Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка комплексообразование

    Для устранения вредного действия смолистых веществ и других примесей А. М. Кулиев с сотрудниками считают, что сырье, идущее на карбамидную депарафинизацию, целесообразно подвергать кислотно-щелочной очистке [38]. А. В. Дружинина и В. Г. Николаева рекомендуют сырье предварительно подвергать гидроочистке [44, 45]. На заводе в Хейде [36] для удаления веществ, тормозящих комплексообразование, раствор карбамида очищают активированным углем. [c.147]


    Описанная система комплексообразования и ряд других дополнительных мер (легкая очистка сырья силикагелем и раствора карбамида активированным углем от веществ, которые могут препятствовать комплексообразованию, фильтрация раствора карбамида через бумажные фильтры для удаления из него различных механических примесей, продуктов коррозии, продуктов реакции сырья с карбамидом и др.) позволяют получать однородную сус-, пензию комплекса со строго одинаковыми гранулами размерами 0,1—1,0 мм. Такие гранулы хорошо отделяются на фильтрах 5 и 7, работающих под давлением. Образующийся на фильтре I ступени [c.188]

    Комплексные соединения легко поддаются очистке кристаллизацией, иногда в присутствии небольшого избытка нитросоединения, чтобы подавить диссоциацию и снизить растворимость. Углеводород может быть регенерирован извлечением пикриновой кислоты из бензольного или эфирного раствора очищенного пикрата водным раствором аммиака. Комплексы разлагаются также при пропускании их бензольного раствора через колонку, заполненную активированной (прокаленной) окисью алюминия нитросоединение адсорбируется сильнее, чем углеводород, последний появляется первым в фильтрате. Комплекс углеводорода с тринитробензолом можно разложить восстановлением хлористым оловом с соляной кислотой, причем нитросоединение превращается в растворимый в кислоте амин, неспособный к комплексообразованию. [c.220]

Рис. 84. Влияние степени очистки сырья от смол и ароматических углеводородов па комплексообразование с карбамидом Рис. 84. <a href="/info/375380">Влияние степени</a> <a href="/info/221356">очистки сырья</a> от смол и <a href="/info/7163">ароматических углеводородов</a> па комплексообразование с карбамидом
    Наибольшее значение для разделения углеводородов и анализа нефтяных фракций имеет комплексообразование с мочевиной и тиомочевиной [32, 145]. Мочевина применялась для выделения ундекана из фракции 177—200°С, нормальных алканов С13 — С17 из деароматизированной фракции 230—300°С, из масляной фракции нефти Понка, для очистки их концентратов Сц, С13 —С18, а также для очистки 1-алкенов С12, С14, С15 линейного строения с целью получения стандартных углеводородов [4]. [c.73]

    I) получение парафинов высокой чистоты благодаря применению кристаллического карбамида 2) быстрое комплексообразование с нефтяными фракциями широкого фракционного состава 3) отсутствие необходимости очистки сырья. [c.130]


    Для очистки сульфидов от тиофенов и углеводородов использовали разработанную ранее методику комплексообразования сульфидов с азотнокислым серебром [2] с той разницей, что обработка проводилась в уксуснокислой среде. [c.26]

    Для получения особо чистого антрацена предлагается способ, основанный на комплексообразовании с пиромеллитовым диангидридом [13]. В качестве исходного сырья используется 85%-ный антрацен. Комплекс разлагается при кипячении с 10-кратным объемом воды. В результате получен 99%-ный антрацен с выходом 77%. При применении зонной плавки из 93%)-ного антрацена удается получить 99,98%-ный продукт при общей продолжительности очистки 215 ч, скорости продвижения зоны 25—35 мм/ч и общем числе проходов около 70 [6]. [c.309]

    Для целей предварительной очистки нефти, исследования состава гетероатомных соединений эффективен метод комплексообразования с использованием тетрахлорида титана. Например, обработкой фракции 340—490 °С нефти Советского месторождения (Западная Сибирь) тетрахлоридом титана (2 г на 100 г сырья) выделялось 93 % азотсодержащих оснований и 20 % нейтральных азотсодержащих соединений [193]. В концентрате содержались пиридины, хинолины, акридины и ароматические амины.,  [c.91]

    Учитывая высокую реакционную способность, полярность, окислительно-восстановительные свойства фенолов, исследовалось их содержание в нефтепродуктах. Из керосиновой фракции 140— 240°С нефтей Западной Сибири, содержавшей 0,05% общей и 0,03 % сульфидной серы, извлекали гетероатомные соединения комплексообразованием с хлоридом титана (IV). Обработка фракций производилась при комнатной температуре комплексообразователем (0,5 % от массы сырья). Выход концентрата со средней молекулярной массой 172 составил 0,25%. Для отделения кислот и фенолов концентрат обрабатывали 10 % раствором щелочи. Выход фенольного концентрата составил 0,05 % [364, с. 46]. Несмотря на то, что нефть и нефтепродукты содержат большие массы фенолов — ценного сырья для нефтехимии, экономически выгоднее пользоваться ненефтяными источниками для получения фенолов. Отрицательное влияние фенолов на эксплуатационные свойства нефтепродуктов должны учитываться как при разработке процессов очистки, так и при применении товарных топлив. [c.261]

    Существуют и другие способы выделения твердой фазы из раствора, например путем добавления в раствор какого-либо специально подобранного вещества, которое снижает растворимость выделяемого вещества этот способ получил название высаливания. При проведении так называемой аддуктивной кристаллизации в исходный раствор вводится реагент, образующий с выделяемым веществом менее растворимое комплексное соединение — аддукт. Здесь мы имеем пример проведения процесса кристаллизации в сочетании с химической реакцией. Для полноты извлечения вещества из раствора процесс иногда осуществляют в противоточном варианте раствор подается в один конец колонного аппарата, а реагент вводится в другой конец этого аппарата. Кристаллы полученного аддукта отфильтровывают и подвергают разложению и очистке (термораспад с последующей перекристаллизацией выделяемого вещества из специально подобранного растворителя, перегонка с водяным паром и т. д.). Способ комплексообразования применяется и для химического связывания примесей в соединения, легко отделяемые от основного вещества образование осадка при этом не обязательно. [c.151]

    Спектрофотометрия в видимой и УФ-областях позволяет осуществлять контроль за степенью очистки исследуемого вещества, используется для идентификации и установления по спектру структуры различных соединений. Спектрофотометрический метод позволяет точно определить константы диссоциации кислот и оснований. Он также дает возможность исследовать процессы комплексообразования например, широко применяется для изучения различных донорно-акцепторных взаимодействий. [c.5]

    Работы по использованию координационных соединений для очистки нефтепродуктов проводятся советскими учеными с начала 70-х годов, однако недостаточно интенсивно. Следует отметить способность карбонилов металлов (Fe, Со, Ni, Мп, Сг, W) удалять любые нежелательные примеси из нефтепродуктов [112], а также возможность очистки нефтепродуктов комплексными гидридами 1—И1 групп [ИЗ]. Анализируя рассмотренные способы, можно, вероятно, заключить, что для очистки с одновременным выделением нативных АС и в целом гетероорганических соединений целесообразно комплексообразование. [c.99]

    На заводе Стандарт оф Индиана в Уайтинге вместо обычных процессов депарафинизации дистиллятных смазочных масел применяется очистка методом комплексообразования с мочевиной. Масла, основное количество твердого парафина из которых выделено обычными процессами депарафинизации растворителями, направляются на дополнительную денарафинизацию мочевиной. Таким путем без глубокого охлаждения возможно получать товарные масла с весьма низкими температурами застывания. [c.231]


    Газообразные в-ва очищают путем селективной конденса-щш (или десублимации), селективного поглощения р-рами, расплавами или гранулированными твердыми в-вами, твердые в-ва-перекристаллизацией (в частности, в гидротермальных условиях см. Гидротермальные процессы), зонной плавкой (см. Кристаллизация), с помощью химических транспортных реакций и др. Для очистки часто используют селективное окисление, восстановление или комплексообразование. Применяют также разл. виды хроматографии, мембранные процессы разделения, дистилляцию, ректификацию. [c.214]

    При проверке описанных в литературе способов выделения и очистки 2,6-диметилпиридина мы нашли, что наиболее з до-бен и дает надежные результаты способ, использующий комплексообразование с мочевиной и впервые описанный в патенте [5]. [c.56]

    Протонированные и в особенности нормальные соли калия и натрия карбоксилсодержащих комплексонов хорошо растворимы При этом соли калия, как правило, растворяются лучше, чем натриевые производные, позволяя достичь Ш растворов хеланта Столь значительный перепад в растворимости при переходе от комплексона к его простой соли играет важную роль в химии карбоксилсодержащих хелантов, позволяя сравнительно легко производить их очистку перекристаллизацией из кислых растворов Вместе с тем низкая растворимость карбоксилсодержащих комплексонов является одной из причин разрушения комплексонатов металлов в кислой области и делает принципиально осуществимой регенерацию лиганда для его повторного использования Это же обстоятельство накладывает и ограничения на область оптимальной комплексообразующей способности хелантов аминокарбонового ряда, существенно снижая эффективность комплексообразования при рН = 0—2. [c.390]

    Второй способ устранения нежелательного влияния катиона металла заключается в его маскировании и широко применяется в аналитической химии для определения одних катионов на фоне других, в текстильной и бумажной промышленности для отбеливания тканей и бумаги [связывание ионов железа(П1)], в пиш евой промышленности при очистке продуктов от катионов, катализирующих процессы окисления и прогоркания жиров, в химической промышленности. При этом маскируемый катион остается в рабочем растворе, но благодаря связыванию его в высокоустойчивый комплексонат не может вступать в характерные для него реакции и другие взаимодействия. В качестве маскирующих реагентов используются либо полидентатные комплексоны универсального действия для связывания большой группы катионов, либо высокоселективные хеланты для избирательного воздействия на определенный катион, не затрагивающего ионы других металлов. При выборе хеланта для конкретных условий учитываются относительная устойчивость образуемых им комплексонатов рассматриваемой группы катионов, их растворимость, кинетика окислительно-восстановительных реакций, кинетика комплексообразования, каталитические свойства. [c.440]

    В дальнейшем появились способы переработки, совмещающие очистку сырого таллового масла с разделением на компоненты. Среди них обработка селективными растворителями, щелочами в среде органического растворителя, этерификации одно- и многоатомными спиртами, комплексообразование с карбамидом. В ряде случаев с помощью этих методов удается разделить талловое масло с хорошим выходом и качеством про- [c.86]

    Величина Е,/2 при данных условиях представляется наиболее подходящей для характеристики механизма электродного процесса как возможно полно исключающая влияние побочных процессов (в частности, комплексообразования) на электродный процесс. В целом сходимость данных, полученных различными авторами в неводных растворах, значительно хуже, чем в водных. Основные причины этого заключаются в неодинаковой степени обезвоживания и очистки растворителя, частичном разложении растворителя, использовании различных фоновых электролитов. Кинетику происходящих катодных процессов характеризуют данные табл. 7 приложения [134]. [c.77]

    Получаемый при карбамидной депарафинизации застывающий компонент обычно содержит значительное количество углеводородов с невысокими и очень низкими температурами застывания. Это обусловливается, с одной стороны, способностью карбамида давать комплексы с рядом углеводородов разветвленных и циклических структур, не обязательно обладающих высокими температурами кристаллизации, и, с другой стороны, трудностями освобождения комплекса от увлекаемых им значительных количеств депарафинированного продукта. Для получения из застывающего компонента технических парафинов должной чистоты и тем более для выделения из них относительно чистых к-алканов требуется значительная дополнительная обработка этих продуктов — обезмасливание, деароматизация, очистка, а иногда даже и повторное комплексообразование, проводимое, в частности, при несколько повышенных температурах и при пониженной кратности обработки карбамидом. [c.152]

    Книге расомохрены растворимость, кристаллиаация, адсорбция и комплексообразование компонентов сырья, лежащие в основе современных процессов производства нефтяных масел депарафинизации и обезмасливаиия, деасфальтизации, селективной очистки, очистки адсорбентами, выделения парафинов карбамидом и цеолитами. Уделено внимание получению Масел путем облагораживания и перестройки структуры компонентов нефтяного сырья при помощи гидрирования. Основное внимание уделено интенсификации процессов производства масел, увеличению выхода целевых продуктов и У У шению их качества. [c.2]

    На рис.2.21 показано влияние степени очистки сырья от смол и ароматических углеводородов на длительность комплексообразования кристаллическим карбамидом. Приведенные данные подтверждают отрицательное влияние смол на скорость реакции коыплексообразсеания. Аналогичное явление наблюдается и при применении спиртоводного раствора карбамида. [c.90]

    Влитемьность, мин Рис.2.21. Влияние степени очистки сырья от смол и ароматических углеводородов на длительность комплексообразования при различных температурах  [c.90]

    Было установлено[36, 48], что ингибиторами комплексообразования кроме смол и сернистых соединений являются также перекиси-и мыла, образующиеся при взаимодействии органических кислот с аммиэ1сом и бикарбоната аммония о продуктами сырья. Механизм действия ингибиторов основан на их поверхностно-активных свойствах. Разработаны различные методы предварительной очистки сырья, устраняющие действие ингибиторов. [c.93]

    Полученные экстракцией или адсорбционным разделением концентраты гетероатомных соединений содержат примеси, глав ным образом моно- и бициклических аренов. Очистка от углеводо родов и разделение серусодержащнх соединений на группы осу ществляется вакуумной дистилляцией, адсорбционной хромато графией, ступенчатой реэкстракцией растворами серной кислоты [248], комплексообразованием с солями ртути или серебра Очистку и разделение азотсодержащих оснований проводят с по мощью ионообменной или адсорбционной хроматографии [249, 250]. Кислородные соединения (адсорбционные смолы) очищают от углеводородов и разделяют на классы методами адсорбционной хроматографии, вакуумной дистилляции и этерификацией борной кислотой [248]. Дальнейшие исследования гетероатомных соединений направлены на выявление преобладающего типа соединений в очищенных образцах или идентификацию индивидуальных соединений. [c.142]

    Единой точки зрения на роль активаторов в процессе образования карбамидного комплекса и их влияние на механизм комплексообразования до настоящего времени нет. Циммершид и Диннерштейн [20] считают, что активаторы ослабляют или совершенно прекращают действие примесей, которые мешают проведению реакции комплексообразования. Для подтверждения этого положения парафины, выделенные при помощи карбамида из нефтяной фракции, повторно контактировали с карбамидом. Комплекс при этом образуется лишь при добавлении активатора. После тщательной очистки силикагелем эти парафины образуют комплекс и без активатора. Однако после добавления к очищенным парафинам веществ, извлеченных десорбцией из массы силикагеля, реакция идет только в присутствии активатора. Анализ примесей, адсорбировавшихся на силикагеле, показал, что в их состав входят различные неуглеводородные соединения, в том числе сернистые соединения перекисного строения. Было высказано предположение, что активаторы, растворяя карбамид, препятствуют обволакиванию кристаллов карбамида неуглеводородными примесями. А. В. Топчиев и Л. М. Розенберг с сотр. [18, 56] показали, что применение активаторов при работе с нефтяными фракциями обусловлено присутствием в этих фракциях веществ, подавляющих реакцию комплексообразования. [c.38]

    Более удовлетворительных результатов по получению и-пара-фппов высокой степени чистоты можно достичь, если использовать в качестве исходного сырья достаточно узкие фракции, включающие соединения близкого молекулярного веса. Например, лучшие результаты достигнуты нри комплексообразовании пе исходного петролатума, а отдельных фракций его [44]. Д. В. Ива-нюков с сотр. [229] показал, что наибольшая степень чистоты мягкого парафина достигается при комбинировании промывки комплекса с последующей очисткой получаемого мягкого парафина движущимся слоем адсорбента. [c.138]

    Ниже приведен способ выделения чистого изохинолина из хинолин-изохинолино вой фракции с применением реакции комплексообразования с хлористым кобальтом. Нами было найдено, что изохинолин, в противоположность хннолину, образует более устойчивые комплексные соединения с целым рядом солей тяжелых металлов, в том числе с хлористым кобальтом, никелем или железом. Эта особенность позволяет производить как грубое разделение хинолина и изохинолина, так и эффективную очистку последнего. [c.50]

    Установка сооружена на Грозненском нефтеперерабатывающем заводе по проекту Гипрогрозпефти. Целевое назначение — выработка низкозастывающего дизельного топлива. Карбамид используется в кристаллическом состоянии, в качестве активатора применяется метанол, в качестве разбавителя и промывного агента — фракция бензина 70—110° С. Основной особенностью установки является применение отстойно-промывочных центрифуг ОПШ-3 и ГПШ-ЗВ2 (производительность 12—16т/ч промытого комплекса), в которых осуществляются отделение комплекса от жидкой фазы (или отделение кристаллов карбамида от раствора парафинов) и промывка бензином твердой фазы. К другим особенностям установки следует отнести высокую степень чистоты получаемых н-парафинов, что достигается смешением комплекса с бензином и повторным центрифугированием относительно небольшой расход бензина благодаря предусмотренной в схеме подаче на комплексообразование бензина, отделяемого на центрифугах, и подаче на циркуляцию в первой ступени центрифугирования раствора депарафината в бензине, а на вторую ступень центрифугирования — раствора парафинов в бензине непрерывное комплексообразование и разрушение комплекса очистку карбамида от адсорбирующихся на его поверхности смолистых веществ, от продуктов коррозии и других посторонних примесей, что достигается перекристаллизацией карбамида в специальной секции применение карбамида и комплекса во взвешенном состоянии. [c.140]

    Схема такого комбинированного процесса представлена на рис. 61. Исследованию подвергали рафипаты II, III и IV масляных фракций туймазинской нефти, отобранные па установках фенольной очистки Ново-Уфимского НПЗ. В качестве растворителя в первой и во второй ступенях процесса использовали МЭК рафипаты разбавляли в соотношении 3 1 отношение масла и карбамида равно 1 1 время контактирования 60 мин температура комплексообразования на 3—5° С выше температуры помутнения для исходных рафинатов и. равна 25° С для всех масел первой ступени количество промывного агента (МЭК) — 100% на масло. Характеристика депарафинированных масел и парафинов второй ступени приведена в табл. 57, из которой видно, что по данной схеме можно получать из различных масляных фракций, в том числе средних и тяжелых, одновременно товарные масла и парафины. [c.172]

    Бензин является носителем хлористого алюминия в жидкой фазе и в комплексообразовании с нежелательными компонентами масла не принимает активного участия. Хлористый алюминий образует координационные соединения со смолистыми веществами, циклическими ароматическими углеводородами, с серосодержащими соединениями за счет донорно-акцепторного взаимодействия. После второй стадии очистки полученное масло имеет слегка желтоватый оттенок. Из масла почти полностью удаляются смолы, основная часть полициклических ароматических углеводородов и сероорганика. Индекс вязкости повышается до 110-120. [c.196]

    В производстве высокочистых оксидов РЬ и Zr основными исходными реагентами являются нитрат РЬ и оксихлорид Zr. Лучший метод их очистки -изотермическая кристаллизация (высаливание). Описание равновесия при высаливании в тройной системе осуществляет ся с учетом комплексообразования. Для системы "РЬ(МОз)2 - HNO3 - Н2О" рассчитаны термодинамические параметры модели [12]. [c.103]

    Проведенные УралНИИ Экология исследования показали, что гальваношламы могут быть использованы в качестве сырья ионообменных материалов. Отработана технология гранулирования данных ионообменников с использованием полимерных связующих, которая обеспечила получение гранулянтов, допускающих многоцикловое использование в ионообменных аппаратах, в том числе в колонках с подвижным слоем. Высокая селективность к ионам тяжелых металлов позволяет обеспечить очистку 100—600 колоночных объемов сточных вод при 90—95 %-ном поглощении. Регенерация насыщенного сорбента производится с использованием эффекта комплексообразования. Разработка опробована в опытно-промыщленном масштабе [128]. [c.112]

    Сильнокислотные катиониты позволяют проводить ионный обмен в щелочной, кислой и нейтральной средах, а слабокислотные и смешанного типа — только в щелочных и нейтральных растворах. Это утверждение справедливо для процессов чистого ионообмена, когда же имеют место процессы комплексообразования, то это правило может нарушаться. Так, слабокислотный катионит СГ-1 извлекает ионы урана из слабокислых растворов. К сильнокислотным катионитам относится выпускаемый в Советском Союзе катионит КУ-2, представляющий собой продукт сульфирования сополимеров стирола и дивинил-бензола. Катионит КУ-2 кроме высокой емкости обладает повышенной стойкостью в кислой и щелочной средах даже при температуре около 100° С, поэтому его следует применять на байпасных установках очистки вод I контура ядерных реакторов. Этот катионит выпускается и ядерного класса — КУ-2-8 чс. Кроме того, выпускаются катиониты марок СВС-1, СВС-3, СДВ, СДФ и др. За рубежом выпускаются сильнокислотные катиониты С-50-А, аллассион S (Франция), леватиты PN, KSN (ФРГ), IR-400, амберлит-200, дауэкс-50 (США). [c.141]

    О ч в. получают путем т.наз. глубокой (т.е. наиболее тщательной) очистки в-в, для к-рой широко используют разл. физ.-хим. методы (как правило, в сочетании)-осаждение, ректификация, дистилляция, экстракция, сорбция, ионный обмен и т.д. Разделение (к к-рому сводится очистка) м. б. основано и на различии в хим. св-вах ко.мпонентов исследуемой системы, что позволяет использовать для получения О. ч. в. также комплексообразование, избират. окисление или восстаиовление и т. п. При очистке в-в следует учитывать возможное поступление загрязняющих примесей из воздуха, реактивов и воды, нз материала аппаратуры. Так, в аппаратуре из кварцевого стекла невозможно получить Ge I с содержанием Si меньше 10 %. [c.422]

    Известен целый ряд сгюссбов глубокой очистки галогенидов с помощью метода комплексообразования [115, 116]. Чаще всего комплексообразователи пводят в раствор и затем смесь перегоняют. Адсорбция ю второй стадии применяется редко. Одпако примеиение для этих целей активного угля дало возможность очистить силан от бора до I 10 [115]. [c.169]

    В предлагаемой методике для очистки нитрата цезия от примесей тяжелых металлов и железа используется метод, основанный на комплексообразованни этих примесей с ди-этилдитиокарбаматом натрия и последующей сорбции полученных комплексов яктипиропапным углем. [c.94]

    Комплексообразование существенно влияет на поведение ионов плутония различных валентностей в процессе химического выделения и определения этого элемента. Оно может стимулировать или замедлять реакции окисления и восстановления. Подбором комплексующих анионов решаются химико-аналитические задачи осадительной, экстракционной и ионообменной очистки плутония. Велико значение комплексных соединений для титраметрического определения плутония в присутствии мешающих элементов. Ниже будут освещены литературные данные по комплексообразованию плутония, имеющие значение в аналитической химии элемента. [c.38]

    Кнох и Зиндер [497] сообщили о селективной экстракции четырехвалентного плутония триизооктиламином в ксилоле и три-лауриламином в керосине из азотнокислых растворов. Извлечение Pu(IV) проводят из 6,5 М HNO3, в которой плутоний находится частично в виде аниона [Pu(N03)6] ". В результате экстракции равновесие комплексообразования смещается и происходит полное извлечение плутония (подобно ионному обмену). Метод позволяет довольно селективно отделить плутоний от урана и продуктов деления (табл. 49). Очистка плутония [c.345]

    В случае 18-краун-б они использовали комплексообразование его с ацетонитрилом [8]. Съфую фракцию 18-краун-б (т. кип. 125 - 160 °С/0,2 мм- рт. ст.) растворяли в ацетонитриле при нагревании. После охлаждения осаждались кристаллы комплекса 18-краун-б с ацетонитрилом, которые отделяли фильтрованием. Чистый 18-краун-б (выход 40 - 60% после очистки) был получен разложением комплекса с последующим удалением ацетонитрила путем нагревания комплекса не выше 40 °С при пониженном давлении (0,1 - 0,5 мм рт. ст.). [c.57]


Смотреть страницы где упоминается термин Очистка комплексообразование: [c.214]    [c.107]    [c.88]    [c.52]    [c.166]    [c.146]    [c.330]   
Техника лабораторных работ (1966) -- [ c.450 ]

Техника лабораторных работ Издание 9 (1969) -- [ c.594 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексообразование

Комплексообразованне



© 2025 chem21.info Реклама на сайте