Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Напряжение возбуждения ионизация

    Электронное возбуждение, ионизация, образование радикалов, окисление и сшивка также являются основными процессами, происходящими в твердых полимерах под действием ядерного облучения (а, р,у-излучение, нуклоны). С учетом влияния подвижности молекул на кинетику деградации и сшивку материала усиливающее действие напряжения возможно, но это еще нельзя считать доказанным. Перед современными исследователями стоит задача понять взаимосвязь между характеристиками облучения (зависимость дозы облучения и скорости дозирования), структурой сетки и макроскопическими свойствами материала после его облучения [198, 200,219]. [c.322]


    Наглядно процесс возбуждения свечения атома при электронном ударе можно представить следующим образом летящий электрон поднимает электрон атома, с которым он столкнулся, с основной орбиты (в смысле теории Бора) на более высокую. При возвращении электрона на первоначальную орбиту атом испускает в виде света энергию, полученную им при соударении е = Ег — 81. Если энергия сталкивающегося электрона недостаточна для перевода электрона атома на более высокую орбиту, то летящий электрон отражается по законам упругого соударения. Напряжение V, требующееся. для возбуждения атома к испусканию определенной спектральной линии, называется напряжением возбуждения данной спектральной линии. Напряжение, требующееся для сообщения электрону такой скорости, чтобы он мог вырвать электрон из атома, называется напряжением ионизации VJ. Работа. ионизации равна произведению напряжения ионизации на заряд электрона [c.123]

    Гелиевый детектор. Принцип его действия основан на том, что потенциал возбуждения метастабильного Не значительно выше потенциала ионизации практически всех газов, кроме неона. Поэтому если в камере детектора имеется источник р-частиц, например тритий, то при наличии поля, создаваемого высоким напряжением, гелий возбуждается и его атомы становятся метастабильными. При столкновении молекул анализируемого газа с этими атомами про- [c.43]

    Например, если направить поток электронов, ускоренных электрическим полем при напряжении 4,9 в или несколько больше, на пары ртути, то при соударениях с электронами произойдет возбуждение атомов, которые имеют первый потенциал возбуждения 4,9 эв. Наиболее эффективно происходит возбуждение при энергии электронов, равной точно 4,9 эв. Пары ртути начнут излучать линию X = 2536,5 А- При увеличении напряжения, ускоряющего электроны, появляются линии с более высокими потенциалами возбуждения. При напряжении 10,4 в (потенциал ионизации ртути 10,4 эв) появляются все дуговые линии ртутного спектра, а также становится возможной ионизация атомов при соударениях с электронами. [c.49]

    Методы возбуждения полупроводников могут быть различными [13, 14]. Например, для подкачки могут быть использованы импульсы электрического поля. В этом случае за счет ударной ионизации валентной зоны (эффект Зинера) образуются неравновесные электроны в зоне проводимости и неравновесные дырки в валентной зоне. Крайне важно, чтобы эти неравновесные носители тока не рекомбинировали достаточно быстро. В другом, применяемом на практике методе возбуждения полупроводника используют инжекцию (см. гл. IX, 3) неравновесных носителей тока через р—п-переход вырожденных полупроводников. К образцу, составленному из полупроводников с акцепторными и донорными примесями, прикладывается внешнее напряжение (прямое смещение), заставляющее электроны переходить из р- в п-область. В области р—п-перехода идет рекомбинация электронов и дырок с выделением фотонов, частота которых со е /й. [c.523]


    Метод Франка и Герца заключается в возбуждении и ионизации атомов в газообразном состоянии (вакуум) путем электронного удара и одновременной регистрации тех напряжений, при которых электрон получает необходимую для этого энергию. [c.45]

    Эта своеобразная зависимость чувствительности определения от концентрации объясняется тем, что электроны, освобождающиеся при ионизации детектируемого вещества, вновь возбуждают атомы аргона до метастабильного состояния. Возникает цепная реакция, приводящая при определенных концентрациях и высоких напряженностях поля к лавинному возрастанию ионизационного тока. Снижение чувствительности определений при высоких концентрациях объясняется тем, что электроны не успевают приобрести энергию, достаточную для возбуждения атомов аргона до метастабильного состояния, так как теряют ее при столкновениях с молекулами детектируемого вещества. [c.144]

    Так, если в трубке имеются атомы водорода, то регистрируемый гальванометром ток, возникающий благодаря попаданию электронов на пластину, не изменится до тех пор, пока ускоряющий потенциал не достигнет 10,2 В. При такой ускоряющей разности потенциалов электроны при прохождении поля между нитью накаливания н сеткой приобретают за счет поля точно такое количество энергии, которое необходимо, чтобы перевести атом водорода из нормального состояния в первое возбужденное состояние, что связано с изменением квантового числа от п=1 до п=2. При этом наблюдается падение тока в цепи, в которую включена пластина. Напряжение, равное 10,2 В, называется критическим напряжением или критическим потенциалом для атомарного водорода. Можно также наблюдать и другие критические потенциалы, соответствующие другим возбужденным состояниям, причем самый высокий потенциал равен 13,60 В. Это критическое напряжение (13,60 В) соответствует энергии 13,60 эВ, необходимой для полного отделения электрона от атома водорода иными словами, оно соответствует энергии, необходимой для превращения атома нормального во дорода в протон и электрон, т. е. для удаления электрона из него. Напряжение 13,60 В называется потенциалом ионизации атома водорода, а количество энергии 13,60 эВ называется энергией ионизации атома водорода. [c.124]

    Последовательно повышая напряжение электрического поля, можно достичь более высоких уровней возбуждения, вплоть до диссоциации атомов на ионы и свободные электроны. Необходимый для этого критический потенциал называется потенциалом ионизации V . Для атома водорода он равен 13,3 в. Энергию, необходимую для ионизации атома, согласно теории Бора, можно найти из уравнений (59) и (61) при и 2=00  [c.113]

    В лампах тлеющего разряда (ЛТР) величина тока составляет обычно менее 100 мА, а напряженность электрического поля может достигать нескольких кВ/мм. Высокое напряжение позволяет осуществлять эффективное распыление. В испускание тлеющего разряда вовлечен ряд процессов, таких, как возбуждение и ионизация электронным ударом, а также ионизация Пеннин- [c.23]

    Для кристаллов как первой, так и второй группы установлена экспериментальная зависимость яркости свечения от приложенного напряжения, что позволяет объяснить возбуждение центров свечения механизмом ударной ионизации. [c.461]

    Масс-анализатор ИЦР, называемый также масс-спектрометр с преобразованием Фурье (МС-ПФ), в последнее время находит все большее применение для аналитических целей [16, 22, 60]. Основным элементом спектрометра ИЦР (с наличием или без Ф)фье-приставки) является прямоугольная шестиэлектродная ячейка со стороной, равной нескольким сантиметрам, внутри которой создается высокий вакуум и сильное магнитное поле (рис. 7.14). В ней производится ионизация исследуемых молекул импульсным пучком электронов (в течение 1-5 мс) или другим методом. Образовавшиеся ионы движутся в магнитном поле по циклическим траекториям с так называемой циклотронной частотой со , определяемой указанным соотношением (7.13). Ионы удерживаются в ячейке с помощью потенциальной ямы, образованной наложением положительного напряжения 1,0 В) на боковые пластины и отрицательного напряжения (== -0,5 В) на верхнюю, нижнюю и две торцевые пластины. Разделение по массам достигается в результате подачи переменного радиочастотного поля с частотой оз на верхнюю и нижнюю пластины. Если частота электрического поля совпадает с циклотронной частотой (со/ = сом), то ионы будут поглощать энергию и их скорость и радиус траектории увеличатся. Все ионы с отношением М е будут циркулировать в фазе с радиочастотным возбуждением. Энергию, поглощаемую ионами в резонансе, измеряют с помощью специальной схемы. Однако схема работает только при частоте выше 75 кГц, что ограничивает анализ ионов с большими массовыми числами. [c.858]

    Механизм возбуждения СВЧ-колебаний в таких генераторах основан на возникновении в переходном слое полупроводника отрицательного сопротивления из-за сдвига фаз между напряженностью поля и током в переходный период. Этот ток создается в результате ударной ионизации атомов кристалла и лавинного умножения носителей заряда в области перехода. Сдвиг по фазе между током и напряжением возникает из-за инерционности лавинного процесса и конечности времени пролета носителей через переход. Преимущества таких генераторов - малые значения прикладываемых напряжений и [c.425]


    Наибольшая напряженность поля тлеющего разряда наблюдается в области темного катодного пространства. Электроны, испущенные катодом, еше не успевают здесь набрать анергию, необходимую для возбуждения и ионизации молекул газа. [c.432]

    Под действием ионизирующего излучения источника ионизации 7 и высокого напряжения, приложенного к электродам камеры, происходит возбуждение атомов аргона до метастабильного состояния и последующая ионизация ими молекул анализируемой смеси. Измерение ионизационного тока осуществляется подключением собирающего коллектора 5 к каналу усилителя постоянного тока. [c.397]

    В аргоновом ионизационном детекторе использован процесс ионизации органических молекул путем соударений с метастабильными или возбужденными атомами аргона. Радиоактивный источник, обычно р-излучатель, монтируется в камере детектора. р-Излучение большой энергии ионизирует газ-носитель аргон, проходящий через детектор. Электроны, возникающие в результате ионизации при наличии высокого градиента напряжения (600—1200 в), ускоряются и приобретают энергию, достаточную для возбуждения атомов аргона до их метастабильного состояния без значительного образования дополнительного количества ионов аргона. Концентрация метастабильных атомов в детекторе есть функция приложенного напряжения. Метастабильные атомы аргона в свою очередь способны отдавать энергию в присутствии любых молекул, обладающих более низкими потенциалами ионизации, чем энергия метастабильных атомов (11,6 эв). Большинство органических веществ имеет потенциал ионизации ниже 11,6 эв, тогда как для неорганических и редких газов ионизационные потенциалы выше этой величины. [c.52]

    В аргоновом ионизационном детекторе -лучи возбуждают атомы газа-носителя (аргона) и переводят их в метастабиль-ное состояние. Возбужденные атомы, в свою очередь, ионизируют молекулы веществ, энергия ионизации которых ниже энергии атомов аргона в метастабильном состоянии (11,7 эВ). Напряжение, подаваемое на электроды, можно изменять от 750 до 2000 В с соответствующим повышением чувствительности. [c.160]

    Гораздо большее распространение получил аргоновый ионизационный детектор (в качестве газа-носителя используют аргон). р-Лучи возбуждают атомы аргона и переводят их в метастабильное состояние. Возбужденные атомы, в свою очередь, ионизируют молекулы веществ, энергия ионизации которых ниже энергии атомов аргона в метастабильном состоянии (11,7, эВ). Схема аргонового детектора аналогична схеме, приведенной на рис. 111,11 а. Объем ячейки довольно велик и составляет 3—8 мл (эффективный объем ионизации существенно меньше). Напряжение, подаваемое на электроды, можно изменять от 750 до 2000 В с соответствующим повышением чувствительности. [c.175]

    В отношении механизма электронного перехода, связанного с экситонным поглощением, и модели самого экситона могут быть две альтернативы переход электрона в какое-то возбужденное состояние иона хлора или переход электрона с иона хлора на соседний ион щелочного металла. Совершенно бесспорно, что собственное поглощение щелочно-галоидных кристаллов обусловлено поглощением света ионами галоида. В связи с этим можно полагать, как и поступает Декстер [15] в своих вычислениях, что возбужденный электрон преимущественно связан с ионом галоида, возбужденное состояние которого подобно 3p 4sP состоянию. Следует отметить, что для свободных отрицательных ионов водорода теоретически доказана возможность существования дискретных уровней энергии, расположенных ниже потенциала ионизации [23]. Напряженность поля, в котором находится избыточный электрон в отрицательном ионе водорода, падает более быстро с расстоянием по сравнению с кулоновским полем. Поэтому в таком поле может быть только ограниченное число дискретных состояний. [c.13]

    В случае дугового возбуждения при расчете мощности дуги следует принимать во внимание не только силу тока г, но и напряжение дуги t/дуга- в случае угольной дуги с эффективным потенциалом ионизации Vи с межэлектродным промежутком I [c.198]

    Как уже отмечалось, часть столкновений электронов с атомами сопровождается не ионизацией, а возбуждением атомов. Такие атомы очень скоро возвращаются в нормальное состояние с испусканием фотонов ультрафиолетового излучения. Фотоны возникают также и при рекомбинации положительных ионов вблизи катода. При попадании фотонов на цилиндр происходит фотоэффект — из катода вырываются новые электроны. При относительно невысоких напряжениях между электродами количест- [c.167]

    Если трубку наполнить газом, например водородом, то гальванометр. будет показывать увеличение тока вплоть до значения напряжения 10,2 в. Эта разность потенциалов как раз достаточна для того, чтобы атом водорода из основного состояния перевести на первый возбужденный уровень. При напряжении 10,2 в ток на собирающем электроде резко падает. Имеется и еще целый ряд величин напряжения, при которых ток снова падает. Особенно сильно ток уменьшается при 13,6 в. Энергия, соответствующая определенной разности потенциалов, выражается в электрон-вольтах (эв). 1 эв представляет собой ту энергию, которую приобретает один электрон, если он проходит разность потенциалов 1 в. Следовательно, энергия, соответствующая напряжению 13,6 в, равна 13,6 эв. Она достаточна для того, чтобы электрон освободить от связи с ядром водорода. Напряжение 13,6 в называется ионизационным потенциалом атома водорода, а соответствующая энергия 13,6 эв — работой ионизации. В случае атомов с несколькими электронами имеется несколько значений энергий, которые называются порогами ионизации данного атома. [c.7]

    Интересный случай наблюдался у молекулы НгЗ. Если эти молекулы бомбардировать электронами, та при ускоряющем напряжении выше потенциала ионизации (10,47 эВ) образуются нормальные ионы При энергиях выше 13,1 эВ возникают ионы 8 , часть которых дает пики не с обычной массой (т = 32), ас кажущейся массой (т 30,1). На основании этого можно за1 лючить, что ионы 5+ ускорялись в виде ионов Н25 , которые затем самопроизвольно распадались (предиссоциировали) на 5 +Н2 [30]. Состояние, вызывающее предиссоциацию, является квартетным (ибо основное состояние иона 5+ относится к типу 5, а основное состояние молекулы Нг— к типу тогда как состояние, возникающее при ионизации молекул НзЗ, может быть толькр дублетным. Из-за нарушения правила отбора для спина (А5 = 0) предиссоциация совершается весьма медленно, так что распад происходит лишь после ускорения ионов НзЗ . В тожевремя причина метастабильности возбужденного иона НзЗ (до предиссоциации) должна заключаться в том, что возбуждение носит только колебательный характер,-а излучение в инфракрасной области (если оно вообще разрешено) происходит достаточно медленно (за время порядка 10 с), так что предиссоциация успевает произойти. [c.188]

    Для возбуждения разряда необходима предварительная ионизация газа, поскольку напряжение на индукторе значительно меньше напряжения пробоя рабочего газа. С этой целью чаще всего используют высоковольтную искру (катушку Тесла). В ионизированном газе возникает разряд, питаемый магнитным полем. Ток высокой частоты, протекающий через катушку-соленоид, создает переменное магнитное поле. Под его воздействием внутри катушки индуцируется вихревое электрическое поле. Вихревой электрический ток нагревает и ионизгсрует поступающие снизу порции газа за счет джоулевого тепла. Токопроводящая плазма аналогична короткозамкнутой вторичной обмотке трансформатора, магнитное поле которой сжимает кольцевой ток в тор (скин-эффект). [c.375]

    Заметим, что в выписанных выше уравнениях в качестве компонентов могут рассматриваться и частицы одного сорта, находя-ш,иеся в разных энергетических состояниях (поуровневое описание неравновесного возбуждения внутренних степеней свободы частиц). В частности, в потоках ионизованного газа из-за значительной разницы масс температура электронов может отличаться от поступательной температуры тяжелых частиц. В таких случаях к системе (5.5)-(5.14) присоединяется уравнение баланса энергии электронов. При наличии ионизации необходимо учитывать также наличие электрического поля, возникаюгцего при разделении зарядов. В тех случаях, когда ионизация сугцественна, дебаевский радиус обычно меньше характерного размера течения, поэтому индуцированное разделением зарядов электрическое поле при предположении квазинейтральности смеси исключено из уравнений течения смеси. Если условие квазинейтральности не выполняется, то напряженность электрического поля находится из уравнений Пуассона, которое присоединяется к исходной системе уравнений (см. [176]). [c.163]

    Онисан [327] эффект возбуждения электромагнитного излучения — генерирование электромагнитных волн в радиодианазоне при нарушении адгезионной связи. Это излучение и сонровожда-юш ее его свечение газового промежутка свидетельствуют, по мнению авторов, о существовании в зазоре между разделяемыми поверхностями ноля высокой напряженности. Электрон под действием этого поля набирает достаточную скорость для ионизации встречающихся молекул. Так на пути электрона возникает лавина положительных и отрицательных ионов — микроплазма. Находящаяся в ускоряющем электрическом ноле микроплазма генерирует радиоволны [327]. [c.203]

    Галогенные счетчики обычно работают на смеси неона (потенциал ионизации равен 21,5 В, потенциал возбуждения метастабильного состояния 16,6 В) и паров брома (потенциал ионизации 12,8 В). Разность потен-щ1алов межд> катодом и анодом выбирают таким образом, чтобы вблизи нити напряженность электрического поля оказывалась достаточной для возбуждения атомов неона, но недостаточной для его ионизации. Возбужденные атомы неона испытывают большое число соударений, в том числе и с молекулами брома, ионизируя последние. Образовавшийся свободный электрон в свою очередь на пути к нити возбуждает атомы неона с последующей ионизацией молекул брома. [c.84]

    Во вторичных процессах электроны теряют свою энергию на образование электрон-дырочных пар (экси-тоны) и на возбуждение осцилляций решетки (фононы). На месте прохождения первичной заряженной частицы остается трубка плазмы вокруг трека с высокой концентрацией электронов и дырок (Ю -Ю см ). На-пряжишость электрического поля Е должна быть такой, чтобы обеспечить разделение зарядов и сбор электронов на аноде до того, как они рекомбинируют с дырками, чтобы получить заряд, достаточный для регистрации первичной частицы по энергии, затраченной на ионизацию. Например, при толщине чувствительной области = 100 мкм и величине обратного смещения [/= 200 В напряженность электрического поля ((0) = 4 10 В/м. Этого хватит для разделения большей части электронов и дырок и сбора электронов на анод [11]. [c.86]

    Для проверки применимости квазиравновесной теории может быть использован расчет частотного фактора как неизвестного параметра на основании наблюдаемого масс-спектра. Такой метод был предложен Кингом и Лонгом [1110]. Проверка теории состояла в выяснении, насколько полученный частотный фактор близок по своему значению для различных членов гомологического ряда и насколько он изменяется в зависимости от энергии ионизирующих электронов. Кинг и Лонг нашли, что при 70 эв частотные факторы, наблюдаемые для различных спектров, хорошо согласуются между собой, хотя и имеются затруднения. Однако при низких энергиях ионизирующих электронов [709] теория перестает быть справедливой при низких напряжениях выход ионов с высокой энергией активации значительно выше, чем предполагалось по расчету эти расхождения тем больше, чем ниже ионизирующее напряжение. Чтобы уменьшить ошибки расчета, частотный фактор следовало бы увеличить на несколько порядков по сравнению с его нормальным пределом (10 в секунду). Большой выход ионов с высокой энергией активации при низких ионизирующих напряжениях [193, 1110] указывает на то, что реакции диссоциации для таких процессов протекают быстрее, чем устанавливается квази-равновесное состояние. Такое же заключение было сделано на основании исследования кривых эффективности ионизации больших молекул [706]. Недостаток теории, которая предусматривает необходимость быстрого и полного распределения избыточной энергии по колебательным уровням, состоит в континууме электронных состояний молекулярного иона. Можно ожидать, что если энергия на 1—2 в выше основного состояния, то распределение электронных состояний будет представлять сйбой сильно вырожденные узкие полосы с малым наложением. Между состояниями может быть лишь несколько нерадиационных переходов, и осколочные ионы будут образовываться из каждого отдельного возбужденного состояния молекулярного иона. [c.257]

    Проведение опыта, однако, усложняется тем, что при температурах выше 1900° К, даже при отсутствин ртутных паров, термоионная эмиссия нити значительно увеличивает скорость реакции. Было показано [2], что этот вредный эффект зависит от всех факторов, способных влиять на электронное возбуждение ст напряжения между концами нити, ускоряющего электроны (короткая или длинная нить, графитизированная или нет), траектории электронов (прямолинейная или и-образная нить). Разряды появляются при тем более низкой температуре, чем выше давление. По-видимому, это вредное влияние является результатом ионизации илн возбуждения реагента. Удачным монтажом исключают это и тогда констатируют, что, как и в случае реакции с Ог, скорость реакции при высоких температурах остается постоянной до 2200° К. Выше этой температуры скорость реакции и скорость испарения углерода становится величинами одного порядка. [c.152]

    При движении к нити электроны ускоряются электрическим полем и вблизи нити преобретают настолько большую энергию, что производят вторичную ионизацию. Следовательно, каждый электрон вблизи нити ионизирует атом газа и дает новый электрон, которым в свою очередь ионизирует следующий атом и т. д. Другими словами, происходит цепное размножение электронов и образуется лавина электронов. Электроны наряду с ионизацией сильно возбуждают атомы газа. Возбужденные атомы возвращаются в невозбужденное состояние с испусканием ультрафиолетового излучения. Эти новые кванты света образуют новые фотоэлектроны, которые в свою очередь дают вторичную электронную лавину. Следовательно, при регистрации одной ядерной частицы может образовываться несколько последовательных электронных лавин во всем объеме счетчика. Вероятность образования каждой последующей лавины резко падает (так как уменьшается напряжение на счетчике) и поэтому практически при регистрации одной ядерной частицы образуются 2—3 последовательные электронные лавины. В области Гейгера каждая лавина имеет 10 —10 " электронов. При средних значениях эффективной емкости системы а.лшлнтуда импульса при регистрации одной частицы равна 0,4—40 в. Импульс такой величины легко усиливается и регистрируется электромеханическим счетчиком. [c.46]

    Радиоактивные излучения, проникая во внутрь счетчика, в межэлектродное пространство, вызывают ионизацию содержащихся газов и образуют внутри счетчика положительные ионы и электроны. Электроны, ускоряясь в электрическом поле счетчика, напряженность которого имеет наибольшую величину около анода, приобретают энергию, достаточную для повторной ионизации нейтральных молекул. Вновь образующиеся электроны, ускоряясь в электрическом поле электродов счетчика, в свою очередь производят дальнейшую ионизацию и т. п., в результате чего происходит лавинообразное нарастание потока электронов. Одновременно с ионизацией образуются возбужденные атомы или молекулы, которые являются источником коротковолнового ультрафиолетового излучения. Это излучение, попадая на катод, вызывает появление фотоэлектронов, которые образуют новые лавины ионов вдоль нити, поэтому через очень короткий промежуток времени (порядка 10- сек) весь объем счетчика охватывается разр.ядом. Так как подвижность положительных ионов на несколько порядков меньше цодвижности электронов, электронная лавина собирается на аноде значительно раньше, чем перемещаются к катоду положительные ионы. При этом анод оказывается окруженным положительно заряженными ионами, что понижает напряженность электрического поля вблизи нити, в результате чего дальнейшая ионизация газа приостанавливается, а вместе с ней замедляется и активная стадия разряда. [c.8]

    В ЭТОМ методе неселективно образованные ионы всех изотопов (например, путём поверхностной ионизации) ускоряются заданным потенциалом, так что ионы различных изотопов приобретают различную скорость, затем перезаряжаются в атомы и уже после изотопически-се-лективно ионизируются при коллинеарном облучении пучка ускоренных атомов. Изменяя ускоряющее напряжение, можно было настраивать за счёт эффекта Доплера частоту резонансного поглощения атома в резонанс с частотой лазерного излучения на первой ступени возбуждения. Была достигнута изотопическая селективность ионизации 10 , что позволяло отчётливо сепарировать редкий изотоп [c.365]

    Т. е. в условиях наших опытов 1 звено из 123 претерпевает химическое превращение. Так как средний молекулярный вес изучавшегося полиэтилена около 25 ООО, что соответствует —900 звеньям, то на 1 молекулу приходятся около 7 звеньев, претерпевших химические изменения, которые заключаются не только в образовании связей между различными молекулами (сшивание). Как было показано [7], при облучении в вакууме образуется 3,6 двойных связей С=С на молекулу, в то время как общее количество звеньев, претерпевших изменения, определенное по выходу водорода, составляет в этих условиях 4,8 иа молекулу. Таким образом, в среднем 1,2 звена на молекулу нри этом процессе могут быть затрачены на образование разветвлений и сшивание молекул полиэтилена между собой. Так как в приведенной нами схеме возможного нротекания реакции с участием полимерных радикалов реакция I значительно более вероятна, чем реакция II (вследствие различия в междуатомных расстояни-ниях), то не исключено, то процесс сшивания протекает с участием первоначально образующихся по схеме I двойных связей. Это подтверждается также наблюдаемой нелинейностью скорости образования двойных связей с ростом дозы. Нетрудно видеть, что в этих условиях все химические изменения молекул так или иначе должны приводить к разрушению кристаллической решетки полиэтилена. Первичные акты ионизации и возбуждения, сопровождаемые образованием радикалов, могут происходить в макромолекуле с равной вероятностью в любом ее звене. Поэтому химические превращения звеньев, являющиеся вторичными процессами, могут иметь место как в кристаллической части, так и в аморфной. В случае сшивания соседних молекул в кристалле должно произойти весьма значительное сокращение расстояния между двумя атомами, принадлежавшими первоначально различным молекулам (от 4 до 1,54 А). При этом должно измениться расположение не только тех атомов, между 1<оторыми образовалась химическая связь, но и соседних вследствие передачи возникающих напряжений но молекулярным цепям. [c.221]


Смотреть страницы где упоминается термин Напряжение возбуждения ионизация: [c.133]    [c.78]    [c.135]    [c.253]    [c.571]    [c.10]    [c.133]    [c.25]   
Курс неорганической химии (1963) -- [ c.138 ]

Курс неорганической химии (1972) -- [ c.123 ]




ПОИСК





Смотрите так же термины и статьи:

Возбуждение и ионизация



© 2025 chem21.info Реклама на сайте