Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магний каталитическая активность

    Каталитическое действие некоторых адсорбентов может привести к нежелательным последствиям. Такое действие нередко оказывают наиболее активные адсорбенты, прежде всего окись алюминия. В случае менее активных адсорбентов, например силикагеля и силиката магния, каталитическая активность проявляется очень редко. Нежелательное действие часто оказывают следы щелочных или кислых веществ, присутствующих в адсорбенте. Ряд вторичных реакций, вызываемых адсорбентами, описал Новотный ([20], стр. 179). [c.340]


    В работе, опубликованной в 1951 г. (Биохимия, 16, 81, 1951), С. М. Бреслер и Н. А. Розенцвейг приходят к заключению, что трипсин и химотрипсин содержат в составе своего активного комплекса ионы металлов химотрипсин— магний, а трипсин—хром. Согласно данным этих авторов, магний в химо-трипсине прочно связан и не отщепляется при диализе, хром же трипсина связан непрочно и может отщепляться при диализе, а также замещаться на магний каталитическая активность трипсина при этом сохраняется. — Прим. ред. [c.276]

    Катализаторы. Для окислительного дегидрирования олефиновых углеводородов предложено большое число катализаторов. Каталитически активными Б реакциях окисления олефинов в диеновые углеводороды оказались катализаторы на основе окислов, фосфатов, вольфраматов и молибдатов индия, олова, сурьмы, висмута, теллура, селена, мышьяка, титана и других металлов, а также на основе ферритов никеля, кобальта, марганца, магния, кальция цинка и некоторых других металлов. [c.682]

    В качестве катализатора фирма использует окись магния с 7,9—9% никеля [126]. Катализатор обладает высокой механической прочностью и высокой каталитической активностью. [c.107]

    Для большинства высокотемпературных реакций используются металлические катализаторы. Они могут быть в виде металла, нанесенного на тугоплавкий носитель, такой, как плавленый оксид алюминия, смешанный оксид алюминия и магния, алюмосиликат, например муллит, алюминат магния (шпинель) и смешанный тугоплавкий оксид алюминия и хрома. Оксид хрома может обладать собственной каталитической активностью, и поэтому его следует тщательно исследовать, прежде чем использовать в качестве носителя. Наоборот, если возможно получить бифункциональный катализатор, в котором действие металла дополняется действием носителя, то хром в этом случае может принести существенную пользу. К числу металлов, используемых как катализаторы дегидрирования, принадлежат медь, серебро и иногда золото. Такие благородные металлы, как платина, палладий, родий и рутений, можно использовать при очень высоких температурах, а серебро недостаточно устойчиво при температурах выше 700 °С. [c.142]

    На основании полученных данных автор [202] делает предположение о существовании связи между валентностью катиона, его размерами п влиянием на каталитическую активность алюмосиликатного катализатора. Действительно, одновалентные катионы неактивны, двухвалентные обладают некоторой активностью, возрастающей по мере уменьшения радиуса катиона (от бария к магнию), трех- и четырехвалентные катионы активны так же, как и Н+. [c.156]


    Вообще говоря, в качестве катализатора для дегидрогенизации газообразных парафинов применяются окиси металлов 6-й (например хром и молибден), б-й (например ванадий) и 4-й (например титан и церий) групп таблицы Менделеева, нанесенные на вещества со сравнительно низкой каталитической активностью (например окиси алюминия и магния). [c.240]

    Имеются сообщения и о разработке пассиваторов для ванадия. Так, твердые добавки, содержащие оксиды кальция и магния, не обладающие каталитической активностью, адсорбируют в 6-10 раз больше ванадия, чем обычный катализатор крекинга. Известны также жидкие добавки на основе олова, которые на 30% снижают отрицательное воздействие ванадия на выход бензина и на 50% — на выход водорода и кокса [149, 150]. [c.103]

    Как карбонил, так и гидрокарбонил кобальта растворимы в продукте реакции. При применении катализаторов на носителях кобальт постепенно теряется, вследствие чего вместе с сырьем необходимо непрерывно добавлять катализатор. Установлено, что карбонил кобальта, приготовленный отдельно, кобальтовые соли органических кислот (например, нафтенат кобальта) или другие соли кобальта являются превосходными катализаторами их удобно добавлять в виде раствора в олефиновом сырье. Было обнаружено, что каталитической активностью обладают и такие материалы, как железо, кальций, магний и цинк [72], но эффективность большинства их сомнительна. Автоклавы, в которых испытывались кобальтовые катализаторы, загрязнялись небольшими остаточными количествами кобальта, удалить которые чрезвычайно трудно. Это загрязнение аппаратуры легко может привести к ошибочным выводам при испытании каталитической активности различных материалов. [c.264]

    В случае альдегидов каталитически активным оказался также бромистый магний, но его -применение не дает никакого преимущества. [c.167]

    Скелетные катализаторы используют в процессах гидрирования сахаров, жиров, фурфурола, многоядерных хинонов и т. д. Кроме того, они являются составной частью электродов низкотемпературных топливных элементов, предназначенных для преобразования химической энергии в электрическую [142, 149]. Материалами для получения скелетных контактов служат двух-или многокомпонентные сплавы каталитически активных металлов с такими веществами, которые можно частично или полностью удалить при обработке растворами сильных электролитов, отгонке в вакууме или других операциях, основанных на различии их физико-химических свойств. По мере удаления из сплава растворимых компонентов происходит перегруппировка атомов остающегося металла в свойственную ему кристаллическую решетку. Так, при выщелачивании А1 из N1—А1-сплава атомы никеля перестраиваются в кубическую гранецентрированную решетку. После удаления из сплава растворимого (например, в щелочи) компонента получается почти чистый активный металл в виде мельчайшего порошка [150]. К каталитически активным относятся переходные металлы к неактивным — сера, фосфор, алюминий, кремний, магний, цинк и ряд других веществ. [c.163]

    При алкилировании фенолов спиртами в паровой фазе в качестве катализаторов используют природные глины, алюмосиликаты, цеолиты, а также окислы алюминия, магния, титана, тория и их смеси. Обладает каталитической активностью также поли-фосфорная кислота, осажденная на термостойком носителе. Реакцию проводят при 250—500 °С, главным образом с низкомолекулярными спиртами С1—С4. Состав продуктов реакции зависит от условий процесса и селективности катализатора. Большинство известных катализаторов ориентируют алкильные заместители в орто-положение. Однако на многих из них при повышенной температуре также хорошо образуются м- и л-изомеры. Жесткие условия алкилирования способствуют протеканию побочных процессов. Так, при изучении превращений л-н-пропилфенола на алюмосиликатном катализаторе [98] при 300—350 °С отмечено образование фенола, ж-н-пропилфенола, ди- и триалкилфенолов ге-крезола и л-этилфенола, т. е. одновременно протекают деалкилирование, изомеризация, диспропорционирование и расщепление. При низких температурах основные продукты алкилирования— алкилфениловые эфиры, которые являются, по-видимому, промежуточными продуктами при образовании алкилфенолов. Выходы последних при парофазном алкилировании довольно высоки и при соответствующем подборе катализатора и оптимальных условий могут достигать 80—95%. [c.232]

    Была исследована также каталитическая активность сплавов серебра с алюминием, магнием, медью, цинком, галлием, германием, селеном, индием, кадмием, оловом, теллуром, висмутом [138]. Показано, что степень превращения метанола на серебре и его сплавах с различными добавками, за исключением цинка, германия, галлия, висмута возрастает с увеличением отношения Оа СНзОН. Селективность процесса окисления в формальдегид на серебре и его сплавах с теллуром нечувствительна к повышению этого отношения, тогда как у сплавов серебра с германием, галлием и индием — увеличивается, а у остальных уменьшается. Введение в серебро 10% магния [139], меди и кадмия увеличивает дегидрирующую способность катализатора, повышая тем самым общую конверсию метанола, а присутствие селена и сурьмы увеличивает селективность процесса. Существенно пониженной каталитической активностью обладают сплавы серебра с цинком, галлием и германием. Сплавы серебра с алюминием, теллуром, оловом по сравнению с чистым серебром также проявляют пониженную активность. Однако по другим наблюдениям, добавки алюминия интенсифицируют процесс [140]. Для сплавления с серебром рекомендуется платина (0,45—0,75%>) [113]. Есть указания на целесообразность применения в качестве добавок и оксидов некоторых металлов молибдена (VI) [141], титана (IV), магния и кальция [142]. В последнем случае массовая доля серебра составляет от 5 до 30% от всего катализатора. Предложено использовать в качестве добавок к серебру пероксиды щелочных и щелочноземельных металлов [114], а также соли серебра — карбонаты и оксалаты [143]. Однако сведений о практическом применении сплавов и модифицирующих добавок пока нет. [c.55]


    Окисные катализаторы при более низких температурах оказались менее активными, чем никель. Однако при температурах - 1000° и выше прокаленный доломит (MgO aO) и, в несколько меньшей степени, окись кальция и окись магния показали высокую каталитическую активность (табл. 1). [c.468]

    Различают промоторы структурирующие (способствующие получению и сохранению активного компонента катализатора в диспергированном состоянии) и активирующие (повышающие каталитическую активность единицы поверхности активного компонента катализатора). В настоящее время принято считать, что во многих случаях структурирующая и активирующая функции катализатора совмещаются. Произведенная нами проверка показала, что такие широко распространенные промоторы металлических катализаторов, как окислы алюминия, хрома, бериллия, магния, кальция и других металлов, трудно восстанавливаемых из окислов, проявляют исключительно структурирующее действие по отношению к никелю, использованному в качестве катализатора в реакции разложения метана на элементы. При этом промоторы образуют следующий ряд (в порядке понижения эффективности)  [c.60]

    Окись магния каталитически довольно инертна. Углеводороды на ее поверхности, по-видимому, не вступают в реакции, но она проявляет некоторую каталитическую активность в реакциях дегидратации и дегидрирования спиртов [97], причем активность в реакциях дегидратации сохраняется, только если температура прокаливания не превышает 820 К. Однако удельная активность в отношении дегидрирования спиртов на много порядков ниже, чем активность при той же температуре, например, меди, В работе [102] приводятся некоторые данные, полученные методом ИК-спектроскопии, об образовании на окиси магния при адсорбции метилового спирта метокси-групп. [c.75]

    Окислы-изоляторы используются в виде пористых частиц или гелей, а с точки зрения каталитической активности важно пользоваться смесями окислов [4П. Так, окиси магния и алюминия, а также двуокись кремния порознь неактивны, а смеси окиси магния или алюминия с двуокисью кремния активны, как и природные глины. По-видимому, активные катализаторы содержат образуемую ковалентно связанными атомами сетку типа [c.195]

    Изучая нричр ны каталитической активности флоридина, Гайер [49] установил, что активной составной частью флоридина является алюмосиликат, а содержащиеся в глине силикаты кальция, магния и железа не активны. Исходя из этого, (.н приготовил синтетический алюмосиликат путем осаждения оксида алюминия (до 1 % ) на силикагеле, который вызывал значительную полимеризацию пропилена при 350 °С. В случае полимеризации изобутилена синтетический алюмосиликат ведет себя так яге, как и активированный флоридин [50]. [c.49]

    Алюмомагнийсиликатные катализаторы, синтезированные из менее концентрированных золей, обладают более высокой каталитической активностью, чем соответствуюп ие алюмосиликатные. Они способствуют образованию бензинов, содержащих сравнительно мало непредельных углеводородов и имеющих низкую температуру начала кипения. По мере повышения концентрации гелеобразующих растворов первоначальные активность и стабильность катализатора увеличиваются, но но достижении определенного значения начинают падать. Чем концентрированнее гелеобразующие растворы жидкого стекла и подкисленного сернокислого магния, тем тонкопористее катализаторы. Катализаторы, обладающие весьма развитой тонкопористой структурой, почти лишены переходных и крупных пор, они имеют достаточную первоначальную активность и паротермостабильность. Но после обработки паром у таких катализаторов наблюдается большое падение активности, что объясняется более тонкими и менее прочными стенками нор, которые под влиянием высокотемпературного водяного пара сжимаются и разрушаются. [c.93]

    Для повышения каталитической активности монтмориллонит обрабатывают сильными минеральными кислотами. Результат химической активации зависит от природы глины, крепости кислоты, температуры и длительности обработки. Активация состоит в замене обменоспособных катинов водородом и удалении магния и железа, а также некоторой части алюминия. Кислотная обработка [c.11]

    Таким образом, имеющиеся данные свидетельствуют о существенном влиянии природы отравляющего металла на степень отравления. Видимо, из-за различия в методах отложения металлов и испытания катализаторов единого мнения об относительной силе отравляющих металлов нет. Теоретического объяснения влияния типа металла также не имеется. В работе [202], правда, делается попытка представить в общем виде возможное поведение адсорбированных на поверхности алюмосиликатного катализатора различных катионов. В ней изучалось влияние на каталитическую активность натрия, калия, бария, цинка, магния, водорода, алюминия, тория. Исходный натрийалюмосиликат пропитывали водными растворами соответствующих солей. Общее количество рас- [c.155]

    Впервые реакция гидроформилирования была осуществлена в присутствии кобальтового катализатора процесса Фишера—Тропша. Впоследствии были исследованы и запатентованы в качестве катализатора многие другие металлы. В литературе сообщается о каталитической активности родия, кобальта, хрома, иридия, железа, марганца, натрия, магния, кальция, платины, рения, осмия и рутения. Однако в промышленности до настоящего времени преимущественно используются кобальтовые катализаторы. [c.255]

    Л онтмориллонит является очень распространенным кристаллическим минералом состава А120з 48102-/гНаО. Обычно в нем каждый шестой нон алюминия замещен на нон магния. Монтмориллонит входит в состав монтмориллонитовых глин, которые становятся каталитически активными после кислотной обработки. [c.310]

    Скелетные металлические катализаторы (металлы Р е н е я). По методу, предложенному Ренеем, каталитически активный металл сплавляют с неактивным металлом и обрабатывают сплав реактивом, растворяющим неай-тявпый металл. Вымываемыми неактивными компонентами могут быть алюминий, Кремний, магний и цинк. Из каталитически активных металлов находят применение-главным образом никель, кобальт, медь и железо. [c.35]

    В реакции гидрокарбонилирования испытывалось поведение весьма многочисленных каталитически активных веществ. В начальный период на германских опытных установках применяли кобальтовый катализатор, который легко можно было получить с установок синтеза углеводородов по Фпшеру-Тропшу. Он содержал 32% кобальта, 1,5% окиси тория, 2,5% окиси, магния и 64% кизельгура [29]. По мнению Релена в условиях реакции кобальт взаимодействовал с окисью углерода, образуя растворимый карбонил. Этот карбонил взаимодействовал с водородом, превращаясь в гидрокарбонил, который и является каталитически активным началом. [c.263]

    Влияние различных факторов на свойства утяжелителей и утяжеленных растворов исследовалось И. Д. Фридманом и Е. Д. Щетки-ной. Они показали, что рыхлая, пористая структура с высокоразвитой поверхностью и значительной адсорбционной и каталитической активностью крайне нежелательна. Это, наряду с присутствием агрессивных компонентов и примесей, обусловило непригодность как утяжелителей колошниковой пыли и пиритовых огарков, несмотря на их высокий удельный вес. В свое время для их улучшения предлагался ряд методов, в частности спекание при 1200—1400° С, способствующее удалению водорастворимых солей, переходу железа в более устойчивую окисную форму и улучшение структуры материала [53, 541. Подобный метод предлагался также для утяжелителя из керченского бурого железняка и улучшения дашкесанских магне-гитовых концентратов путем получения неофлюсованных агломератов. Однако это связано с технологическими трудностями и значительным удорожанием. [c.48]

    При исследовании системы закись никеля — окись магния наряду с результатами рентгеновского анализа были получены данные, характеризующие способность к восстановлению и каталитическую активность образцов различного состава (рис. 11). В результате такого комплексного исследования было показано, что вопреки распространенным представлениям закись никеля и окись магния не образуют непрерывного ряда растворов во всем интервале изменения их состава [26]. При пониженных температурах в данной системе образуется два типа твердых растворов на основе закиси никеля и на основе окиси магния (см. рис. 11). В промежуточном интервале изменения концентрации окиси магния 45—97% система двухфазна. Степень восстановления закиси никеля в составе твердого раствора окиси магния на основе фазы никеля монотонно уменьшается с увеличением содержания окиси магния в растворе. Закись никеля в растворе на основе фазы окиси магния не восстанавливается. Из полученных данных следует, что возможность восстановления окисной формы металлического катализатора из твердого раствора определяется способностью к восстановлению той фазы, на основе которой образован раствор. При восстановлении закиси никеля концентрация окиси магния в растворе на базе фазы закиси никеля быстро достигает предельной. Дальнейшее уменьшение содержания закиси никеля в процессе восстановления приводит к пересыщению раствора и выделению фазы окиси магния, содержащей растворенную в ней и, следовательно, неспособную к восстановлению закись никеля. С увеличением содержания окиси магния в исходном растворе количество связываемой таким образом закиси никеля возрастает. Это объясняет невозможность полного восстановления закиси никеля из твердого раствора на основе закиси никеля и обнаруженное нами понижение предельной степени восстановления закиси никеля при увеличении содержания окиси магния в твердом растворе. [c.106]

    Используя соответствующий катализатор, можно регулировать процесс взаимодействия кетена с карбонильными соединениями и получать с хорошими выходами Р-лактоны протекающая при этом реакция аналогична реакции присоединения дифенилкетена к хинонам. Многочисленные катализаторы, применявшиеся для указанной цели, приведены в табл. III. Среди лучших катализаторов этой группы можно назвать борную кислоту, триацетат бора, хлорную ртуть, хлористый цинк, роданистый цинк, хлорнокислый магний и эфират трехфтористого бора [5]. Эти соединения способны образовывать комплексы с гидроксильными группами и обладают значительной каталитической активностью по отношению к карбонильным производным. Тот факт, что катализатором этой реакции могут служить и перекиси [70], был отмечен только в одном случае. [c.400]

    Единственным упоминанием Вейла [1] о иероксидных структурах в силикатах был тот факт, что стабилизирующее действие силиката натрия в комбинации с силикатом магния наблюдалось в пероксидных отбеливающих ваннах. Такое действие, вероятно, вызвано адсорбцией и инактивированием следов каталитически активных металлов, таких, наиример, как медь. [c.228]

    Отрицательные ионы, такие, как, например, цитрат- и ацетат-ион, снижают каталитическую активность ионов двухвалентной меди, причем степень ингибирования для цитрат-ионо , значительно выще. В ходе декарбоксилирования ацетондикар-боновой кислоты каталитически активными частицами являются нейтральный комплекс Си А и моноанион Си(ОАс)А , тогда-как дианион Си(0Ас)гА2- вообще не обладает каталитической активностью. Эти факты подтверждают предположение о том, что любой лиганд, снижающий эффективный заряд металл-суб-стратного комплекса, понижает каталитическую активность иона металла. Напротив, комплексообразующий агент, не приводящий к нейтрализации заряда иона меди (2-)-), повышает каталитическую активность. Например пиридин, легко образующий комплексы с ионом двухвалентной меди, но не имеющий заряда, промотирует катализируемое медью декарбоксилирование диметилщавелевоуксусной кислоты. Аналогично 2,2 -фенантролин а шестнадцать раз повышает активность ионов магния. [c.223]

    НОВ 1и вторичных спиртов, в этих реакп)иях эффективны ионы металлов переменной валентности. Например, соли меди, кобальта, железа и марганца обладают высокой активностью, а соли алюминия, магния, цинка и свинца либо вообще неактав-ны, либо характеризуются лишь незначительной каталитической активностью. Представляющее, вероятно, наибольший практический интерес окисление углеводородов обычно проводят в присутствии нафтенатов, резинатов или стеаратов металлов. Ниже показан механизм реакции в случае кобальтового катализатора Со(П) -fROOH - Со(1П) + OH- + RO. [c.238]

    Сорбиновые эфиры целлюлозы могут быть переведены полимеризацией в нерастворимое состояние, причем в качестве катализаторов можтю использовать как хлорную кислоту, так и хлористый цинк По данным Ханске , при этерификации уксусной кислоты в этиловом спирте (при 80 °С) катализаторами могут служить хлориды, бромиды, перхлораты и нитраты щелочноземельных металлов. При употреблении в качестве катализатора перхлората кальция (0,5 н. раствор) константа скорости реакции возрастает в 500 раз, однако в ряду магний—кальций—барий— литий при том же анионе каталитическая активность уменьшается. При применении солей кальция активность уменьшается в следующем порядке перхлорат>бромид>хлорид>нитрат. Стеариновая кислота ведет себя аналогично уксусной, однако этерифи-кация происходит как в присутствии, так и в отсутствие катализаторов. С бензойной кислотой без катализаторов опыт проводился в течение 6 недель при 80 °С, но признаков протекания этерификации обнаружить не удалось. При действии катализатора бензойная кислота быстро реагирует. [c.159]

    Согласно Эстгаму с сотр. , перхлорат и иодид лития являются наилучшими катализаторами для реакции мутаротации глюкозы в пиридине. Лосев и Захарова изучили относительную каталитическую активность перхлоратов калия, аммония, бария и магния в процессе полимеризации стирола при различных температурах. Перхлорат магния для этой реакции оказался наиболее сильным катализатором, причем механизм его действия, по-видимому, несколько отличается от механизма действия других солей. [c.159]

    Наряду с коферментами существенную роль в формировании активных ферментов играют железо, медь, магний, марганец, кальций, цинк и др. Металлы могут выступать в качестве коферментов, а также активаторов ферментативной активности. Уже на организменном уровне можно оценить роль того или иного металла в функционировании фермента. Так, дефицит молибдена в пище животных проявляется в падении активности фермента ксантиноксида-зы. Дефицит этого же микроэлемента в питательной среде является причиной резкой инактивации нитратредуктазы у гриба Меигозрот сгавза. Для однозначного ответа на вопрос, является ли металл активатором или неотъемлемой частью зрелого фермента, необходимо получить последний в высокоочищен-ном или гомогенном состоянии. Если металл при диализе не отделяется от фермента, а более жесткое его удаление приводит к полному подавлению каталитической активности, значит, это истинный металлофермент. Металл в этом комплексе прочно связан с белком посредством множественных координационных связей. [c.63]

    Такие образцы могут найти широкое применение в качестве катализаторов и носителей каталитически активных веществ. Метод вытеснения воды органической жидкостью с успехом использован для получения широкого набора пористых структур других гидрофильных адсорбентов (титаносиликагелей, титаногелей, алюмосиликагелей, фер-ригелей, гелей гидроокисей никеля и магния) [204, 205, 208, 209]. Благодаря этому представилась возможность проведения систематических исследований по изучению роли геометрической структуры катализаторов и носителей в каталитическом процессе. Впервые осуществлен безавтоклавный способ получения аэрогеля [184, 199], представляющего собой ценный теплоизоляционный материал. [c.87]

    РТзвестно много веществ, ускоряющих взаимодействие углерода с газифицирующими агентами. Особенно эффективны соединения, содержащие щелочные металлы хлориды и карбонаты натрия или калия. Оксиды кальция, железа, магния, цинка тол е способны существенно ускорять процесс. Кроме того, добавки 10—20% карбонатов щелочных или щелочноземельных металлов позволяют понизить оптимальные температуру и давление паровой газификации битуминозного угля с 980—1040 °С и я=7 МПа соответственно до 650—760 X и 3,5 МПа. Высокую каталитическую активность при взаимодействии углерода с водяным паром проявляют также металлические железо, кобальт, никель. [c.132]

    По величине удельных каталитических активностей прп 200° контакты можно располон пть в следующий ряд платина > хромит меди > хромит магния. Увеличение температуры до 400° изменяет соотношение удельных каталитических активностей наиболее активным катализатором остается платина, а каталитическая активность хромита магния становится почти на три порядка больше хромита меди. Интересно отметить, что контакты, обладаю-ш ие значительно более высокими энергиями активации, в определенных интервалах температур являются мсиее активными, чем контакты с меньшей энергией активации. Кривые зависимости уд от Т для двух различных контактов могут пересекаться (рис. 54). Это объясняется сим-батным изменением величин Е и А ц. Такое изменение наблюдается на всех исследованных катализаторах, применяющихся для окисления различных углеводородов. Одновремеппое изменение Е и изучено для многих органических реакций (гидрирование, дегидрирование) [261 ]. [c.168]


Смотреть страницы где упоминается термин Магний каталитическая активность: [c.195]    [c.344]    [c.166]    [c.34]    [c.524]    [c.169]    [c.123]    [c.169]    [c.70]    [c.135]   
Структура металических катализов (1978) -- [ c.75 ]




ПОИСК





Смотрите так же термины и статьи:

Активность каталитическая



© 2025 chem21.info Реклама на сайте