Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Способы получения исходного газа из синтез-газа

    Поскольку концентрация остаточного метана при высокотемпературной конверсии даже при очень высоких давлениях незначительна (рис. 1), а соотношение реагирующих компонентов достаточно легко регулируется, этот способ получения исходного газа для синтеза метанола представляет несомненный интерес, в том числе и относительно схемы получения метанола при едином давлении. Обычно процесс неполного горения метана осуществляется При 1200—1600 °С. При таких температурах, как видно из рисунка, процесс должен протекать без выделения свободного углерода даже в интервале давлении 30—50 МПа, а содержание непрореагировавшего метана находится в пределах 1—3°/о (об.). Такие концентрации дают основания предполагать возможность проведения стадии синтеза в экономически приемлемых условиях. [c.17]


    В дальнейшем будут рассмотрены способы получения исходных газов ДЛЯ различных синтезов, причем особое внимание будет уделено (производству следующих газов для синтеза аммиака  [c.11]

    Первоначальным исходным сырьем для синтеза служат только сложные конгломераты разнородных молекул. Для подтверждения сказанного напомним, откуда и как добывается чистый этилен, миллионы тонн которого ежегодно используют для производства полиэтилена, окиси этилена, синтетического этилового спирта и десятков других продуктов. Современные промышленные способы получения этого газа заключаются главным образом в выделении его из сложных смесей газов, образующихся в процессах крекинга и пиролиза нефти этан-пропановой смеси, выделяемой из природных газов газов коксования угля. В этих конгломератах содержание этилена редко превышает 10%, а иногда падает до 1 % и ниже. [c.33]

    Процесс конверсии углеводородного сырья с паром является наиболее распространенным способом специального производства технического водорода и синтез-газа. Достоинства этого способа — возможность работы без дорогостоящих окислителей (кислорода), легкость создания установок большой производительности и получение водорода достаточно высокой степени чистоты. Процесс включает три основные стадии, связанные общей технологической схемой 1) конверсию углеводородного сырья с паром 2) конверсию окиси углерода с паром 3) очистку газа от двуокиси углерода. Кроме того, в зависимости от качества исходного сырья и требований к водороду в схему могут быть включены процессы предварительной очистки сырья и удаления из водородсодержащего газа следов окиси углерода. [c.114]

    По этому способу метанол получают при 5 МПа, а в качестве исходного сырья для получения синтез-газа используют метан, тяжелые нефтяные остатки, уголь. [c.125]

    В настоящее время основным сырьем в производстве аммиака являются природный газ, попутные газы нефтедобычи, жидкие углеводороды и коксовый газ. Доля аммиака, получаемого из твердого топлива и электролитического водорода, все более снижается. При современных методах получения аммиака все большее значение приобретают процессы очистки газа. Из технологических газов на разных стадиях получения аммиака удаляют такие примеси, как сернистые соединения, двуокись и окись углерода, ацетилен, окислы азота, кислород и др. Эти примеси, содержащиеся в газе в различных концентрациях, по-разному влияют на процесс. Например, сернистые соединения оказывают сильное влияние на все катализаторы, применяемые в синтезе аммиака серосодержащие соединения, присутствующие в исходном углеводородном сырье, ухудшают работу катализаторов конверсии метана, что приводит к повышению температуры процесса и увеличению расхода кислорода. При использовании наиболее экономичного способа производства аммиака, который основан на методе бескислородной каталитической конверсии метана в трубчатых печах, содержание сернистых соединений в природном газе не должно превышать 1 мг/м . [c.7]


    Практикой установлено, что газ для синтеза метанола должен содержать компоненты в соотношении, близком к стехио-метрическому, т. е. (Нг—СО2) (СО+СОг) =2,01- 2,15. Исходный газ может быть получен практически из любого вида сырья, содержащего углеводороды или углерод, однако для получения указанного соотношения в большинстве случаев состав газа необходимо корректировать. Это обеспечивается дополнительными стадиями очистки, дозированием отдельных компонентов или смешением потоков газов, полученных разными способами. [c.13]

    Действующие установки, работающие по методам различных фирм, отличаются составом исходного сырья, катализаторами, а также использованием тепла реакций. В способе фирмы I I (Англия) процесс проводится при давлении 5—10 МПа и применяется синтез-газ, в котором Н СО близко к стехиометрическому. Единичная мощность установки доходит до 1800 т/сутки. Экономическая эффективность достигается за счет не только низкого давления, но и утилизации тепла отходящих газов (с получением технологического пара) и исключением установки очистки синтез-газа от Oj. При этом получается товарный метанол концентрации 99,85 %. В качестве примесей в нем содержатся главным образом этанол и ацетон. [c.360]

    Процессы окисления низкомолекулярных органических веществ представляют собой прямой одностадийный способ получения многих мономеров и исходных веществ для синтеза полимеров. В связи с этим представляет значительный интерес изучение процессов жидкофазного окисления органических веществ. В ряде случаев при проведении процесса окисления при температурах и давлениях, близких к критическим, удается осуществить окисление низкомолекулярных углеводородных газов в сжиженном состоянии [1]. Тем самым значительно расширяется сырьевая база процессов окислительной переработки нефтяного сырья. [c.5]

    Ацетилен. Ацетилен служит исходным сырьем для синтеза большого числа продуктов нефтехимической промышленности. Растущий из года в год спрос на ацетилен вызвал необходимость разработки новых экономичных способов его получения. В настоящее время в промышленности освоен способ производства ацетилена из природного газа — термоокислительным пиролизом метана, т. е. расщеплением метана за счет сжигания части газа с кислородом, подаваемым в процесс. [c.29]

    Исходная смесь, содержащая 60—64% метана и 40—36% кислорода, перед реактором подогревается до 500—-700 °С. В зависимости от температуры в реакторе степень превращения метана в ацетилен составляет 27—31%. Ацетилен, полученный этим способом, называется пиролизным (в отличие от карбидного). На производство 1 т пиролизного ацетилена расходуется в среднем 3600 м кислорода, 6400 м природного газа и 5,7 т пара. При этом дополнительно образуется 11 100 м синтез-газа (содержит Нг и СО), используемого для переработки в аммиак, метиловый, изобутиловый спирты и др. из указанного количества синтез-газа можно получить 4 т аммиака. Себестоимость пиролизного ацетилена на 30—40% меньше карбидного. [c.18]

    Монография посвящена новым методам производства исходного газового сырья для синтеза аммиака и спиртов — методам газификации жидких топлив (мазутов) с получением технологического синтез-газа. В книге приведена характеристика жидких топлив, подвергаемых газификации рассмотрены теоретические основы и аппаратурное оформление этого процесса освещены способы очистки получаемых газов от сажи и ее утилизации показаны специфические особенности процесса синтеза аммиака на основе газов, производимых описываемыми методами. В заключительных разделах книги даны технико-экономические оценки рассмотренных методов и перспективы их развития. [c.2]

    Схема получения синтез-газа по способу Топсе—СБА представлена на рис. 16. Исходное нефтяное сырье, водяной пар, кислород и воздух подогревают в аппарате 1, после чего направляют в конвертор 2. В конверторе, вероятно, совмещены процессы неполного окисления углеводородов кислородом и последующей конверсии их водяным паром на никелевом катализаторе за счет тепла, выделившегося на стадии окисления оба процесса протекают как единый автотермический процесс. Газ, полученный в конверторе, проходит котел-утилизатор 3 и далее поступает в конвертор окиси углерода 4. Отсюда газ через котел-утилизатор 5 направляется на [c.60]

    Начиная с 1913 г. Б. В. Бызовым проводились систематические исследования по изысканию возможностей использования нефти как сырья для синтеза исходных мономеров в промышленности каучука. В 1916 г. им был предложен метод получения диеновых углеводородов пиролизом углеводородов нефти в условиях обычного и пониженного давления или при разбавлении исходных углеводородов инертным газом. Позже была создана опытная полупромышленная установка для синтеза бутадиена этим методом (завод СК литер А). В условиях того времени оказалось невозможным преодолеть серьезные трудности, связанные с промышленным осуществлением способа Б. В. Бызова, и метод был временно оставлен. Позднее широкие исследования по превращению углеводородов нефти проводились Н. Д. Зелинским, А. А. Баландиным и другими. Особенно привлекала ученых проблема каталитического дегидрирования углеводородов с целью получения диеновых соединений. В результате в 40-х годах нашего столетия удалось найти условия и катализаторы реакций дегидрирования бутиленов в бутадиен с выходом, близким к теоретически возможному. [c.10]


    Обзор работ по конверсии жидких углеводородов за рубежом дан в монографии И. И. Рябцева и А. Е. Волкова [3], а также в работах [4— 6], где рассматриваются способы получения водорода и синтез-газа, разработанные фирмами Ай-Си-Ай и Гранд Паруас , а также аналогичные исследования, проведенные фирмами Келлог , Кемикл корпо-рейшин , Фостер Уиллер и др. На установках, изготовленных этими фирмами, приняты следующие условия конверсии давление 30—35 ат, объемная скорость по исходному жидкому углеводороду 1,0—1,5 температура на выходе из катализатора 700—850° С, соотношение пар углерод 3 1 имеются данные о применении на опытных установках давления 50 и даже 70 ат [7, 8]. [c.103]

    В зависимости от способа получения исходного сырья — конвертированного газа (конверсией природного газа) или синтез-газа (из отходящих газов производства ацетилена) — компрессор работает в одном из двух реншмов по давлению всасывания I ступени 1,1—1,2 МПа и О, 7—0,8 МПа. В связи с этим компрессорная установка спроектирована в двух исполнениях, различающихся только конструкцией некоторых узлов цилиндров I стзшени. Кроме того, многие узлы этой установки унифицированы с узлами установок 6М40-320/320 и 4М40-680/22-320. [c.36]

    Изложены теоретические основы и технология синтеза метанола из оксида углерода и водорода, а также процессы ректификации метаио-ла-сырца описаны схемы производства и аппаратура. Приведены особенности получения исходного газа, физико-хигмические свойства метанола и его водных растворов, способы получения высоко- н низкотемпературных катализаторов, пути повышения качества продуктов и использование отходов производства, даны технико-экономические показатели. [c.2]

    Очищенная азотоводородная смесь, вводимая в цикл синтеза, может содержать, в зависимости от исходного сырья п способа получения синтез-газа, большие или меньшие количества аргона и метана. Из смешанного водяного газа получается чистый синтез-газ, содержащий в сз мме около 0,4—0,5% аргона и метана, причем метана обычно содержится немногим больше, чем аргона. Водород, полученный конверсией метана, может содержать 1% и более метана, азот, полз чаемый ректификацией воздуха, обычно очень чист. Аргон и метан являются инертными газами в процессе синтеза аммиака, но присутствие их нежелательно, так как они постепенно накапливаются в циркуляционном газе. При полной герметизации аппаратуры только небольшое количество циркуляиио нного газа выводится из цикла (в результате растворения газа в сепараторах жидким аммиаком). Вследствие этого Содержание аргона и метана в газе значительно возрастает, что приводит к уменьшению парциальных давленнй азота и водорода и к снижению производительности установки синтеза аммиака. [c.539]

    В книге из.пожены теория и технология связывания (фиксации) атмосферного азота в первичные продукты — аммиак и окись азота. Описаны способы получения исходных технологических газов (водорода, азота, кислорода, синтез-газа), при этом основное внимание уделено процессам переработки природного газа в сырье для азотной промышленности рассмотрены также принципы разделения воздуха и коксового газа методом глубокого охлаждения. Рассмотрены основы технологии переработки аммиака в азотную кислоту и в карбамид (мочевину). Кратко описано также производство метанола и высших синтетических спиртов. [c.2]

    Свои исследования по химической переработке углеводородных газов Давид Моисеевич начал в тридцатых годах. Он провел детальное изучение процессов каталитического синтеза хлористых алкилов и создал промышленный способ полученил хлористого этила из этилена и хлористого водорода. Широко известны работы Д. М. Руд-ковского по каталитической полимеризации и изомеризации низших олефинов на фосфорнокислотных катализаторах, по высокоскоростной окислительной газификации топливных продуктов, по получению формальдегида и ацетилена из метана. Под его руководством выполнены исследования по синтезу ряда мономеров и полупродуктов для производства пластмасс. К их числу относятся бис(хлорметил)окса-циклобутан (исходное вещество для получения нового термопластичного полимера пентапласт) и многоатомные спирты. [c.3]

    При получении технологического газа для синтеза аммиака содержащиеся в исходном сырье соединения серы переходят в состав газа. Присутствующие в газе неорганические и органические соединения серы являются вредными примесями, вызывающими коррозию аппаратуры, отравление катализаторов, ухудшение качества продукции и загрязнение атмосферы. Применяются следующие способы очистки газов от серы. Неорганическую серу удаляют сухими способами — с помощью гидроокиси железа или окислением НгЗ на активированном угле и жидкостными способами — поглощением мышьяково-содовым и мышьяковоаммиачным растворами, растворами этаноламинов, низкотемпературной абсорбцией органическими растворителями. Для очистки от органической серы в качестве сорбентов используют активированный уголь, катализаторы, соединения цинка, железа, марганца, а также хемосорбенты. На выбор способа очистки газа от серы большое влияние оказывает химический состав серосодержащих примесей и другие факторы. [c.81]

    НЫМ В технике способом получения газа для синтеза является произеод-ство водяного газа. Водяной газ не имеет нужного для синтеза соотношения СО к Н это соотношение достигается добавкой водорода, получаемого от конверсии части водяного газа (около 25%). Полученный при конверсии по реакции СО + Н О — Н, + СО, газ освобождается от углекислоты, и очищенный водород смешивается с основной массой исходного водяного газа. [c.733]

    Другой путь получения ацетилена и этилена, развившийся в самое последнее время, состоит в высокотемпературном пиролизе легких и средних нефтяных фракций, а также газообразных углеводородов, начиная с этана [7]. Тепло для эндотермического процесса в этом способе получают от сжигания отходяш их при переработке продуктов пиролиза остаточных газов в смеси с кислородом, т. е. получение тепла основано здесь на том же принципе, как и в автотермических процессах получения этилена и ацетилена. Разница заключается в том, что для получения тепловой энергии используется пе исходное сырье, а отходящие газы процесса. Выход синтез-газа в этом процессе (смесь СО/Нг) значительно меньше, чем в процессе Захсе. [c.97]

    Ацетон (диметилкетон) СНд-СО—СНд. Бесцветная жидкость а довольно приятным запахом темп. кип. 56,1°С, темп, плавл. —94,3°С, i/f =0,798 смешивается с водой. Раньше ацетон получал вместе с метиловым спиртом (стр. 114) и уксусной кислотой (стр. 165) при сухой перегонке дерева. В настоящее время главный промыш ленный способ получения ацетона — каталитическое дегидрировав ние вторичного пропилового спирта (стр. 117) последний в boi6 очередь получают гидратацией пропилена (стр. 71), добываемого из газов крекинга. В СССР разработан оригинальный экономически выгодный способ получения ацетона — вместе с фенолом из изо-пропилбензола (стр. 367). Ацетон является ценным растворителем (в производстве лаков, искусственного шелка, взрывчатых веществ) и исходным веществом в синтезе разнообразных органических соединений. [c.151]

    Этот синтеза может представлять интерес как способ получения сырья для химической промышленности лишь при наличии дешевого газа (колошниковый или газ карбидных печей). Условия проведения процесса, состав и выход продуктов зависят от применяемого катализатора и состава исходного газа. Так, для железных катализаторов оптимальная температура лежит в интервале 250—300 °С, а давление определяется содеря анием оксида углерода в исходном газе. При 90%-ном превращении СО на железных катализаторах выход углеводородов Сз и выше составляет 160—170 г/м а на кобальтовых — до 200 г/м . Следует отметить, что на кобальтовых катализаторах метанообразование практически не идет. Получаемые продукты аналогичны продуктам жидкофазного синтеза Фишера — Тропша. В табл. 8.13 приведены усредненные данные о жидкофазном синтезе на основе колошни- [c.301]

    Для синтеза над кобальтовым катализатором водяной газ должен быть обогащен водородом до концентрации, обеспечивающей отношение СО На = 1 2. Для этого часть водяного газа должна быть подвергнута конверсии с водяным паром (см. 82). Конвертированный газ (технический водород) смешивается с исходным водяным газом в пропорции, необходимой для получения заданного отношения СО Па. Существует также способ прямого получения синтез-газа из твердого топлива в одну стадию. Этот процесс проводится в специальных печах, где сочетаются процессы сухой перегонки топлива с реакциями получения водяного газа. В отличие от безостаточн(>й переработки, в этом случае часть горючего превращается в кокс, который может быть направлен в газогенераторы для газификации. По такому методу производят водяной [c.494]

    Все искусственные горючие газы, полученные в результате термической переработки твердого топлива, содержат в том или ином количестве серусодержащие соединения. Первоисточником сернистых соединений в газе является сера исходного топлива. В процессе термической переработки топлива (полукоксования, коксования, газификации и др.) входящие в него вещества, содержащие серу, претерпевают изменения и в некоторой части переходят в газ в виде неорганических и органических соединений в зависимости от характера соединений серы в топливе и от способа переработки его. Например, при коксовании в газ переходит 25—40% серы, при газификации 65—90%. В газе сера содержится главным образом в виде неорганических соединений Нг8 (до 95%) и в небольшом количестве в виде органических сероуглерода ( Sa), сероокисиуглерода OS, меркаптанов (RSH), тиоэфиров R—S—R и др. Содержание сернистых соединений в газе зависит от количества серы в исходном топливе. Наличие сернистых соединений в газе во многих случаях нежелательно, а иногда и вовсе недопустимо. Бытовой газ может содержать лишь незначительное количество соединений, содержащих серу. Сероводород является сильным ядом предельно допустимая концентрация его в воздухе производственных помещений принята 0,01 мг л. При горении сернистые соединения образуют сернистый ангидрид, который также вызывает отравления организма. Сернистые соединения, содержащиеся в газе, который применяется в металлургической и стекольной промышленности, значительно снижают качество металла и стекла. Серусодержащие соединения, находящиеся в газе, корродируют аппаратуру. Особенно большие требования предъявляются к синтез-газу по содержанию сернистых соединений, так как они отравляют контактную массу, снижая тем самым ее активность. Поэтому в синтез-газе допускаются лишь следы сернистых соединений. При очистке газа от сероводорода можно получать товарную серу. [c.297]

    Природный газ очищают от сернистых соединений (HjS и др., см. Гшов о шстка), смешивают с водяным паром, нагревают и направляют на никелевый катализатор, где при аОО пропсходит конвер , ия (см. Aleman). Темп-ра поддерживается посредством сжигания нек-рой части исходного газа. После конверсии метана и др. углеводородов) полученная газовая смесь В. и окиси углерода вновь смешивается с водяным паром и направляется на катализатор (Fe с добавкой Сг пли Mg), где прп 500—550° происходит конверсия СО. Далее газ проходит очистку от (Юг и остатков СО. Другой способ получения В. из природного га.эа — неполное окисление метана — основан на реакции GH4 + /2 О — СО 2Пг, идущей с выделением теплоты. Дальнейшие стадии конверсии СО н очистки аналогичны применяемым в первом способе. Целесообразно сочетать вместе оба способа получения В. из природного газа, т, к. при этом для протекания эндотермич. реакции конверсии метана и др. углеводородов используется теплота, выделяющаяся прн их неполном окислении. Для проведения такого процесса исходный природный газ смешивается с водяным паром и кислородом. Реакции конверсии и неполного ок.псления протекают одновременно на никелевом катализаторе при 800—900. Если же прп первоначальном смешении вместо кислорода исполь.зуют воздух, обогащенный кислородом, то получают В, в смеси с азотом, пригодный для синтеза аммиака. В,, получаемый из природного газа, является наиболее дешевым. [c.311]

    В большинстве зарубежных стран этилен получают одновременно с извлечением водорода для синтеза аммиака >методом глубокого охлаждения (при температуре— 160° степень конденсации составляет 96% и при—185°—100% исходного количества по объему этилена) [23]. При этом в качестве попутного продукта получается этиленовая фракция (с содержанием этилена 15—30% по объему) без значительных дополнительных затрат. Такой способ получения этилена в количестве нескольких тысяч тонн в год с успехом применяют во Франции и в Голландии [29, 31]. Наряду с полученивхМ этилена коксовых газов указанной выше фракционной конденсацией и глубоким охлаждением современная техника знает еще два метода разделения газов и выделения этилена избирательное поглощение твердыми и жидкими растворителями. Однако эти методы не получили распространения. [c.296]

    В процессе гидрирования на катализаторе отлагался снижающий его активность твердый парафин ( контактный парафин ), который можно было удалять периодической экстракцией и гидрированием непосредственно в реакторе. В этом случае катализатор сохранял активность в течение 2—3 месяцев (Фишер, Кох, Релен). Начиная с 1932 г., фирма НиЬгсНет1е АО в Гольте-не приобретала патенты-Фишера, после чего началось быстрое развитие этого способа в промышленности. За несколько лет была разрешена трудная задача, связанная с конструированием крупных реакторов, из которых отводилось огромное количество тепла, выделяющегося в ходе реакции было налажено получение чистого исходного сырья для приготовления катализатора и его производство, организовано производство синтез-газа из каменноугольного кокса и бурого угля и достигнута исключительно тонкая очистка газа. В 1936 г. уже можно было ввести в эксплуатацию первые установки, до 1941 г. в Германии было построено девять крупнозаводских установок, производительность которых в 1942 г. составила 550 ООО т первичных продуктов. [c.150]

    Недавно был предложен способ получения циклических аминоацеталей фуранового ряда с использованием в качестве восстановителя нитрогруппы амальгам щелочных металлов [125]. Способ заключается в восстановлении нитрогруппы циклического ацеталя 2-а -нитрофурил-5-алкил-5-метплол-1,3-ди-оксана до аминогруппы. Исходный нитроацеталь синтезируется из нитрофурфурола, легко получаемого по известной методике [126], и спиртов триметилолпропана или триметилол-этана. Синтез осуществляется в бензоле в среде инертного газа в присутствии ионообменной смолы КУ-2 в Н-форме в качестве катализатора. Сырой нитроацеталь выделяется и [c.206]

    Техническая углекислота, получаемая при моноэтаноламиновой или водной очистке конвертированного газа, содержит ряд взрывоопасных компонентов (водород, окись углерода, метан). На содержание последних в значительной мере влияют способ получения углекислоты и режим работы оборудования. Достаточно сказать, что на различных предприятиях содержание этих веществ в углекислоте колеблется в довольно широких пределах от сотых долей до нескольких процентов. Содержащиеся в исходной углекислоте Н2, СО, СН не участвуют в синтезе карблиида и накапливаются в конце системы, образуя с кислородом, подаваемым для защиты оборудования от коррозии, взрывоопасные смеси. Во избежание взрывов приходится идти на ухудшение условий работы в производстве мочевины, что ведет к выбросу в атмосферу газов, содержащих аммиак, и приводит к его потерям, а также к загазованности рабочих площадок. [c.170]

    Метан является основным компонентом приротного газа и попутных газов нефтедобычи. В значительных количествах он содержится также в коксовом газе и газах нефтепереработки. Наиболее экономичным способом получения азотоводородной с.меси для синтеза а.ммиака, а также исходного технологического газа для производства спиртов является конверсия метана. [c.11]

    В ГДР на заводах Лейна уже длительное время эксплуатируется промышленная установка по переработке газов продувки синтеза аммиака с целью получения аргона. Схема данной установки приводится на рис. 40. Сжатый до 80 кГ1см исходный газ, предварительно очищенный от NHs и осушенный адсорбционным способом, поступает в теплообменники 1, 2, 3, 4, 5, 6, где охлаждается до температур порядка —140° С за счет аргона и других отходящих газов (смеси азота и аргона, метана и смеси водорода и азота). [c.108]

    Приведенные в табл. 14 данные не исчерпывают всех источников получения исходных веществ для синтезов. Например, при производстве синтетического каучука из этилового спирта побочно получается газовая смесь, содержащая некоторое количество этилена и пропилена, которые в свою очередь могут быть использованы для синтезов. В ряде случаев исходные вещества получают синтетическими способами. Так, в Германии из-за недостатка газов нефтекрекинга этилен получают гидрированием ацетилена. Значительные количества изобутана получаются изомеризацией н-бутана. Большое значение приобрели различные методы синтеза фенола. Синтез искусственного жидкого топлива—синтина из окиси углерода и водорода (стр, 348), оказавшийся вначале экономически нецелесообразным по сравнению с другими методами, в настоящее время является практически важным способом получения исходных веществ для производства синтетических моющих средств и других продуктов, в составе которых имеются углеродные цепи С —С20. [c.302]

    При получении солей синтетическими способами в качестве исходных материалов используются главным образом полупродукты основной химической промышленности или отходы различных гфоизводств. Синтез солей основан на реакциях нейтрализации. Таким образом получают, например, важнейшие азотные удобрения из кислот и щелочей. Большое количество солей получается в качестве побочных продуктов других производств. Например, в производстве глинозема из нефелина в качестве побочных продуктов получают поташ К2СО3 и соду ЫагСОз. Из отходящих газов цветной металлургии и производства серной кислоты, содержащих 50г, получают сульфиты. Нитрат кальция, применяемый как удобрение, можно получить из отбросных нитрозных газов производ- [c.142]


Смотреть страницы где упоминается термин Способы получения исходного газа из синтез-газа: [c.44]    [c.311]    [c.137]    [c.56]    [c.84]    [c.385]    [c.387]    [c.3]    [c.166]    [c.290]    [c.99]    [c.199]   
Технология синтетического метанола (1984) -- [ c.30 ]




ПОИСК





Смотрите так же термины и статьи:

Получение газа

Получение синтез-газа



© 2025 chem21.info Реклама на сайте