Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектр диспергирование

    Оптическая схема прибора представлена на рис. 17.7. Свет от источника / попадает на зеркальный конденсор 2, затем на плоское зеркало 3, которое отклоняет поток лучей на 90° и направляет его в щель 4 (автоколлимационного монохроматора с углом 30° при вершине), защищенную пластинкой 5. Прошедший через щель свет попадает на диспергирующую призму 7, разлагающую его в спектр диспергированный поток направляется на объектив 6, который фокусирует лучи в щель 8. Призма соединена с помощью специального механизма со шкалой длин волн. Поворачивая призму вращением соответствующей рукоятки на выходе монохроматора, получают монохроматический поток света заданной длины полны, который, после прохождения щели 8, кварцевой линзы 9, фильтра 10, поглощающего рассеянный [c.338]


    Оптическая схема. Свет от источника 1 попадает на зеркальный конденсор 2, затем на плоское зеркало 3. Зеркало отклоняет поток лучей на 90° и направляет его в щель 4 (автоколлимационного монохроматора с 30° призмой), защищенную пластинкой 5. Свет, прошедший через ЩеЛЬ, попадает на зеркальный объектив 6, который посылает параллельный поток лучей на диспергирующую призму 7, разлагающую его в спектр диспергированный . поток направляется обратно на объ- [c.85]

    В каждом сечении колонны при огибании потоками элементов насадки наблюдается неравномерность местных скоростей отдельных потоков. Кроме того, внутри сплошной фазы возможно существование потоков, обратных по направлению к движению основной массы жидкости этой фазы. Возникновение таких потоков обусловлено турбулентными пульсациями, а также тем, что некоторое количество сплошной фазы увлекается вместе с каплями диспергированной фазы. Таким образом, спектр плотности распределения скоростей для отдельных элементов потока сплошной фазы в сечении колонны будет иметь вид, показанный на рис. 3.4. [c.30]

    В спектрометре на месте фотопластинки имеется вторая узкая щель, позволяющая выделять из всего диспергированного призмой излучения участок строго ограниченных длин волн. При повороте призмы или дифракционной решетки различные участки спектра проецируются на внутреннюю сторону этой щели, благодаря чему из всего спектра выделяется определенная линия. Подходящий фотоэлемент превращает энергию излучения в электрическое напряжение, величина которого служит основанием для всех последующих выводов. Обычно диспергирующую часть (без приемника излучения) часто называют монохроматором. [c.190]

    ИК-область обычно рассматривают, начиная с красного края видимого спектра, примерно с 14000 см (7000 А, или 0,7 мкм), где глаз перестает воспринимать диспергированное излучение (таким образом, инфра значит ниже красного )- Так называемая фундаментальная ИК-область начинается примерно с 3600 см , или 2,8 мкм. Аналитически полезная область распространяется от 3600 см примерно до 300 см , или 33 мкм- В настоящей книге рассматривается главным образом средняя ИК-область, хотя бегло упоминается и ближняя . [c.14]

    Когда исследуется диспергированное вещество, диаметр наибольших частиц которого соизмерим с толщиной образца, ошибка измеряемой оптической плотности составляет уже несколько десятков процентов (см. табл. 18). Вследствие этого количественные измерения по спектрам поглощения тонких слоев порошкообразных веществ даже по методу внутренних стандартов могут носить только ориентировочный характер. [c.192]


    Для определения инфракрасного спектра поглощения вещества последнее должно быть соответствующим образом подготовлено. Жидкие вещества можно испытывать непосредственно или в подходящем растворе. Для подготовки твердых веществ обычно используют один из следующих методов диспергирование мелко измельченного твердого образца в минеральном масле включение его в прозрачный диск или шарик, который получают путем тщательного смешивания вещества с предварительно высушенным галогенидом калия и прессования смеси в матрице приготовление раствора в подходящем растворителе. Приготовление вещества для методики нарушенного полного внутреннего отражения описано отдельно. [c.47]

    Если спектр минерального масла, использованного по методу 2, мешает определению в данной области, можно дополнительно приготовить пасту из испытуемого вещества, диспергированного в такой среде, как подходящее фторированное углеводородное масло или гексахлорбутадиен. Затем регистрируют спектр в тех областях, в которых минеральное масло обнаруживает сильное поглощение. [c.48]

    Для жидкости или диспергированного твердого вещества регистрируют спектр по всей области. Толщина слоя должна быть такой, чтобы по крайней мере одна полоса давала сильное поглощение. [c.174]

    Анализ формы спектра поглощения, обусловленного диспергированным парамагнитным азотом, показал, что отношение коэффициента поглощения в максимуме основной полосы 1135 см к коэффициенту поглощения при 1290 см- (район полочки 1240— 1320 см- ) в диапазоне значений коэффициента поглощения а от 3 до 25 см- остается постоянным и равным 01135/01290 = 2,9 0,3. [c.418]

    На основании данных опытов с учетом результатов анализа продуктов сжигания СА в вакууме было сделано предположение, что при высоких концентрациях диспергированного азота (2-1025 м ) не весь примесный азот фиксируется методом ЭПР. Впоследствии было показано, что парамагнитный азот распределен в кристаллах СА случайным образом и при концентрациях выше 5-1025 м З наблюдается интенсивный рост числа сложных парамагнитных комплексов и непарамагнитных центров. Появление непарамагнитных азотных центров, аналогичных центру А в природных алмазах типа 1а, должно привести к появлению в спектрах поглощения СА дополнительного поглощения при 1290 см . Для таких кристаллов отношение 0113501290 было бы меньше, чем для кристаллов чистого типа 1в. В исследованиях использовались кристаллы СА с 01135/01290 = 2,9 даже при самых высоких концентрациях парамагнитного азота. Если для СА справедлив закон случайного распределения примесного азота, то появление непарамагнитных азотных центров следует ожидать при расстояниях между атомами азота 3,5а, где а—постоянная решетки алмаза. При таких расстояниях локальная симметрия дефектного центра в виде атома азота в замещающем положении, очевидно, сохраняется. Следовательно, при концентрации азота в кристаллах выше некоторой критической часть атомов азота 420 [c.420]

    Анализ на изотопную распространенность и элементный состав жидких проб — водных или органических растворов и суспензий с диспергированными твердыми нерас-творенными частицами — проводят на МС, в которьгх в качестве источников ионов используется ИСП. В плазме при воздействии высокой температуры (7000-8000 К) и высокочастотного электрического поля происходит атомизация вещества пробы и образование ионов [2, 7, 8, 21, 30]. Анализаторами ионов для таких источников являются секторные магниты, системы разделения с двойной фокусировкой, анализаторы на основе ионно-циклотронного резонанса, времяпролетные и квадрупольные системы. Выбор анализатора зависит от требуемого разрешения по массам (из-за наложения дублетов ионов в исследуемой области массовых чисел), пофешности измерения изотопного и элементного состава, количества анализов, а также экономических факторов. Наиболее часто встречающиеся в масс-спектрах дублеты приведены в табл. 7.9. [c.859]

    Таким образом, затрудненность расслаивания может быть объяснена существованием композиций из тонко диспергированных фракций сополимеров, обогащенных и обедненных БА. Этим же можно объяснить отсутствие в спектрах механических потерь для натурального сополимера побочного максимума, характерного для сополимера с высоким содержанием БА. [c.79]

    Для массивных образцов, помимо влияния грани кристалла, установлено влияние размера металлических частиц. Так, в ИК-спектрах окиси углерода, адсорбированной на тонко диспергированных переходных металлах, наблюдается усиление интенсивности полос поглощения окиси углерода в области низких частот [28]. Это явление объясняется хемосорбцией на центрах, расположенных в вершинах кристаллитов, где происходит, как полагают, упрочнение связи металл—углерод и одновременное ослабление и поляризация карбонильной группы. Влияние размера частиц обнаружено и в случае адсорбции азота на никеле, палладии и платине, нанесенных на окись алюминия и двуокись кремния [29]. Усиление интенсивности полос поглощения наблюдается при адсорбции азота (предположительно в молекулярной форме) на частицах диаметром менее 7 нм. [c.27]


    Исследования с помощью ИКС показали, что в спектрах диспергированных углей закономерно изменяются интенсивность и положения абсорбционных полос в области колебаний связей С=С, С=0, валентных и деформационных колебаний СН - и СНз-групп. В области.700— 900 см" при диспергировании углей происходит перераспределение интенсивности полос поглощения, что указывает на изменение характера замещения ароматических групп С- Н. Возрастает при этом также интенсивность полос, связанных с присутствием спиртовых (1000— 1150 см ) и карбонильных (1650-1720 см ) групп. Уменыйается также количество СНз-групп и возрастает содержание СН-групп. [c.125]

    Свет от источника 1 попадает на зеркальный конденсор 2, затем на плоское зеркало 3. Зеркало отклоняет поток лучей на 90° и направляет его в щель 4 (автоколлимационного монохроматора с 30° призмой), защищенную пластинкой-5. Свет, прошедший через щель, попадает на зеркальный объектив 6, который посылает параллельный поток лучей на диспергирующую призму 7, разлагающую его в спектр диспергированный ноток направляется обратно на объектив, который фокусирует лучи в щель( . Призма соединена с помощью специального механизма со шкалой длин волн. Поворачивая призму вращением соответствующей рукоятки на выходе монохроматора, получают монохроматический поток света заданной длины волны, который, нройдя щель 5, кварцевую линзу 9, фильтр 10, поглощающий рассеянный свет, эталон (или образец) и защитную пластинку 11, попадает на светочувствительный слой фотоэлемента 12. Фототок, возникающий в фотоэлементе под действием падающего света, усиливается электронными радиолампами и передается на миллиамперметр (прибор-индикатор). [c.145]

    В работах, выполненных ранее [2—4], имеются существенные разногласия относительно числа и положения максимумов поглощения в ИК-спектрах исследованных образцов гидрата хлористого магния. Как показали наши предварительные опыты, методика получения спектров диспергированных препаратов в маслах или прессование образцов в таблетках KG1 и КВг в данном случае не гарантирует достоверность спектра. Это обусловлено тем, что, во-первых, в процессе механического растирания не исключено частичное обезвоживание кристаллогидратов и, во-вторых, в системе K l-Mg lg.eHaO идет довольно быстрая твердофазная химическая реакция [6]. Нами была разработана методика, свободная от указанных недостатков. [c.342]

    В нашей работе методом мессбауэровской спектроскопии исследовалось структурное и магнитное состояние соединений железа в конденсированных в разных местах реактора сырых продуктах электродугового испарения в зависимости от химической природы катализатора, его концентрации, технических параметров диспергирования и в соответствии с местами наибольшего выхода одностенных нанотрубок. В качестве катализаторов использовались ультрадисперсные порошки или чистого Ре, или смеси Ре и N1 в разной концентрации. Было установлено, что химическая природа катализатора определяет количественное соотношение между образующимися большими, инертными металлическими частицами, инкапсулированными в углеродную оболочку, и мелкими металлическими наночастицами, являющимися каталитическими центрами зарождения одностенных ианотрубок. Анализ параметров мессбауэровских спектров позволил связать эффективный выход одностенных нанотрубок с формированием на мелких каталитических частицах железографитового комплекса. [c.110]

    Действенным методом повышения эффективности воздействия акустических полей на процесс диспергирования является совместное действие полей двух частот. На рис. 3.9. представлена амплитудно-частотная характеристика акустического гомогенизатора, используемого в аппарате для смачивания и диспергирования пигментных материалов. На вибрационном спектре, косвенным образом характеризующем диспергирующие свойства гомогенизатора, представлены колебания полей двух частот (800 Гц и 2000 Гц). Один из возможных механизмов взаимодействия полей двух частот строится [43] на предположении, что кавитационная эффективность определяется захлопыванием полостей в поле низкой частоты, а действие высокочастотного поля создает дополнительную осцилляцию полостей. Оценку такого механизма взаимодействия можно провести на основании уравнения движения полости в форме Нолтинга - Неппарайса  [c.65]

    По характеру молекулярных взаимодействий на границе раздела фаз все дисперсные системы могут быть разделены на две большие группы. Это, с одной стороны, лиофильные системы, для которых характерна высокая степень родственности дисперсной фазы и дисперсионной среды и соответственно компенсирован-ности связей на границе раздела — сглаженность границы такие коллоидные системы, например критические эмульсии, могут образовываться самопроизвольно и обнаруживают полную термодинамическую устойчивость как относительно агрегирования, в макрофазы, так и относительно диспергирования до молекулярных размеров частиц. С другой стороны, это разнообразные лиофобные — коллоидно- и грубодисперсные системы, в которых дисперсная фаза и дисперсионная среда менее родственны и различие граничащих фаз по их химическому составу и строению проявляется в существенной некомпенсированности поверхностных сил (в избытке энергии) на межфазной границе. Такие системы термодинамически неустойчивы и требуют специальной стабилизации. Сюда относятся все аэрозоли, пены, многочисленные эмульсии, золи и т. д. Между теми и другими системами нельзя провести четкого разделения, поэтому представляется возможным рассматривачь широкий спектр промежуточных состояний. [c.7]

    Низкая технологическая эффективность водных растворов индивидуальных НПАВ определяется их высокой адсорбцией и другими потерями в пористой среде, связанными с их химической деструкцией и биоразрушением. Адсорбция, деструкция и биоразрушение обусловливают обеднение раствора НПАВ по мере его продвижения в пористой среде, что приводит к формированию на фронте вытеснения вала неактивной воды. Этот последний возрастает, и результирующий механизм вытеснения сводится к доотмыву остаточной нефти раствором НПАВ, отстающим от вала неактивной воды. Кроме того, сами НПАВ не обладают высокой физико-химической активностью, снижая натяжение на поверхности раздела фаз в лучшем случае до 10 мН/м. Указанные главные негативные моменты учитывались автором при разработке принципиально современного научного подхода к решению проблемы применения НПАВ для повышения нефтеотдачи. Контуры научного решения обозначены многими исследователями создание композиционных систем, в которых должны присутствовать жертвенные для адсорбции ПАВ, а основной НПАВ должен обладать химической и биологической стабильностью плюс способностью создавать в обводненной пористой среде условия для диспергирования остаточной нефти и проталкивания ее в виде микроэмульсии (по механизму, приближающемуся к смешивающемуся вытеснению). Последнее требовало присутствия в компаунд-системе или композиции и анионактивных ПАВ (АПАВ) для достижения ультранизких межфазных натяжений — до 10 мН/м. Выяснилось, что ультранизкие межфаз-ные натяжения могут существовать лишь в узком диапазоне общего энергетического спектра. И само достижение ультранизких межфазных натяжений не является обязательным условием, поскольку механизм воздействия на пленочную и рассеянную остаточную нефть при использовании ПАВ можно реализовать в виде последовательной цепочки процессов, обеспечивающих оптимальные значения pH среды. [c.6]

    Микрореология полимеров основана на мол.-кине-тич. моделях, представляющих полимер набором последовательно соединенных друг с другом максвелловских тел, диспергированных в вязкой или вязкоупругой среде (модели Каргина-Слонимского-Рауза и др.). Эти модели позволили объяснить и предсказать форму релаксац. спектра полимера, оценить влияние длины цепи и содержания полимера в р-ре на времена релаксации. Согласно т. наз. скейлинговой концепции, в первом приближении все длинноцепочечные полимеры проявляют подобные св-ва при надлежащем выборе масштаба сравнения, а определяющую роль в проявлениц реологич. св-в полимерных систем играет только длина цепи, но не ее хим. строение. Этот подход позволил получить выражения, описывающие с точностью до численных коэффициентов реологич. св-ва полимерных материалов с помощью степенных ф-ций, подобных вышеприведенной зависимости т] от М. [c.249]

    Распределение радикалов. Прежде всего возникает вопрос о возможности однородного диспергирования радикалов в исследуемом веществе. Критерием более или менее однородного распределения в низкомолекулярной или полимерной среде нитроксильных радикалов, используемых в качестве зондов, может, по-видимому, служить наличие расщепления в спектре ЭПР, связанного с СТВ. При высоких локальных концентрациях радикалов сильные диполь-дипольные и обменные взаимодействия неспаренных электронов приводят к исчезновению сверхтонкой структуры спектра. Показано [203 204, с. 236], что вращательная и поступательная подвижность парамагнитного зонда в полимерной среде тесно связана с движением макромолекул. Изменение величины расщепления, ширины и интенсивности линий спектра происходят обычно вблизи температуры стеклования (как правило, выше Гст.) Зависимость от /Г при этой же температуре претерпевает перегиб. При температурах выше точки перегиба энергия активации Е возрастает. Для больших по объему молекул зонда температура начала изменения спектральных характеристик близка к Гст- Вращение малых молекул зонда в аморфных полимерах практически изотропно, поэтому для определения Хс используют соотношение (XI. 7). В области температур выше и ниже точки перегиба зависимость Хс от /Т описывается законом Аррениуса Тс = Тоехр ( // Г). На связь подвижности зонда с сегментальной подвижностью макромолекул указывают аномально большие значения предэкспоненты и возрастание энергии активации при температурах выше Гст- В табл. XI. 1 приведены релаксационные параметры то и для некоторых аморфных полимеров в области температур выше и ниже точки перегиба Г . [c.287]

    Циклопентадиенил-анион (126), первый из ионов, у которого были обнаружены ароматические свойства, был получен Тиле в 1901 г. при взаимодействии циклопентадиена с диспергированным в бензоле натрием. ИК-Спектры и спектры комбинационного рассеяния (126) весьма просты, что соответствует симметрии Спектр Н-ЯМР содержит одну единственную резонансную линию при 6 5,57 млн- . Циклопентадиенил-анион реагирует с электрофилами, карбоксилируется СОг и алкилируется или арилируется соответствующими органическими галогенидами. Во всех случаях образуются димерные дициклопентадиены [схема (32)]. Деринг и Де Пю установили, что циклопентадиениллитий реагирует с /г-то-луолсульфонилгидразидом, образуя илид диазоциклопентадиеиа [c.494]

    Наиболее приемлемым методом работы с твердыми веществами является, вероятно, растирание нескольких миллиграммов их с каплей медицинского парафина (нуйол) и затем сжимание полученной пасты между двумя пластинками. Нуйол сильно уменьшает рассеяние света твердыми частицами, а его собственный спектр (рис. 4.2, а) относительно прост и легко вычитается из полного спектра получающейся пасты. Другой очень удобной методикой является суспендирование вещества в таблетке галогенида щелочного металла (КС1 или КВг) около 1 мг образца растирают в 300 мг галогенида калия и затем подвергают значительному сжатию в металлической форме получается почти бесцветная даблетка галогенида металла, содержащая тонко диспергированное вещество. Захваченная вода часто дает полосы вблизи 3400 и 1600 см , в остальном же полученный спектр является спектром самого вещества. Дальнейший путь к преодолению трудностей, связанных с толщиной слоя и рассеянием света, заключается в расплавлении вещества (например, ст. пл. <150°) между двумя пластинками соли, причем при остывании расплава образуется тонкий кристаллический слой. Молекулы в таком слое часто специфически ориентированы по отношению к световому лучу, и сравнение этого спектра со спектром того же самого вещества, но со случайно расположенными частицами, в нуйоловой пасте может выявить значительные различия. [c.121]

    Попытки скоррелировать результаты по дисперсной фазе такинг же способом, что и для сплошной, оказались неудачными. Одно из объяснений этой неудачи связано с так называемым прямым перемешиванием. Однако учет прямого перемешивания оправдан при широком спектре распределения времени пребывания частиц диспергированной фазы, но не учитывается нри обратном перемешивании этой фазы. Олней [98] в своей работе обсуждал некоторые вопросы распределения времени пребывания частиц диспергированной фазы в роторно-дисковых экстракторах, связывая его с различиями в скорости всплывания (падения) капель. [c.158]

    Дисперсия. Одной из важных характеристик монохроматора является его способность разлагать в спектр падающее на него излучение. Угловая дисперсия диспергирующего элемента определяется величиной aQjaX (рад-нм" ), где aQ — угловое расхождение двух диспергированных световых пучков, различающихся по длинам волн на йЛ. Линейная дисперсия dx/dA — расстояние dx (см) в фокальной плоскости прибора между спектральными линиями, различающимися по длинам волн на йЛ. Угловая и линейная дисперсии связаны соотношением dxIdX fdQldX, (11.13) [c.214]

    Только при диспергировании замороженных растворов полимеров винилового ряда в инертных растворителях при <—180 °С вакууме, т. е. в условиях, когда взаимодействпе первичных радикалов с компонентами среды исключено, а их подвижность в матрице замороженного растворителя минимальна, удалось при анализе спектра ЭПР зафиксировать два типа первичных радикалов,, образующихся при механокрекинге  [c.23]

    Следовательно в зависимости от дисперсности б, концентрации nIN, температуры граница лиофильности как некоторое критическое значение межфазной энергии а , соответствующее условию агрегативной устойчивости дисперсной системы, может лежать в очень широком интервале значений о (10 ч- ЮмДж/м ), что удается выразить численно и сопоставить с экспериментальными данными, В этой развиваемой нами системе представлений лиофильность (и как альтернатива — лиофобность) не есть свойство поверхности как таковой (и не есть, как правило, характеристика поведения отдельной частицы),— это понятие выступает как свойство системы, как одно из проявлений универсальной физико-химической закономерности — конкуренции потенциальной энергии сцепления частиц дисперсной фазы и кинетической энергии, связанной с их участием в тепловом движении. Вместе с тем, в основе развиваемой схемы лежит оценка глубины первичного (ближнего) потенциального минимума для индивидуального контакта, прежде всего, по отношению к величине кТ, и их сопоставление в широком интервале варьирования родственности среды и дисперсной фазы. При этом обнаруживается весь непрерывный спектр от лиофильности (самопроизвольного диспергирования, пептизации коагулята), когда щ составляет малые доли кТ, например, для гидро-фобизованных частиц диаметром 6=1- 10 м в жидком углеводороде, до совершенной лиофобности (коагуляции, с прочным закрепле- [c.44]

    Метод микротомных срезов широко используется при исследовании степени диспергирования сажи в каучуке как в нашей стране так и за рубежом. Для изготовления срезов толщиной 1—5 м/с образцы резины замораживают в жидком азоте. Срезы саженаполненных каучуков толщиной 5 мк хорошо просматриваются под микроскопом (рис. IV. 12). На серовато-коричневом фоне хорошо видны черные сажевые агрегаты разных размеров. При хорошем диспергировании и качественном смешении (рис. IV, 12, а) большая часть сажи диспергирована до размеров, не видимых при среднем увеличении (до X 600), Присутствие мелких частиц ответственно за окраску среза, поскольку тонко диспергированная сажа сильнее рассеивает более короткие волны светового спектра. При плохом смешивании на общем сероватом фоне хорошо видны комки недиспёргированной сажи, достигающие в отдельных случаях значительных размеров — до 0,05 мм (рис. IV. 12, б). Присутствие таких комков, нарушая однородность системы, может приводить к существенному ухудшению механических показателей резин. [c.195]

    I) конденсационно-коагуляционные, в том числе гетерогенная нук-леация, 2) химические реакции и 3) диспергирование аэрозольного вещества. Для аэрозолей конденсационного происхоадения спектр размеров частиц начинается от размепов, определяемых несколькими атомами или молекулами, т.е. от I нм. Максимум распределения таких частиц определяется интенсивностью процесса [c.5]

    На оптической схеме спектрофотометра "Спекол-10" (рис. 51) можно проследить его работу. Лучи света от источника излучения 1 попадают на конденсор 2, собираются в пучок при помощи зеркала 3 и посылаются на входную щель монохроматора 4- Объектив 5 придает лучам света параллельный ход и направляет их на дифракционную решетку 6, где они разлагаются на спектр. Разложенный (диспергированный) свет фокусируется линзой 8 на выходную щель 9, где и возникает изображение спектра. Вращая дифракционную решетку б, с помощью рукоятки 7 перемещают спектр относ1 тельно щели и получают монохроматический свет различных длин волн (с точностью до 1 нм). [c.362]


Смотреть страницы где упоминается термин Спектр диспергирование: [c.212]    [c.161]    [c.212]    [c.101]    [c.145]    [c.156]    [c.29]    [c.11]    [c.157]    [c.63]    [c.258]    [c.7]    [c.157]    [c.72]   
Химическое разделение и измерение теория и практика аналитической химии (1978) -- [ c.709 ]




ПОИСК





Смотрите так же термины и статьи:

Диспергирование



© 2025 chem21.info Реклама на сайте