Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидрогенизация механизм

    Эта реакция включает гомогенное расщепление молекулы водорода. В реакциях гетерогенной каталитической гидрогенизации большая затрата энергии (103 ккал), необходимая для расщепления 1 моля водорода, пополняется за счет энергии, выделяющейся при образовании связей водород—металл. При установлении соответствующего контакта между основным компонентом реакции и поверхностью катализатора в принятых условиях процесса атомы водорода переходят к акцептору по механизму, пока еще мало изученному. Примеры гомогенной гидрогенизации исключительно редки. Кэлвин [3J описал подобную систему, в которой проводится восстановление водородом хинона в растворе хинолина с использованием в качестве катализатора ацетата одновалентной меди. При детальном кинетическом изучении этой реакции Велер и Миле [24] обратили внимание на поразительное сходство между активацией водорода ацетатом одновалентной меди и активацией водорода в условиях оксосинтеза. Эти исследователи выступили в поддержку механизма активации, предложенного Кэлвиным, который они записали следующим образом  [c.300]


    В заключение следует отметить, что в настоящее время стереохимический подход к некоторым каталитическим реакциям, в частности к гидрогенизации и гидрогенолизу, применяется сравнительно широко. Весьма перспективными представляются исследования гидрогенолиза оптически активных соединений [73—77]. Строение исходного соединения, природа металла, его концентрация в катализаторе, а иногда и носитель, влияют на механизм гидрогенолиза, который в зависимости от указанных факторов может проходить по 5 1-, или (-механизмам (см. обзор [78]). [c.82]

    Цель данной главы заключается в том, чтобы показать, что практически все реакции алифатических и алициклических углеводородов лучше всего могут быть объяснены либо механизмом с участием иона карбония, либо обычным ценным свободнорадикальным механизмом. Глава но содержит детального обсуждения массы фактов, подтверждающих действие этих механизмов, и различных альтернативных схем. Вместо этого дается единая общая основа для объяснения каталитических и термических реакций углеводородов путем установления некоторых наиболее общепризнанных принципов поведения ионов карбония и свободных радикалов. Ниже будет показано, что разнообразные внешне не связанные между собой реакции (в том числе и побочные реакции) углеводородов могут быть объяснены на основе правдоподобной, упрощенной (но не слишком) теории. От подробного разбора мелких деталей теории и некоторых, на первый взгляд противоречивых, наблюдений в такой краткой по необходимости главе пришлось отказаться. Особое внимание будет обращено" на реакции, идущие с образованием или разрывом углерод-углеродных связей, в то же время механизмы реакции гидрогенизации, окисления, галоидирования и нитрования совсем не будут рассматриваться. [c.213]

    Механизм избирательной гидрогенизации. Возможность избирательной гидрогенизации определенных компонентов углеводородной смеси нельзя предсказать па основании знания относительных скоростей гидро- [c.240]

    Возмоншость свободно-радикального механизма [17] не должна отвергаться, особенно если иметь в виду, что такой механизм был предложен и обсуждался для реакций гидрогенизации, идущих в условиях оксосинтеза [16]. Необходимо, по-видимому, провести огромную экспериментальную работу, чтобы понять полностью течение реакции. [c.302]

    Следует напомнить, что любой механизм катализа должен удовлетворять термодинамическому принципу микроскопической обратимости-. поскольку катализатор должен быть пригодным для двух противоположно направленных реакций (например, гидрогенизация —дегидрогенизация), обе эти реакции должны протекать через одни и те же стадии и каждая стадия должна быть обратимой. [c.15]


    Оба механизма могут объяснить экспериментально полученные кинетические данные гидрогенизации, но основное различие между ними заключается в зависимости отношения от давления водорода. Поскольку такая зависимость была найдена на опыте (Vg/v возрастает при уменьшении давления водорода), следует отдать предпочтение механизму Хориути. [c.83]

    Механизм гидрогенизации бензола [c.94]

    И развитая схема формально идентична с предложенным Хориути — Поляни механизмом гидрогенизации этилена. [c.95]

    Исследования механизма и кинетики гидрогенизации ведутся широким фронтом как в СССР, так и за рубежом наряду с разработкой новых технологических процессов. Однако, если работы по технологии гидрогенизационных процессов обобщаются в обзорных статьях и монографиях достаточно регулярно и широкий круг читателей хорошо информирован о достижениях в этой области, многочисленные работы по механизму, кинетике и катализу гидрогенизационных -процессов практически не обобщаются, им обычно посвящаются лишь короткие главы в обзорных монографиях. [c.5]

    В отдельных случаях при переработке более благоприятного сырья могут применяться и стационарные окисные регенерируемые катализаторы Однако протекающие при этом процессы очень близки к процессу жидкофазной гидрогенизации, так как идут почти исключительно по радикальному механизму. [c.163]

    Простота условий гидрогенизации без катализатора позволила наиболее подробно изучить механизм деструкции фенолов под высоким давлением водорода Было доказано, что деструкция идет по радикально-цепному механизму [c.197]

    Все приведенные выше данные и схемы иллюстрируют, что основность азотсодержащих соединений повышается в ходе гидрогенизации за счет накопления первичных и вторичных аминов. Однако эти схемы не раскрывают механизма превращения в основания нейтральных соединений. Для попытки объяснения этого вопроса в табл. 51 сведены данные работ характеризующие соотнощение [c.219]

    Вследствие сложности химического состава и трудностей анализа сырья и продуктов механизм основных реакций процессов каталитического гидрооблагораживання нефтяных остатков можно установить лишь в общих чертах. Основные сведения по этим вопросам накоплены исторически трудами многих исследователей различных поколений процессов гидрогенизационной переработки от деструктивной гидрогенизации, получившей развитие в 30-40-х годах, до современных процессов каталитической гидроочистки нефтяных топлив и гидрокрекинга. Основная масса публикаций по химии превращений основных классов соединений, входящих в состав нефтепродуктов, обобщена в монографии [36 а также в обзорных статьях [37, 38, 39]. Анализ имеющихся результатов [c.45]

    На ранних стадиях оставалось также невыясненным место разрыва кольца метилциклопентана , так как точное соотношение между изомерными гексанами установить не удавалось . Между тем точные данные о составе и количественном соотношении продуктов изомеризации и расщепления в ходе гидрогенизации бензола позволили бы раскрыть особенность этих реакций и сопоставить их течение с механизмом мягкого гидрогенолиза. [c.226]

    Как видно из данных табл. 52, составы гидрогенизатов отличаются друг от друга лишь количественно, качественно они практически состоят из одних и тех же углеводородов. Это свидетельствует об общности механизмов гидрогенизации бензольного кольца в присутствии различных катализаторов. Только в гидрогенизатах, полученных в присутствии катализатора ЛУЗа на терране, найдены [c.226]

    Кроме весьма вероятного образования общих промежуточных продуктов схема механизма деструктивной гидрогенизации должна учитывать отмеченную ранее особенность этого процесса — [c.229]

    Изучение механизма превращений бензола, циклогексана и метилциклопентана с помощью меченых атомов (гидрогенизации подвергались смеси этих веществ, в которых один из компонентов метился радиоактивным углеродом показало (см. табл. 54), что в начальный период действительно происходит накопление циклогексана, но при длительном контакте его количество уменьшается. Однако если меченым компонентом является бензол, удельная радиоактивность метилциклопентана выше активности циклогексана [c.230]

    Реакция гидрогенизации глюкозы в заданных условиях имеет первый порядок по глюкозе экспериментальные данные представлены на рис. 3.2. Расчеты показали, что порядок реакции не зависит от температуры опыта, т. е. в указанных условиях с ростом температуры от 80 до 125°С механизм реакции гидрогенизации глюкозы не изменяется. [c.68]

    Изложенные данные позволяют высказать некоторые представления о механизме реакции гидрогенизации глюкозы, а также о влиянии условий реакции на характер протекания процесса. [c.71]

    Термическое воздействие. При термическом воздействии на циклопарафины протекают реакции, сопровождающиеся разрывом углерод-углеродных связей в боковых цепях и кольце, деструктивная гидрогенизация и в небольшой степени ароматизация. Механизм этих реакций изложен в гл. 11. [c.143]


    Металлы, катализирующие обмен На— Оа, также активны в реакции гидрогенизации ненасыщенных соединений. Из числа таких реакций наиболее тщательно изучалась реакция Н2+С2Н4. Хотя многие закономерности зтой реакции хорошо известны, механизм ее до сих нор недостаточно ясен. Изучение гидрирования высших олефинов показало, что реакция с каждым данным олефином имеет свои, только ей одной присущие черты. [c.548]

    Хотя имеется большое число исследований по кинетике как реакций обмена, так и реакций присоединения, механизм и порядок реакций недостаточно выяснены. В обычных условиях эксперимента на платине и никеле зависимость скорости реакции гидрогенизации оказывается первого порядка по Н2 и меняется от нулевого порядка по С2Н4ПРИ низких температурах до некоторого дробного порядка или единицы при более высоких температурах (от О до 200°). Такое поведение может быть объяснено тем, что активированный комплекс, образующийся на поверхности, содержит молекулу С2Н4 и два атома Н  [c.548]

    Как показывает схема, в данном случае обнаруживается заметная тенденция к образованию крупных осколков молекулы, что свидетельствует обычно о наличии механизма с участием иона карбония. Однако предполагается, что реакция проходит несколько своеобразно из-за быстрого соединения образовавшихся ионов с водородом, что исключает вторичный распад продукта. Хорошее совпадение суммарных выходов метана и гексана, этана и пентанов и, наконец, пропапа и бутанов, указывает на то, что образовавшиеся осколки молекул не подвергаются даль-лейшей деструктивной гидрогенизации. [c.180]

    Кинетика гидрогенизации этилена была предметом длительной дискуссии. Согласно предложенным механизмам, образующиеся вначале а, р-диадсорбированные частицы Л трансформировались затем в полу-гидрированное соединение — моноадсорбированный радикал СгНБ с последующим образованием СгНв и его немедленной десорбцией различия предложенных механизмов заключаются в разных предположениях о природе реагирующего водорода  [c.81]

    Эти авторы постулировали, что стереохимия гидрогенизации определяется стадией (5) механизма гидрогенизации, т. е. циклогексеновой стадией. Мы видели, что в смесях продуктов гидрогенизации ароматических углеводородов были найдены небольшие количества олефинов. Однако вовсе не обязательно, чтобы олефин, играющий важную роль в реакции, содержался в жидкой фазе в наибольшем количестве. Если дополнить исходный механизм стадией [c.96]

    Совершенно очевидно, что нелегко различить анионно-координационный катализ и катализ комплексами переходных металлов. По-видимому, как в предложенном Косси механизме полимеризации, так и при гидрогенизации олефинов на (Ru Ie) (разд. П1.3. Д) действует один и тот же механизм внедрения, и если алкильная группа, связанная с центральным ионом, имеет резко выраженный анионный характер [245], то то же можно сказать и о хемосорбированных группах на поверхности полупроводящего окисла, как, например, СГ2О3 (разд. П.2. А). [c.119]

    Гидрогенизация в зоне термической деструкции. Когда увеличивают температуру выше 350° С, механизм реакций постепенно изменяется на первичное воздействие накладываются другие, более быстрые и энергично действующие условия, характерные для процесса термической деструкции. Имеется в виду обычно разрыв связи углерод—углерод с образованием свободных радикалов, удалением освобождаемых при этом групп атомов, наиболее богатых водородом в форме летучих веществ, и реконденсация в более стабильные формы радикалов, менее летучих и более богатых ароматическим углеродом. Водород под давлением, вероятно, вмешивается в этот механизм, насыщая свободные валентности одной части образованных радикалов и препятствуя тем самым их конденсации. Вероятно также, что он препятствует термической дегидрогенизации ненасыщенных циклов, что приводит к расширению ароматических групп и к образованию кокса (см. рис. 19). [c.39]

    В книге впервые в литературе обобщены результаты многочисленных исследований химии и механизма основных гидрогенизационных процессов, играющих важную роль в нефтепереработке и нефтехимии. Даны основные закономерности гидрирования органических соединений, рассмотрены механизм, кинетика и катализаторы процессов деструктивной гидрогенизации, гидрокрекинга, гпдроочпстки и деметилирования. [c.2]

    Настоящая монография является попыткой восполнить этот лробел и свести воедино результаты изучения химии и механизма важнейших процессов гидрогенизации. [c.5]

    Гипотеза о пр6ме1куточном образовании карбониевых ионов плодотворно примененная для объяснения механизма многих реакций в органическойк химии успешно использована и для объяснения механизма ионных реакций, протекающих в процессах переработки нефти. Основные обобщения сделаны применительно к каталитическому крекингу но могут быть, с определенной ревизией, использованы и для процессов гидрогенизации. Эти обобщения, получившие название карбониево-ионной теории, в первую очередь должны были объяснить различия протекания каталитического и термического крекинга. [c.119]

    В первых промышленных модификациях гидрокрекинга, освоенных к началу второй мировой войны, высокоактивные катализаторы применяли только при парофазной переработке жидких продуктов, получаемых на первой ступени многостадийной гидрогенизации топлив. При этом на первой (жидкофазной) ступени процесса обычно использовали малоактивные дешевые катализаторы для гидрирования ненасыщенных продуктов расщепления первичного сырья, образовывавшихся, как правило, в объеме , гомогенно, по цепному механизму. Такой механизм возможен и в некоторых новейших модификациям гидрокрекинга. [c.52]

    Важной особенностью превращений углеводородов в присутствии высокотемпературных сернистых катализаторов является существенное преобладание в газообразных продуктах пропана и изобутана, что подтверждает протекание этого процесса по ионному механизму. Так, например, если мольное отношение углеводородов 04 63 в продуктах деструктивной гидрогенизации тетралина в присутствии железного катализатора равно 1 2,8 11,3, то в продуктах деструктивной гидрогенизации тетралина в присутствии катализатора уУВа на терране оно составляет 1,00 0,31 0,03, а для декалина — 1,00 0,30 0,02. Аналогично этому из мольных отношений углеводородов Се С, Се (см. табл. 64) видно что в продуктах расщепления больше всего образуется углеводородов Сд и С,. [c.253]

    Дальнейшее развитие теории катализа тесно связано с исследованием состояния катализатора во время реакции. Принципы структурного и энергетического соответствия, оставаясь решающими, должны относиться к системе катализатор — реагирующее вещество, сложившейся ко времени достижения стационарного состояния катализатора. Степень окисления поверхностных атомов катализатора, природа лигандов и состав промежуточного координационного комплекса определяют направление реакции и лимитирующие стадии. Решающую роль играют методы определения состояния катализатора и всей системы во время реакции. Одним из таких методов является измерение потенциала (или электропроводности) катализатора во время реакции. Легче всего это сделать в проводящих средах как в жидкой, так и в газовой фазе для гетерогенных и гомогенных катализаторов. В окислительно-восстановительных процессах структурным фактором являются не только размеры кристаллов и параметры решеток, но и кислотно-основные характеристики процессов. Всякая поверхность или комплексное соединение представляют собой кислоту или основание по отношению к реагирующему веществу, а это определяет направленность (ориентацию) и энергию взаимодействия вещества с катализатором. Для реакции каталитической гидрогенизации предложена классификация основных механизмов, основанная на степени воздействия реагирующего вещества на поверхность катализатора, заполненную водородом. В зависимости от природы гидрируемого вещества в реакции участвуют различные формы водорода. При этом поверхность во время реакции псевдооднородна, а энергия активации— величина постоянная и зависящая от потенциала поверхности (или раствора). Несмотря на локальный характер взаимодействия, поверхность в реакционном отношении однородна и скорость реакции подчиняется уравнению Лэнгмюра — Хиншельвуда, причем возможно как взаимное вытеснение адсорбирующихся веществ, так и синергизм, т. е. увеличение адсорбции БОДОрОДЗ ПрИ адсорбции непредельного вещества. Таким образом, созданы основы теории каталитической гидрогенизации и возможность оптимизации катализаторов по объективным признакам. Эта теория является продолжением и развитием теории Баландина. [c.144]

    Из имеющихся литературных сообщений, посвященных изучению кинетики и механизма реакции гидрогенизации моносахаридов на суспендированных катализаторах, большой интерес представляют работы Д. В. Сокольского, Ф. Б. Бижанова, М. С. Ержа-новой с сотрудниками, так как их исследования выполнялись в автоклаве типа автоклава Вишневского, позволяющем благодаря интенсивному перемешиванию раствора проводить рассматриваемую реакцию в кинетической области. [c.68]

    Сравнительно недавно были сформулированы Н. А. Васюниной А. А. Баландиным и Р. Л. Слуцкиным положения о системе катализаторов, действующих при гидрогенолизе углеводов и много атомных спиртов [52, 53], — о гомогенном катализаторе разрыва связи С—С (крекирующем агенте) и гетерогенном катализатор гидрогенизации. В то же время было открыто каталитическое дей ствие в этой реакции растворимых соединений металлов, наприме сульфата железа, хелатного комплекса железа с сахарными кисло тами, сульфата цинка и др., названных гомогенными сокатализа торами гидрогеиолиза [54, 55]. Механизм их действия рассмотре в гл. 3 добавление гомогенных сокатализаторов ускоряет гидроге нолиз в 2—3 раза с получением гидрогенизата примерно таког( же состава, как и без их применения. [c.122]

    Труднее всего гидрируются произво/.ные тиофена. Тетрагидро-тиофен, сульфиды и меркаптаны гидрируются значительно легче. Обычно процесс ведется на алюмокобальтмолибденовом катализаторе при 340—420°С и под давлени( м 2,5—6 МПа. Механизм реакций гидрогенизации различных ттов сернистых соединений можно представить следующим образом. [c.201]

    Статья об активации молекулярного водорода в гомогенном катализе, написанная Уеллером и Миллсом, представляет собой обзор новой области — гомогенной гидрогенизации. Катализаторами здесь служат растворимые комплексные соли меди, серебра и ртути. Исследование механизма и кинетики зтих реакци может по-новому осветить давно известные реакции гетерогенной каталитической гидрогенизации. [c.3]

    Исследоваиия каталитической гидрогенизации в гомогенных жидких растворах приобрели в настоящее время важное значение, так как получаемые результаты освещают с новой стороны механизм каталитической активации молекулярного водорода. Другими словами, подобные гомогенные катализаторы представляют интерес пе только потому, что они позволяют открыть или осуществить на практике новые или трудно выполнимые реакции, но также благодаря тем возможностям, которые представ-лянэтся этими системами для выяснения химизма катализа. Как было отмечено выше, поч1и все катализаторы гидрирования являются твердыми телами. Однако природа этих твердых те т очень мало известна и еще в меньшей стенени известны их поверхностные свойства. В противоположность этому природа молекулярных частиц, находящихся в растворе, сравнительно хо-poHJo установлена. Поэтому весьма вероятно, что со временем удастся найти связь между особенностями каталитического гидрирования н гомогенных системах и известными химическими свойствами участвующих в них молекул, ионов или комплексов. [c.177]

    Сходными реакциями являются гидрирование смазочных масел, при котором получаются масла с более пологой кривой зависимости вязкости от температуры, а также низкотемпературная гидрогенизация смолы бурого угля, т. н. процесс ТТП . Хотя в обоих этих процессах основная масса реагирующего сырья остается жидкой и реагирует с водородом на неподвижном слое катализатора в жидком состоянии, механизм реакции остается таким же, как и при парофазной гидрогенизации. [c.284]

    Такой механизм установлен, например, Д. В. Сокольским для гидрогенизации ацетилена в растворе [19]. При температурах, еще более высоиих, когда промежуточная адсорбция становится одноточечной, может происходить генерирование свободных радикалов, слабо связанных с катализатором, а далее—инициирование цен- [c.138]


Смотреть страницы где упоминается термин Гидрогенизация механизм: [c.593]    [c.12]    [c.108]    [c.80]    [c.271]    [c.88]    [c.122]    [c.178]    [c.252]   
Катализ в неорганической и органической химии книга вторая (1949) -- [ c.590 ]

Химия технология и расчет процессов синтеза моторных топлив (1955) -- [ c.183 ]




ПОИСК







© 2025 chem21.info Реклама на сайте