Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэфиры физические

    ПОЛИЭФИРЫ Физические свойства [c.322]

    Переработка металлических и керамических порошков путем спекания — это старый, хорошо отработанный технологический процесс. При переработке полимеров плавление со спеканием применяется в таких процессах, как ротационное литье [20, 21] и порошковое напыление покрытий изделия. Кроме того, это практически единственный способ переработки политетрафторэтилена, так как высокая молекулярная масса этого полимера служит препятствием для применения других методов [22]. И, наконец, спекание возникает при уплотнении под большим давлением, которое необходимо для плавления и формования термостойких полимеров, таких, как полиимиды и ароматические полиэфиры, и физических смесей других, более традиционных полимеров [23, 24]. [c.279]


    Физические свойства полиэфиров зависят от строения углеводородных радикалов гликолей и дикарбоновых кислот. Если радикалы ароматические, полиэфир имеет жесткую структуру и пригоден для получения стекол и волокон. Если радикалы [c.180]

    Технология производства полиуретановых пен прогрессирует настолько быстро, что они стали серьезно конкурировать с каучуковыми латексными пенами. По свойствам пены обоих типов не одинаковы, и поэтому логично ожидать, что каждая из них захватит определенную часть рынка в соответствии с эксплуатационными показателями и ценой. В литературе отмечали [72 ] следующие недостатки гибких уретановых пен на основе сложных полиэфиров наличие горизонтального участка на кривой деформация — напряжение, медленность упругого восстановления после сжимающих нагрузок, трудности формования, сложность получения материалов повышенной плотности. Однако некоторые из этих недостатков можно значительно уменьшить методами смешения, в частности введением соответствующих наполнителей. Было проведено исследование для выяснения зависимостей между степенью разветвленности (оцениваемой молекулярным весом, приходящимся на каждую точку разветвления структуры) и другими особенностями уретановых пеп, с одной стороны, и их физическими свойствами — с другой [84]. [c.210]

    Свойства полиэфиров определяются химическим строением звена, молекулярным весом и физической структурой. Низкомолекулярные полиэфиры хрупки и могут меть практическое значение лишь в том случае, если они способны к отверждению за счет свободных функциональных групп (если функциональность хотя бы одного из сходных веществ больше двух) или двойных связей. [c.81]

    Применяемые газы содержат примеси в ничтожно малых концентрациях. Присутствие этих примесей чаще всего не влияет на процесс разделения, однако, они оказывают вредное действие на неподвижную фазу, находящуюся в колонке. Кислород и водяной пар при температурах выше 100°С разлагают полигликоли, полиэфиры и некоторые силиконовые фазы, что приводит к изменению термостойкости и хроматографических свойств неподвижных фаз. Органические примеси даже в ничтожно малых концентрациях вносят искажения при проведении анализа с программированием температуры. На стадии охлаждения колонки эти вещества накапливаются в ее начале и по мере повышения температуры мигрируют к ее концу. Иногда эти примеси могут выходить с анализируемыми компонентами и при пониженных концентрациях последних даже маскировать их. Поэтому все примеси рекомендуется удалять из применяемых газов физическими или химическими методами. [c.32]


    Книга посвящена процессам деструкции (разрушения) полимеров—одному из важнейших разделов химии высокомолекулярных соединений, имеющему большое теоретическое и особенно практическое значение. Содержит шесть глав, в которых обстоятельно изложена классификация видов деструкции под действием физических и химических факторов рассмотрены процессы деполимеризации полиметилметакри-дата, полистирола, полиэтилена, политетрафторэтилена и других высокомолекулярных веществ, реакции деструкции цепей высокомолекулярных соединений—целлюлозы, сложных полиэфиров и поливинилацетата под влиянием различных деструктирующих агентов кроме того, в книге описаны процессы, вызываемые действием кислорода, серы н озона при воздействии их па различные полимеры. [c.4]

    Хотя гидролитическую деструкцию полимеров впервые изучали на примерах белков и целлюлозы, позднее в этом направлении начали исследовать синтетические продукты поликонденсации, особенно полиэфиры и полиамиды. Технологическое значение реакций гидролиза полимеров как в процессе их синтеза, так и при их использовапии заключается в том, что гидролиз макромолекул вызывает снижение разрывной прочности. Вследствие этого необходимо знать механизм гидролитической деструкции отдельных полимеров, а также иметь возможность сравнивать разные полимеры по устойчивости их к гидролизу. Для выяснения механизма в свою очередь нужно определить скорость исследуемой химической реакции, а также влияние физической структуры полимера на скорость этой реакции. [c.5]

    Уретановая группа очень устойчива к гидролизу, в этом отношении она более устойчива, чем сложноэфирная группа. Полиуретаны на основе полиэфиров в виде эластичных пенопластов весьма устойчивы к гидролизу, в то время как пенопласты из сложных полиэфиров в тех же условиях подвергаются гидролизу, что характеризуется заметным ухудшением физических свойств полимера [306]. [c.395]

    Простые алифатические полиэфиры, например полиоксипропилен, обладают хорошими физическими свойствами и вызывают совсем незначительное набухание резины, однако трудно предотвратить их окисление. Новые полимерные ж-фениленовые простые эфиры значительно более стойки к окислению, но имеют высокую температуру текучести — оки застывают при комнатной температуре и даже несколько выше. Для сни- [c.147]

    Ушаков и Кононова [445] получили поливинилформиат из поливинилового спирта действием муравьиной кислоты и исследовали физические и механические свойства ряда полиэфиров. [c.355]

    Физические свойства. Физические свойства полиэфиров, как и других классов высокомолекулярных соединений, определяются рядом факторов, таких как химическое строение цепи, молекулярный вес, фракционный состав. Большое число работ посвящено выяснению влияния строения полиэфиров на их физические свойства [90—95, 98—100, 102, 103, 374—385]. [c.23]

    Химические и физические свойства. Изучению химических и физических свойств полиэтилентерефталата посвящено большое число работ [1094—1203]. В табл. 4 собраны опубликованные данные об этом полиэфире. [c.36]

    Физические свойства. Физические свойства простых полиэфиров зависят от строения их цепи и молекулярного веса [1498—1500]. [c.48]

    Физические свойства простых полиэфиров [c.58]

    Значительное число работ посвящено изучению или описанию различных физических свойств простых полиэфиров [22, 42, 85, 91, 94, 118, 119, 151, 158, 160, 164, 187, 214, 216—227, 229— 311, 520]. [c.58]

    Физические свойства полиэфиров [c.93]

    Во многих статьях рассмотрены различные физические свойства гетероцепных сложных полиэфиров, такие, например, как температура и теплота плавления, растворимость, способность к кристаллизации, механические и электрические свойства и др. 142, 118, 137, 195, 248, 289, 290, 308, 390, 401, 849, 855, 858, 866, 877, 881, 897, 1120, 1124—1132, 1134, 1154, 1155, 1157—1159, 1162, 1175, 1179, 1195, 1203, 1211, 1260, 1263, 1296—1300, 1338—1465, 1467—1490]. [c.93]

    В ряде работ Коршака с сотр. [1127—ИЗО, 1134, 1157— 1159, 1299, 1338] выясняется влияние строения полимерной цепи на физические свойства полиэфиров самого разнообразного [c.93]

    Стадия роста цепи является основной в процессе поликонденсации. Она определяет главные характеристики образующегося полиЪгра молекулярную массу, состав сополимера, распределение по молекулярным массам, структуру полимера и другие свойства. Прекращение роста цепи макромолекулы может происходить под влиянием физических факторов, например, в результате увеличения вязкости системы, экранирования реакционных центров цепи, сворачивание ее в плохом растворителе и других. При прекращении роста реакционный центр сохраняет химическую активность, однако, как правило, не имеет подвижности, необходимой для протекания реакции [14]. Другой причиной является образование однотипных, не взаимодействующих функциональных групп на обоих концах полимерной цепи за счет избытка одного из мономеров. На этом принципе основан один из способов регулирования молекулярной массы полимеров (синтез сложных полиэфиров, полиамидов и др.). [c.159]


    Из исследованных каучуков лучшими эластическими свойствами в широком интервале температур обладает полимер, полученный из политетрагидрофурана молекулярной массы 1000. Для этого состава изучалось влияние полидисперсности полимердиола на свойства каучука и его вулканизатов. E тe твeннos что более высокий уровень эластичности имеют полимеры, содержащие значительное количество высокомолекулярных фракций. В области положительных температур- эластичность по отскоку является функцией полидисперсности полиэфира (рис. 2). Падение эластичности полимеров с увеличением коэффициента полидисперсности объясняется увеличивающейся нерегулярностью в распределении уретановых групп по цепп. Для полимеров, полученных на основе механической смеси каучуков, на температурной зависимости эластичности по отскоку появляются характерные для блокполимеров две области переходов. Нерегулярность физических узлов и химических поперечных связей при значениях [c.540]

    Вопросам подготовки поверхности для нанесения покрытия уделяется большое внимание. В США разработан и применен метод соединения полиэтилена с алюминием при помощи промежуточного мономолекуляр-ного слоя другого вещества. В данном методе применяют органическую кислоту с длинной углеводородной цепью (стеариновую), которая образует химическую связь с металлом и физическую с термопластом стеариновая кислота своей карбоксильной группой с металлом образует стеариты, а ее углеводородная часть внедряется в полиэтилен. Такой промежуточный слой обеспечивает прочное сцепление полиэтилена с алюминием. Широкое применение в антикоррозионной защите в последнее время нашли покрытия из хлорированного полиэфира. [c.223]

    Полиэфиры, образующиеся при взаимодействии пропиленгликоля и себациновой кислоты, напоминают по своим свойствам каучук и могут быть вулканизированы при помощи перекиси бензоила. Соответствующие эфиры этиленгликоля — хрупкие смолы, размягчающиеся выше 74°. Присутствие лишней метильной группы в пропиленгликоле сильно влияет на физические свойства полиэфира себациновой кислоты, например на температуру размягчения, которая лежит ниже комнатной [34]. Продукты, полученные из полиэфиров пропиленгликоля, применяют в США в качестве каучуков специального назначения. Сами по себе полиэфиры пропиленгликоля и себациновой или адипиновой кислот являются фиксированными пластификаторами. [c.371]

    Полиэтилентерефталат плавится при 264 °С. Он обладает хорошей влаго- и светостойкостью и очень высокой термостойкостью. Несмотря на чувствительность эфирной связи к химическим воздействиям, изде ЛИЯ из полиэтилентерефталата стойки к действию кислот, щелочей и окислителей, что можно объяснить особенностями физической структуры и трудностью диффузии реагентов внутрь полимера. Полиэтилентерефталат применяется для производства синтетического волокна и пластмасс. Полиэфиры, полученные из этиленгликоля и о- и л1-фталевых кислот, применяются для изготовления лаков. [c.351]

    Вообш,е говоря, циклические депсипептиды можно разделить на две большие группы, а именно группу с регулярно чередующимися пептидными и сложноэфирными связями и группу с нерегулярным внедрением сложноэфирных связей. Валиномицин (88), энниатины (89) и боверицин (90), большинство которых было охарактеризовано еще 25 лет назад, принадлежат к первой группе. Сделанное в середине 60-х годов наблюдение о том, что валиномицин и родственные соединения обладают единственными в своем роде избирательными возможностями транспорта ионов, возобновило интерес к этим соединениям, отнесенным на этом основании к ионофорам. Эти пептиды образуют имеющие важное биологическое значение липидорастворимые комплексы с полярными катионами, такими как К" , Ыа+, Са +, Мд +, а также с биогенными аминами. Многообразные физические исследования указывают на то, что кинетика образования и распада комплекса и скорости диффузии ионофоров и их комплексов через липидные барьеры настолько благоприятны, что их транспорт через биологические и искусственные мембраны достигает в некоторых случаях величин, превосходящих соответствующие величины для ферментных систем. Биологические применения ионофоров, среди которых имеются полиэфиры и синтетические соединения, всесторонне рассмотрены в обзорах [142, 143]. [c.321]

    При изготовлении форм плоской печати без увлажнения возможны как фотомеханический способ создания фоторельефа, так и чисто физический — лазерное облучение. Последнее либо изменяет физико-химические свойства материала, например его адгезию, либо испаряет полимерный слой за счет значительного местного перегрева, образуя рельеф. В качестве формного материала используется алюминиевая фольга с лаковым подслоем, поглощающим излучение, и антиадгезионным полисилоксановым покрытием диэлектрический подслой обладает низкой теплопроводностью [55, 59, 60]. Можно использовать алюминиевую пластину со слоем силиконового каучука, а между ними — два промежуточных изолирующих слоя, содержащих частицы, которые поглощают энергию импульса, и связующее, например нитрат целлюлозы. Изолирующий полимерный слой может быть образован полиэфирами, полиамидами, ПС, ПЭ, ПВХ [заявка ФРГ 2512038]. Разработаны специальные лазерные автоматы с линейной разверткой на малый формат пластин [55]. [c.206]

    Из гетероцепных полимеров легче всего деструктируются гидро-лйтнчески полиацетали (полисахариды), сложные полиэфиры и полиамиды. Гидролиз целлюлозы детально рассмотрен в гл. I. Аналогично протекает гидролиз до моносахаридов других полисахаридов, причем на скорости реакции сильно отражается различие в физической структуре этих веществ имеет также значение химическое строение. Гидролиз ускоряется ионами Н+, но ионы 0Н практически не влияют на процесс. Этим объясняются устойчивость полисахаридов в щелочной среде и сравнительно легкая расщеп-ляемость в кислой. [c.624]

    Существенное значение имеют физическая структура и состояние полимера. В гетерогенной среде, когда гидролиз протекает только на поверхности полиэфира, скорость гидролиза полиэтилентерефталата настолько мала, что это вещество практически устойчиво к действию кислот и щелочей. В растворе гидролиз протекает с такой же легкостью, как у низкомолекулярных эфиров терефталевой кислоты. [c.624]

    Параллелизм физических свойств этих полиэфиров, которые, как это видно из их синтеза, очевидно, обладают длинными цепеобразными молекулами, и многих технически очень важных органических материалов, как целлюлоза, шерсть, шелк и каучук, приводит к заключению, что природные продукты обязангл своими свойствами наличию подобной же химической структуры .  [c.155]

    Пленкообразующие вещества — основные компоненты любых лакокрасочных материалов. Они придают этим материалам способность к образованию пленки при нанесении на твердую поверхность и обеспечивают покрытиям необходимые физикомеханические свойства. В зависимости от характера процессов, протекающих при пленкообразовании, различают пленкообразующие двух типов. К первому типу относятся вещества, которые при высыхании не претерпевают химических превращений и образуют пленку в результате физических процессов испарения органического растворителя, воды ( непревращаемые пленкообразующие). Ко второму типу относятся вещества, содержащие в макромолекуле функциональные группы (гидр-ОКСИ-, карбокси-, аминогруппы и т. д.) и образующие пленку в результате химических процессов полимеризации или поликонденсации ( превращаемые пленкообразующие). К непревра-щаемым пленкообразующим относятся, например, эфиры целлюлозы, битумы, перхлорвиниловые смолы, к превращаемым — высыхающие масла, алкидные смолы, ненасыщенные полиэфиры, полиуретаны. [c.211]

    Для удобства классификации под физической адсорбцией понимают процессы, обусловленные силами Ван-дер-Ваальса, дппольными взаимодействиями или слабыми, легко разрушающимися водородными связями. Такое ограничение исключает сильные специфические связи электростатической или ковалентной природы. И в этом смысле пример физической адсорбции — притяжение между полимерными молекулами в таких аморфных полимерах, как акрилаты, полиэфиры, полистирол и другие. [c.76]

    Для фибриллярных белков возможен случай, когда способные к кристаллизации аминокислотные остатки (соответствующие А-звеньям) объединены в один блок, а неспособные к кристаллизации — в другой блок. Два эти стереохимически различных блока могут чередоваться вдоль цепи. Подобное расположение блоков по схеме эквивалентно упорядоченным полиэфирам. С другой стороны, возможно и чисто статистическое распределение кристаллизующихся и некристаллизующихся звеньев в цепи. Выяснить, какой тип распределения имеет место в действительности, можно лишь при комбинации структурных и термодинамических исследований, сопровождаемых анализом физических и механических свойств. [c.115]

    Настоящее изложение посвящено процессам расщепления макромолекул линейных полиамидов и полиэфиров, так как они принадлежат к числу промышленно важных материалов, гидролиз которых изучен наиболее детально. Скорость гидролиза полимеров можно определять как с помощью химических или физико-химических методов, например, определяя изменение концентрации концевых групп или изменение вязкости раствора, так и с помощью физических методов, наблюдая изменения физических свойств полимера. Следует отметить, однако, что результаты, полученные при определении разрывной прочности, являются совершенно недостаточными, так как не имеется точной взаимосвязи между молекулярным весом и разрывной прочностью или удлинением волокон, деструкти-рованных путем гидролиза. Поэтому в данном обзоре будут рассматриваться только те данные о скоростях реакций, которые получены на основании определения молекулярных весов. [c.6]

    В монографии дан обзор современного состояния новой области науки о воздействии излучений высокой энергии (-[-лучей, быстрых электронов, нейтронов и др.) на полимерные вещества. Наряду с подробным изложением данных об изменении структуры и свойств основных типов и конкретных представителей полимерных материалов (полиэтилена, каучуков, полимеров винилового ряда, силиконов, целлюлозы и др.) в книге рассматриваются физические и химические процессы, имеющие место при взаимодействии различных видов излучения с веществом. В связи с тем, что метод облучения приобретает в настоящее время важное практическое значение как способ получения полимерных материалов и их модификации, в книге уделено значительное внимание теории и приложениям радиационной полимеризации, графт- и блок-сополимеризации, радиационной вулканизации каучуков и полиэфиров и др. Специальные главы посвяигены вопросам теории радиационно-химических процессов. Список литературы включает работы, опубликованные до 1959 г. [c.268]

    Диалкиламинозамещенные полиэфиры представляют собой воскообразные продукты, диарил аминозамещенные — обладают каучукоподобными свойствами. Строение полиэфиров определяет весь комплекс физических свойств, в том числе и их растворимость. Алифатические полиэфиры растворяются значительно лучше, чем ароматические. Большинство алифатических полиэфиров хорошо растворяется в бензоле [94], хлорированных растворителях [401], феноле, крезолах. Ароматические полиэфиры растворимы в фенолах, пиридине [3871, триэтаноламине [402. Строение полиэфиров оказывает влияние и на свойства их растворов. Батцер [381] рассмотрел вопрос о связи числа вязкости ряда полиэфиров с формой макромолекулы в растворе. Для полиэфиров янтарной и пимелиновой кислот с гександиолом зависимость числа вязкости от концентрации линейна [382]. В случае же разветвленных полиэфиров тех же кислот с гексан-триолом кривая, выражающая эту зависимость, проходит через минимум или максимум. Батцер предложил величину отклонения от линейной зависимости применять как меру оценки степени разветвленности макромолекулы. Влияние на температуру плавления и кристалличность полиэфиров боковых заместителей было рассмотрено Доком и Кемпбеллом [384]. [c.24]

    Гопкивс [2140] указывает, что образование полиуретановых пен происходит в две стадии 1) рост цепей в результате реакции изоцианата и полиэфира и 2) выделение СОг при реакции изоцианатных групп двух цепных молекул с водой и образование поперечных связей между этими молекулами. Исследовалось влияние дозировки толуилендиизоцианата и воды на свойства пен, а также влияние на физические и механит ские свойства пен соотношения изомеров 2,4- и 2,6-толуилендиизоцианатов. [c.185]

    Коршак и Виноградова 17731 синтезировали и исследовали свойства смешанных полиэфиров на основе двухатомных фенолов. Ими было показано, что изменение температур размягчения смешанных полиэфиров систем резорцин — п, п -диоксидифе-нилпропан — терефталевая кислота, гидрохинон — резорцин — изофталевая кислота и гидрохинон — л,п -диоксидифенилпро-пан — изофталевая кислота [773], в зависимости от состава проходит через минимум, который приходится на полиэфир, содержащий 70% резорцина (первая серия) и 40% гидрохинона для двух других серий. С составом смешанного полиэфира тесно связано и его физическое состояние. Полиэфиры первой серии, содержащие менее 90% резорцина, аморфны. Более высокое содержание резорцина способствует большему упорядочиванию полимерных цепей, что и проявляется в увеличении степени кристалличности этих образцов. Смешанные полиэфиры этой серии из расплава образовывали хорошие пленки с прочностью 610—780 кГ/см . Относительное удлинение при разрьше этих пленок колебалось в пределах 8—60%. Наибольшим относительным удлинением (60%) обладал полиэфир, содержащий 60резорцина и 40% г,п -диоксидифенилпропана. [c.97]

    Согомонянц и Волькенштейн [1132] исследовали физические свойства стереоизомерных полиэфиров, полученных из й-и ,/,Р-метиладипиновой кислоты с и с ,/,3-метилгександио-лом-1,6 или гексаметиленгликолем, и установили, что различие плотностей стереоизомерных полиэфиров незначительно. Оптически активные полиэфиры имеют температуры стеклования на 4—8 выше, чем рацемические полиэфиры того же состава. [c.99]


Смотреть страницы где упоминается термин Полиэфиры физические: [c.203]    [c.203]    [c.152]    [c.198]    [c.212]    [c.165]   
Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7 (1961) -- [ c.93 , c.97 , c.99 , c.100 ]

Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8 (1966) -- [ c.226 , c.228 ]




ПОИСК







© 2025 chem21.info Реклама на сайте