Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

образования энергия ионизации

    С помощью вариационного метода предлагается определять параметры связи атомов в молекулах. Приводятся расчетные данные для величин констант, равновесных расстояний, энергии образования, энергии ионизации, полученные для различных молекул и систем. [c.350]

    Кроме обсуждавшихся симметричных моделей, возможны и асимметрические , в которых правая сторона рис. XV. 15, а комбинируется с левой стороной из рис. XV. 15, б (или наоборот). Такие решения появляются при заметных различиях в свойствах (теплоте образования, энергии ионизации) вакансий бария и кислорода. [c.419]


    Природу химической связи и характерные особенности металлов можно объяснить на примере лития следующим образом. В кристалле лития орбитали соседних атомов перекрываются. Каждый атом предоставляет на связь четыре валентные орбитали и всего лишь один валентный электрон. Значит, в кристалле металла число электронов значительно меньше числа орбиталей. Поэтому электроны могут переходить из одной орбитали в другую. Тем самым электроны принимают участие в образовании связи между всеми атомами кристалла металла. К тому же атомы металлов характеризуются невысокой энергией ионизации — валентные электроны слабо удерживаются в атоме, т. е. легко перемещаются по всему кристаллу. Возможность перемещения электронов по кристаллу определяет также электрическую проводимость металла. [c.89]

    Энергия ионизации атома водорода (13,6 эВ, 1312 кДж/моль) столь велика, что соединения водорода (I) даже с такими сильными окислителями, как фтор и кислород, не могут быть ионными. Если же допустить образование в соединениях ионов их исключительно высокое поляризующее действие все равно привело бы к образованию ковалентной связи. По этим же причинам ионы Н+ не могут существовать в свободном состоянии при обычных химических явлениях. Специфика строения атома водорода обусловливает особый, присущий только соединениям водорода (I) вид химической связи — водородную связь. [c.272]

    Следовало бы ожидать, что уравнение (XVI.3.4) будет удовлетворяться, если процесс ионизации будет идти строго параллельно процессу образования активированного комплекса. Так как первый процесс сводится к переносу протона от НА к растворителю, в то время как последний представляет собой частичный перенос протона от НА к реагенту, совершенно неудивительно, что изменение свободной энергии в этих двух процессах может быть связано. Из того факта, что переходное состояние представляет собой только частичный перенос протона и, следовательно, обусловливает только часть общего изменения свободной энергии ионизации, можно заключить, что величина показателя а должна лежать в интервале от О до 1. Однако точного линейного соотношения следовало бы ожидать только в том случае, если бы не было специфических взаимодействий между субстратом и НА или по крайней мере таких взаимодействий, которые отличались бы от взаимодействия между растворителем и НА. На то, что такие взаимодействия все н е существуют, указывают наблюдаемые иногда отклонения от уравнения Бренстеда. [c.485]


    Энергия ионизации и сродство к электрону. Наиболее характерным химическим свойством металлов является способность их атомов легко отдавать внешние электроны и превращаться в положительно заряженные ионы, а неметаллы, наоборот, характеризуются способностью присоединять электроны с образованием отрицательных ионов. Для отрыва электрона от атома с превращением последнего в положительный ион нужно затратить некоторую энергию, называемую энергией ионизации. [c.100]

    Вторая энергия ионизации щелочноземельных металлов обычно вдвое превышает их первую энергию ионизации поэтому можно было бы ожидать, что эти металлы образуют ионы с зарядом + 1 и существуют в растворе в состоянии окисления -Ь 1. Но этого не происходит. Гидратация двухзарядного катиона обеспечивает ему настолько высокую устойчивость, что она превосходит энергию, необходимую для удаления второго электрона. Всякий раствор ионов Са должен был бы самопроизвольно дис-пропорционировать с образованием металлического Са и ионов Са"  [c.436]

    В рассмотренном выще примере с НС1 приведенные численные данные создают впечатление, что электроны должны смещаться от атома С1 к атому Н, поскольку первая энергия ионизации у водорода (1310 кДж моль больще, чем у хлора (1255 кДж моль ). Однако на образование химической связи влияют не только энергии ионизации соединяющихся атомов, но также и сродство к электрону каждого из них. Сродство к электрону у С1 (356 кДж моль настолько выще, чем у Н (67 кДж моль ), что предсказание, основанное только на сопоставлении энергий ионизации, оказывается прямо противоположным истинному положению. Для выяснения распределения зарядов вдоль связи между двумя атомами следует принимать во внимание одновременно энергию ионизации и сродство к электрону-другими словами, электроотрицательность каждого из двух атомов. [c.535]

    Н, изображенный в левой части рис. 12-12, наоборот, повышается и от своего положения на глубине — 1310 кДж моль устремляется к пределу-нулевой энергии. По мере того как это происходит, молекулярная орбиталь ст становится еще больше похожей на исходную 2р-орбиталь атома Р. В предельном случае 1х-орбиталь атома Н приобретает нулевую энергию (что означает полную диссоциацию электрона), а молекулярная орбиталь ст, на которой находятся два связывающих электрона, превращается в чистую 2р -орбиталь атома Р (что соответствует образованию аниона Р ). Подобный случай реализуется в молекуле КР. Первая энергия ионизации К составляет всего 418 кДж моль а энергия Зх-орбитали К соответственно — 418 кДж моль . [c.535]

    Под воздействием частиц с большой энергией может происходить также и возбуждение молекул. В зависимости от уровня возбуждения такие молекулы могут частично диссоциировать с образованием атомов или свободных радикалов. Нередко число атомов и радикалов, образующихся при облучении, превосходит число образующихся пар ионов. Число же возбужденных частиц примерно в два-три раза превышает число ионов, так как количество энергии, требуемой для возбуждения, меньше, чем энергия ионизации. При достаточном уровне возбуждения такие молекулы могут вступать в химические реакции. [c.555]

    Вычислите стандартную теплоту образования иона водорода Н+, если известны энергия диссоциации молекулы Нг и энергия ионизации атома водорода. [c.20]

    Пользуясь циклом Борна — Габера, рассчитайте энергию ионной кристаллической решетки хлорида калия, если известны энтальпия образования КС (к), энтальпия возгонки калия, энергия диссоциации СЬ, энергия ионизации атома калия и сродство к электрону атома хлора. Результат расчета сравните с табличными данными. [c.20]

    Способность элементов образовывать простые ионы обусловлена электронной структурой их атомов. Эту способность можно оценить величиной энергии ионизации и сродства атомов к электрону. Понятно, что легче всего образуют катионы элементы с малой энергией ионизации щелочные и щелочноземельные металлы. Образование же в условиях обычных химических превращений простых катионов других элементов менее вероятно, так как это связано с затратой большой энергии на ионизацию атомов. [c.102]

    Сказанное подтверждается, например, при сопоставлении суммы первых трех энергий ионизации атомов и энтальпий образования соединений элементов подгрупп скандия и галлия и типических элементов третьей группы (рис. 238). Как видно из рис. 238, во всем ряду В—Ас (р- и -элементов) монотонно уменьшаются энергии ионизации (/1+ [c.545]

    У элементов любой отдельно взятой группы с возрастанием атомного номера происходит увеличение атомного радиуса и соответственно уменьшение электроотрицательности и энергии ионизации. Металлический характер элементов изменяется в зависимости от их электроотрицательности. В семействах неметаллических элементов первый член каждого семейства значительно отличается от остальных его членов. Во-первых, он образует не более четырех связей с другими атомами (т.е. число электронов в валентной оболочке его атома ограничено октетом). Кроме того, он обнаруживает намного большую способность к образованию п-связей, чем более тяжелые элементы той же группы. [c.329]


    Смещение электронной плотности при образовании полярной связи и переход электронов при образовании ионной связи проис-ходят в сторону более электроотрицательных атомов. Величина электроотрицательное элементов связана с их ионизационными потенциалами, т. е. с энергиями ионизации атомов и их сродством к электрону. [c.105]

    Поскольку электроны полностью заполненных уровней наиболее прочно связаны с ядром, то полностью заполненные оболочки являются наиболее устойчивыми. Энергии ионизации веществ с полностью заполненным внешним уровнем са.мые большие. Энергия уровня, полностью занятого электронами, оказывается значительно ниже энергии уровня, заполненного лишь частично. Поэтому в образовании химической связи принимают участие только электроны незаполненных внешних уровней. Этот вывод позволяет сразу объяснить сложность получения соединений элементов главной подгруппы восьмой группы, на внешнем уровне которых 8 электронов, т. е. полностью заполнены его 5- и р-подуровни и нет электронов на с1-подуровне. Устойчивость заполненного валентного уровня объясняет химическую инертность этих веществ. Даже их молекулы состоят из одного атома. Взаимодействия между отдельными атомами очень слабы. Поэтому при обычных условиях это - газы, и называют их инертными, а иногда благородными. Устойчивость заполненных электронных уровней иногда формулируют как правило октета, согласно которому наиболее устойчивыми являются уровни. [c.50]

    Поскольку электроны полностью заполненных уровней наиболее прочно связаны с ядром, то полностью заполненные оболочки являются наиболее устойчивыми, энергии ионизации веществ с полностью заполненным внешним уровнем самые большие. Энергия уровня, полностью занятого электронами, оказывается значительно ниже энергии уровня, заполненного лишь частично. Поэтому в образовании химической связи принимают участие только электроны незаполненных внешних уровней. [c.53]

    Объяснить это несоответствие можно следующим образом. Прн сравнении металлической активности в группах сопоставляются потенциалы ионизации металлов в вакууме тот металл более активен, у которого потенциал ионизации меньше. В группе сверху вниз потенциал ионизации уменьшается. В электрохимическом ряду напряжений металлы расположены в порядке уменьшения активности, т. е. увеличения потенциалов ионизации, но не в вакууме, а в водных растворах. Если в вакууме образование катиона металла заканчивается отрывом электрона от атома металла, на что затрачивается энергия, равная потенциалу ионизации, то в водном растворе образовавшийся катион будет гидратироваться, что сопровождается выделением энергии гидратации. Следовательно, энергия ионизации атома в водном растворе включает в себя сумму двух величин потенциал ионизации и энергию гидратации. Энергия гидратации катиона тем больше, чем больше его заряд и меньше радиус при одинаковом заряде. [c.147]

    Валентный слой атома аргона, как и неона, содержит восемь электронов. Вследствие большой устойчивости электронной структуры атома (энергия ионизации 15,76 эВ) соединения валентного типа для аргона не получены. Имея относительно больший размер атома (молекулы), аргон более склонен к образованию межмолекулярпых связей, чем гелий и неон. Поэтому аргон в виде простого вещества характеризуется несколько более высокими температурами плавления (—189,3"С) и кипения (—185,9°С). Он лучше адсорбируется. [c.496]

    Т1) монотонно увеличиваются атомные и ионные радиусы (см. рис. 17). Таким образом, следует ожидать, что в ряду В—Ас свойства однотипных соединений должны изменяться монотонно в противоположность ряду в—Т1. Сказанное подтверждается, например, при сопоставлении суммы первых трех энергий ионизации атомов и энта ьпий образования соединений элементов подгрупп скандия и галлия к типических элементов треть- Рис. 221. Сумма трех первых энер-ей группы (рис. 221). Как видно 1ИЙ ионизации атомов и энтальпии из рнс. 221, во всем ряду В- -Ас образования оксидов Э Оз элемен- [c.525]

    У элементов подгруппы цинка две первые энергии ионизации-выше, чем у -элементов соответствующих периодов. Это объясняется проникновением внешних -электронов под экран (п—1) 1 -электронов. Уменьшение энергии ионизации при переходе от Zn к Сс1 обусловлено большим значением главного квантового числа п, дальнейшее же увеличение энергии ионизации у Hg обусловлено проникновением бх -электронов не только под экран 5й -электро-нов, но и под экран 4/ -электронов. Значения третьих энергий ионизации довольно высокие, что свидетельствует об устойчивости электронной конфигурации (п—В соответствии с этим у элементов подгруппы цинка высшая степень окисления равна +2. Вместе с тем (п—1) 1 -электроны цинка и его аналогов, как и у других -элементов, способны к участию в донорно-акцепторном взаимодействии. При этом в ряду Zn — d —Hg " по мере увеличения размеров (п—l) -opбитaлeй электроно-донорная способность ионов возрастает. Ионы Э ( ) проявляют ярко выраженную тенденцию к образованию комплексных соединений. [c.631]

    Константа а рассматривается как мора чувствительности реакции (катализа) к кислотности (или основности) катализатора. С точки зрения изменения свободной энергии мон но сказать, что а есть мера той доли изменения свободной энергии ионизации, которое происходит при образовании активированного комплекса. Соотношение Бренстеда нельзя использовать в виде уравнения (XVI.3.1). Б величины Ацл и К а должны быть внесены поправки, которые возникают из-за изменений симметрии и не влияют на внутренние химические и.шенения, происходящие в системе. Поскольку К я к выражены в моль/л, можно ожидать, что двухосповпые кислоты, н которых две карбоксильные группы удалены друг от друга на значительное расстояние, будут в 2 раза более эффективными (на 1 моль), чем одноосновные кислоты, такие, как уксусная кислота. Наоборот, сравнив каталитическую активность оснований, можно прийти к выводу, что формиат-ион H O в 2 раза эффективнее в реакцип присоединения протона, чем этокси-ион С2Н5О, так как первый может присоединять Н к любому из двух ато- [c.485]

    Разность энергий ионизации фтора и водорода близка к 4 эВ, что отражается в различном располоясенни их АО относительно друг друга. Связывающая и разрыхляющая МО пбр, чуются из 1.ь-орбитали атома И и 2р,-орбнтали атома Р. Орбиталь 2.9 атома I- не принимает участия в образовании связи, так как ее энергия значительно меньше энергии -орбитали атома Н. В образовании связи не участвуют и орбитали 2р и 2р . Такие орбитали принято называть несвязывающими. [c.60]

    В каждом периоде периодической таблицы наблюдается общая тенденция к возрастанию энергии ионизации с увеличением порядкового номера элемента. Сродство к электрону оказывается наибольшим у кислорода и галогенов. Атомы с устойчивыми орбитальными конфигурациями.(s , s p , s p ) имеют очень небольшое (часто отрицательное) сродство к электрону. Расстояние между ядрами двух связанных атомов называется длиной связи. Атомный радиус водорода Н равен половине длины связи в молекуле Hj- В каждом периоде периодической таблицы наблюдается в общем закономерное уменьшение атомного радиуса с ростом порядкового номера элемента. Электроотрицательность представляет собой меру притяжения атомом электронов, участвующих в образовании связи с другим атомом. При соединении атомов с си.пьно отличающейся электроотрицательностью происходит перенос электронов и возникает ионная связь атомы с приблизительно одинаковой электроотрицательностью обобществляют электроны, участвующие s сбразовашг. ковалентной связи. Между атомами типа Н и F с умеренной разностью электроотрицательностей образуется связь с частично ионным характером. [c.408]

    Согласно представленному циклу процесс образования кристалли ческого хлорида натрия из твердого металлического натрия и ГН зообразного хлора возможен по двум путям. Первый путь состоит в превращении натрия и хлора в состояние ионов Na+ и С1 и образовании из них твердого хлорида натрия. В соответствии с определением понятия энергия кристаллической рещетки при образовании Na l из газообразных ионов выделяется энергия, равная по абсолютной величине Uo. Для получения ионов натрия требуется перевести металлический натрий в газообразное состояние. На это затрачивается теплота возгонки ДЯвозг. Затем нужно подвергнуть атомы ионизации, что требует энергии ионизации/ма. Для получения ионов хлора необходимо сначала разорвать связь в молекуле СЬ (на получение 1 моль С1 потребуется /г св), затем к атому хлора нужно присоединить электрон, оторванный от атома натрия при этом выделяется энергия сродства к электрону E u Все указанные здесь величины мo yт быть измерены. [c.153]

    Передаче электрона от атома Ыа к удаленному от него атому СЛ соответствует переход от энергетического уровня А к уровню О. РасстояЕше между этими уровнями равно eVi —Ес1, т. о. разности между энергией ионизации атома натрия и сродством атома хлора к электрону. Сильное кулоновское притяжение, возникаюшее ири сближении ионов друг с другом (уровень О), приводит систему к минимуму Е, в котором силы притяжения уравновешиваются силами отталкивания. Энергетическая разность между уровнем Л (отдельные атомы) и минимумом Е (ионная молекула) соответствует теплоте образования ионной молекулы из атомов. [c.43]

Рис. 238. Сумма трех первых энергий ионизации атомов и энтальпии образования оксидов Э2О3 элементов III группы Рис. 238. Сумма трех <a href="/info/1460525">первых энергий ионизации</a> атомов и <a href="/info/6530">энтальпии образования</a> оксидов Э2О3 элементов III группы
    Борн показал, как можно сопоставить теоретические (рассчитанные) значения энергии решетки с экспериментальными данными. На рис. А.50 приведена схема так называемого термодинамического ци Кла Габера — Борна. 1 моль Na l в виде кристалла можно получить при образовании кристаллической решетки соли из ионов Na+ и С1 , при этом высвобождается энергия решетки Е. В то же время мысленно можно осуществить процесс в несколько стадий перевести Na+ и С1 в атомарные Na и С1, при этом нужно затратить энергию на преодоление сродства к электрону иона С1 ЕА. а выделится энергия ионизации иона натрия /. Далее атомарные Na и С1 можно перевести в металлический натрий и газообразный СЬ, при этом выделится энергия сублимации натрия L и энергия диссоциации хлора Наконец, при образовании хлорида натрия из ме- [c.115]

    Поскольку благородные газы чрезвычайно инертны, следует ожидать, что, если они и способны вступать в реакции, то лишь в очень жестких условиях. Далее, следует ожидать, что способность к химическим превращениям в первую очередь должны проявлять наиболее тяжелые благородные газы, поскольку они обладают более низкими энергиями ионизации, как это видно из рис. 6.6, ч. 1. Более низкая энергия ионизации предполагает возможность потери атомом электрона при образовании ионной связи. Кроме того, поскольку элементы группы 8А уже содержат в своей валентной оболочке восемь электронов (за исключением гелия, в атоме которого всего два электрона), образование ими ковалентных связей возможно лишь с участием орбиталей из надва-лентной оболочки. Но, как известно (из разд. 7.7, ч. 1), этой способностью обладают главным образом атомы более тяжельос элементов. [c.287]

    В табл. 21.8 указан ряд важнейших свойств атомов элементов группы 6А. Энергия простой связи X—X получена путем оценки данных для соответствующих элементов, кроме кислорода. В последнем случае, поскольку связь О—О в молекуле Oj не является простой (см. разд. 8.6 и 8.7, ч. 1), оценку проводили по значению энергии связи О—О в пероксиде водорода. Восстановите льный потенциал, указанный в последней строке таблицы, относится к восстановлению элемента в его стандарлном состоянии с образованием Н,Х(водн.) в кислом растворе. Для большинства указанных в табл. 21.8 свойств снова наблюдается закономерная зависимость от атомного номера элемента. Атомные и ионные радиусы увеличиваются, соответственно энергия ионизации уменьшается, как и следует ожидать на основе изложенного в разд. 6.5, ч. 1. [c.300]

    Притяжение между электронами внешнего уровня и ядром ослабевает при увеличении радиуса атома. Поэтому внутри группы сверху вниз уменьшается энергия ионизации и уменьшается относительная злектроотрнцательность - способность атома оттягивать на себя электроны при образовании химической связи. [c.53]

    У атома натрия, как и у других металлов, имеется избыток валентных орбиталей и недостаток валентных электронов. Так, на один валентный электрон 3 приходится свободных и энергетически близких орбиталей (одна Зз, три Зр и пять Зс1). Из-за малого значения энергии ионизации валентный элеюрон слабо удерживается ядром. Поэтому он достаточно свободно перемещается в пределах всех 9 свободных орбиталей. При сближении атомов в результате образования кристаллической решетки валентные орбитали соседних атомов перекрываются, благодаря чему электроны свободно [c.54]

    В третьей побочной подгруппе различия в свойствах лантана и лантаноидов, с одной стороны, и актиния и актиноидов, с другой, в основном, обусловлены релятивистскими эффектами. Первые три энергии ионизации Ас выше, чем соответствующие энергии Ьа, хотя до лантана сверху вниз в подгруппе энергии ионизации уменьшаются. Лантаноиды образуют, в основном, тригалогениды (исключение составляют Се, Рг, ТЬ, которые также образуют тетрафториды). Для актинидов же типично большее разнообразие с образованием тетра-, пента- и гексагалогенидов. Это иллюстрирует хорошо известное в неорганической химии правило, что из двух элементов побочной подгруппы более тяжелый проявляет большую валентность. Объяснение этого правила с позиции влияния релятивистских эффектов заключается в том, что релятивистское расширение - или /-подоболочки облегчает удаление с нее электронов (проявляются более высокие степени окисления). [c.87]

    Из приведенных расчетов следует, что главным фактором, который вызывает нестабильность СаС1 (по сравнению с СаСЬ), является большая энергия решетки кристалла СаСЬ-Для хлорида СаС1з таким фактором является высокая сумма первых трех энергий ионизации кальция (6677 кДж/моль), которая не компенсируется даже очень высокой энергией решетки (—4730 кДж/моль), и в результате энтальпия образования СаСЬ представляет собой большую положительную величину, вследствие чего образование этого хлорида термодинамически запрещено. [c.218]

    Кристаллические решетки металлов имеют высокие координационные числа атомов (ионов), которые определяются числом ближайших соседей, окружающих данный атом (см. 9.1). Большинство металлов кристаллизуются в структурах плотнейших упаковок — гексагональной (Mg, Ве, d, Zn и др.) или гранецентрированной кубической (Си, Ag, Au, Al, Ni и др.). Такие структуры характерны для кристаллов, образованных сферическими частицами одинакового размера (рис. 5.11), координационное число для них равно 12, степень заполнения пространства составляет74%. Щелочные металлы, а также V, Сг, W и другие имеют кубическую объемно центрированную решетку, координационное число равно 8. Атомам металлов свойственны небольшие энергии ионизации, наименьшие для атомов щелочных металлов, и положительные степени окисления (см. 4.5). [c.121]


Смотреть страницы где упоминается термин образования энергия ионизации: [c.59]    [c.44]    [c.111]    [c.49]    [c.117]    [c.35]    [c.42]    [c.124]    [c.479]    [c.143]    [c.216]    [c.91]    [c.46]   
Лекции по общему курсу химии ( том 1 ) (1962) -- [ c.84 ]




ПОИСК





Смотрите так же термины и статьи:

Энергия ионизации

Энергия образования



© 2025 chem21.info Реклама на сайте