дальне -ших результатов, целесообразно обратить внимание на отличие эффектов растворителя в электрохимической кинетике от соответствующих эффектов в кинетике гомогенных химических реакций. В химической кинетике при изменении природы растворителя мы сталкиваемся в первую очередь с изменением энергии сольватации исходных веществ и продуктов реакции. Эти изменения могут быть довольно большими, и они маскируют при этом более тонкие эффекты, определяемые изменением энергии реорганизации. В электрохимических же реакциях положение существенно иное. При равновесном потенциале свободная энергия исходного состояния — например, сольватированный ион водорода - - электрон в металле, и конечного состояния (газообразный Нг) равны, и это равенство сохраняется при замене одного растворителя на другой. Иными словами, изменение энергии сольватации при переходе от одного растворителя к другому автоматически компенсируется вызванным этим изменением сдвигом равновесного скачка потенциала металл — раствор, так что уровень энергии исходного состояния в целом не меняется. Таким образом, сравнение кинетики в разных растворителях при равновесном потенциале — или, в более общем случае, при одинаковом перенапряжении — есть сравнение в изоэнергетическнх условиях. Поэтому отвечающая этим услови-ЯхМ реальная энергия активации непосредственно не зависит от энергии сольватации реагирующих веществ [41]. Следовательно, электрохимическая кинетика в принципе предоставляет нам уникальную возможность сравнивать реакции в разных растворителях таким образом, что единственным наблюдаемым эффектом оказывается изменение энергии реорганизации (под реорганизацией здесь подразумевается изменение любых координат, приводящее к реакции — это может быть переориентация диполей, перестройка химических связей и т. п.). [c.37]

    Механизм каталитического акта при катализе твердыми телами излагается в курсах физической химии и монографиях по катализу в виде различных теорий. В общем виде сущность гетерогенного катализа сводится к следующим положениям так же, как и при гомогенном катализе, реакция ускоряется в результате открытия нового реакционного пути, требующего меньшей энергии активации. Изменение реакционного пути происходит благодаря промежуточному химическому взаимодействию реагирующих веществ с катализатором. При гетерогенном катализе промежуточные соединения возникают на поверхности катализатора и не образуют отдельных фаз. [c.171]

    При электрохимической реакции прямой контакт между реагирующими частицами заменяется их контактом с соответствую-и им металлом. Прн этом реакция и связанные с ней энергетические изменения остаются теми же (независимо от того, протекает она но химическому или же электрохимическому нути), но кинетические условия могут быт з различными. Энергия активации при электрохимическом механизме благодаря каталитическим свойствам металлов может быть иной, чем при гомогенном химическом механизме, кроме того, оиа зависит от потенциала. В электрохимических реакциях обязательно участвуют электроны, а часто и другие заряженные частицы — катионы и анионы, что составляет одну нз и. основных характерных особенностей. Энергия таких частиц, естественно, является функцией электрического поля, создаваемого на границе электронопроводяи1,ее тело — электролит. [c.11]

    Различают физическую и химическую адсорбцию. Теплота физической адсорбции как правило 1—3 ккал1моль и не превышает 6 ккал1моль, тогда как теплота химической адсорбции того же порядка, что и теплота активации, 10—100 ккал1моль. Связано это с тем, что при хемосорбции происходят переносы электронов между адсорбентом и адсорбатом. Хемосорбция происходит за счет валентных сил, которыми обладает любая поверхность в силу ее ненасыщенности. При хемосорбции образуются поверхностные химические соединения. При образовании химических соединений требуется преодоление энергетического барьера. Поэтому хемосорбция, в отличие от физической адсорбции, требует энергии активации того же порядка, что и при гомогенных химических реакциях. [c.182]

    В частности, значения порядка нескольких десятков килокалорий характерны для гомогенных химических реакций, протека-юищх при разрыве химических связе . Такие процессы не происходят при рекомбинации радикалов и, следовательно, либо нужно предположить, что рекомбинация происходит в результате перехода заряда между неподвижными частицами (нанример, макромолекулами полимера), либо что значения эфф получились в результате неправильного применения уравнения Аррениуса. То обстоятельство, что у некоторых полимеров наблюдается значительная зависимость энергии активации от температуры, говорит в пользу второго предположения. [c.343]

    Общая теория катализа Леннарда-Джонса [19] легко объясняет снижение энергии активации процесса хемосорбции в результате я-комплексной адсорбции. Кривая I на рис. 1 соответствует ван-дерваальсову взаимодействию молекулы с поверхностью катализатора. Если с поверхностью может образовываться химическая связь, то появляется кривая 2. Тогда пересечение кривых I и 2 соответствует энергии активации ( 2) реакции. Пересечение кривых 4 и 2 дает энергию активации гомогенной реакции, л-Комплексной адсорбции отвечает кривая 3. Поскольку л-комплексная [c.104]

    При гетерогенном катализе, так же как и при гомогенном, реакция ускоряется в результате открытия нового реакционного пути, требуюшего меньшей энергии активации. Изменение реакционного пути происходит благодаря промежуточному химическому взаимодействию реагирующих веществ с катализатором. При гетерогенном катализе промежуточные соединения возникают на поверхности катализатора, не образуют отдельных фаз и не обнаруживаются химическим анализом. Свойства этих поверхностных соединений отличаются от аналогичных объемных. Так, энергия связи в каталитических поверхностных соединениях меньше, чем в объемных молекулах, что обусловливает непрочность этих соединений. Возможны молекулярные, атомные и ионные поверхностные соединения с различными типами связи. Для цепных реакций катализ имеет"гетерогенно-гомогенный характер, т. е. на поверхности катализатора возникает радикал (гетерогенный акт), который и возбуждает цепную реакцию в объеме газа или жидкости (гомогенный акт). [c.224]


Смотреть страницы где упоминается термин Энергия активации гомогенных химических реакци: [c.10]    [c.23]    [c.33]    [c.66]    [c.267]    [c.134]    [c.63]    [c.63]   
Справочник химика Том 3 Изд.2 (1965) -- [ c.850 , c.875 , c.878 ]

Справочник химика Том 3 Издание 2 (1964) -- [ c.850 , c.875 , c.878 ]

Справочник химика Изд.2 Том 3 (1964) -- [ c.850 , c.875 , c.878 ]




ПОИСК





Смотрите так же термины и статьи:

Активация реакцйи

Гомогенная химическая реакция

Реакции гомогенные

Реакции энергия реакций

Реакция энергия активации

Химическая энергия

Энергия активации



© 2025 chem21.info Реклама на сайте