Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Органические соединения алициклические

    В этой главе мы рассмотрим развитие и пополнение основных положений стереохимии, сформулированных в рассмотренных ранее основополагающих работах Вант-Гоффа и Ле Беля. Эти положения во-первых, были распространены на новые классы органических соединений (алициклические соединения и элементо-органические соединения в широком смысле слова, когда основной интерес сосредоточивается на пространственном распределении связей вокруг неуглеродного атома), во-вторых, были пополнены эмпирически установленными зависимостями между пространственным строением молекул и их реакционной способностью и, в-третьих, получили более глубокое толкование, так как было сделано несколько попыток выяснить причины влияния пространственного строения молекул на их оптическую активность и другие свойства. [c.67]


    ИЗОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ (карбоциклические соединения) — класс органических соединений, характеризующийся наличием колец (циклон) из атомов углерода. И. с. подразделяются на два ряда алициклические и ароматические соединения. И. с. могут содержать различное чис.то атомов углерода в цикле, различное число циклов, связанных между собой в молекулу. В зависимости от числа циклов в молекуле различают одноядерные, или моноциклические, би-, три- и полициклические соединения. Очень часто, в особенности в ароматическом ряду, циклы имеют два общих атома углерода, например, нафталин, антрацен и др. Ароматические и алициклические соединения часто связаны между собой взаимными переходами. Гидрированием бензола, например, можно получить циклогексан. С Другой стороны, дегидрированием циклопарафинов получают ароматические углеводороды. И. с. и их производные имеют большое прак- [c.106]

    КАРБОЦИКЛИЧЕСКИЕ СОЕДИНЕ НИЯ — класс органических соединений для которых характерным является нали чие колец (циклов) и атомов углерода К. с. делят на алициклические (предель пые, или циклопарафины), непредель ные и ароматические. Среди производных К. с. есть красители, лекарственные вещества. Многие из К. с. применяются для получения синтетических смол, пластических масс и лр, [c.121]

    Указанные выше основные классы органических соединений, в свою очередь, подразделяются на более дробные классы. Так, алифатические соединения подразделяются на карбоцепные, если открытые цепи образованы только углеродными атомами, и гетероцепные, если в состав открытых цепей кроме углеродных входят атомы других многовалентных элементов — кислорода, серы, азота, фосфора, кремния. Карбоциклические соединения подразделяются на алициклические, скелетом которых являются замкнутые циклы из разного числа (начиная с трех) углеродных атомов, и ароматические, в основе которых лежит особая циклическая группировка из шести углеродных атомов — так называемое бензольное кольцо. [c.74]

    Многообразие органических соединений объясняется. особенностями строения углеродного атома. Изучение строения и свойств органических молекул становится возможным благодаря стройной системе классификации. Наиболее простыми представителями соединений алифатического, алициклического и ароматического рядов являются углеводороды. Замещая атомы водорода в углеводородах на другие атомы или группы атомов (функциональные группы), можно перейти к различным классам органических соединений данного ряда. Соединения, содержащие одну и ту же функциональную группу, образуют гомологический ряд, представляющий собой ряд веществ, отличающихся друг 01 друга на любое число —СН2-групп. Детальное описание химической реакции называют механизмом реакции. Механизм протекания данной реакции зависит от многих факторов, важнейшими из которых являются природа реагирующих частиц, а также тип разрыва ковалентной связи. Различают гомолитическое и гетеролитическое расщепление связи. [c.316]


    Самое простое стабильное органическое соединение — метан (СН4), простейший гидрид углерода. Ввиду практически неограниченных возможностей образования цепей из атомов углерода существует огромное число гидридов углерода. Соединения, состоящие только из углерода и водорода, называются углеводородами. По типу цепей из атомов углерода в молекулах углеводороды подразделяются ка ациклические, или алифатические (с открытой цепью), и циклические (с замкнутой цепью). Циклические углеводороды делятся на ароматические, характеризующиеся особым упорядочением связей в своих молекулах (разд. 3.5 и 3.6), и алициклические, не обладающие таким упорядочением. [c.13]

    Оптически активные вещества можно найти среди всех классов органических соединений — алифатических предельных и непредельных, алициклических, ароматических, гетероциклических. Поэтому с вопросом об оптической активности нам придется встречаться во всех главах книги, постепенно расширяя представление о различных типах оптически активных веществ. Основные представления в области оптической активности органических веществ были созданы именно на примере простейших алифатических соединений. [c.282]

    Вклад в развитие органической химии (алициклические соединения) и химической промышленности [c.775]

    Алициклические соединения — органические соединения, в молекулах которых имеются циклические неароматические системы из одних углеродных атомов  [c.11]

    Два важнейших типа органических соединений по своей структуре представляют собой ациклические (алифатические) и циклические соединения. Первая глава была посвящена ациклическим соединениям, преимущественно углеводородам. Ациклические соединения, содержащие также иные элементы, чем углерод и водород, вы встретите в этой и последующих главах. Циклические соединения подразделяют далее на алициклические и ароматические. Алициклические соединения имеют в основном те же химические свойства, что и их алифатические аналоги. Ароматические соединения вступают в явно отличные химические реакции, которые можно объяснить присутствием делокализованных я-электрон-ных связей. Оба типа могут содержать кольца, состоящие либо лишь из атомов углерода, либо включающие также и атомы других элементов. Соединения последнего типа, называемые гетероциклическими, будут рассмотрены в гл. 4. [c.93]

    Как отмечалось ранее, характер распада, наблюдаемый при расщеплении молекул органических соединений, обусловлен разрывом углеродного скелета. Соответственно интерпретация масс-спектра в значительной степени будет зависеть от умения распознать осколки, образовавшиеся при разрыве углеродного скелета. Хотя в масс-спектрометрии углеводороды являются наиболее изученным классом соединений, интерпретация их масс-спекТров нередко представляет наибольшую трудность. Углеродный скелет соединений удобно рассматривать, как это сделано ниже, отдельно для алканов (включая алкены и алкины), алициклических углеводородов и ароматических соединений. [c.16]

    Алициклические органические соединения — это циклические углеводороды, содержащие в цикле только атомы углерода [c.364]

    Углеродные цепи и циклы. Атомы углерода способны связываться в цепи и циклы (замкнутые цепи). Циклы бензольного типа — ароматические циклы — отличаются от замкнутых цепей алициклических соединений. Циклы могут включать наряду с атомами углерода атомы азота, кислорода нли серы — гетероциклы. На приведенной ниже схеме дана классификация органических соединений по строению углеродной цепи  [c.440]

    Изомеризация представляет собой обширный класс реакций, включающий превращения органических соединений линейного строения в разветвленные, перемещение заместителей в алифатических, алициклических, непредельных и ароматических производных, перемещение кратных связей, превращения в функциональных группах и др. [c.7]

    Особенностью сточных вод от производства синтетического каучука является большое разнообразие загрязняющих их веществ. Состав и свойства химически загрязненных сточных вод зависят от технологического профиля завода, который определяется типом выпускаемого каучука и методом его производства. Широкая номенклатура синтетических каучуков, применение различных методов производства и различных видов сырья обусловливают разнообразие состава и свойств сточных вод. Преобладающие компоненты сточных вод углеводороды (предельные, непредельные, алициклические, ароматические) спирты, альдегиды и кетоны карбоновые кислоты эфиры, амины, амиды поверхностно-активные вещества различные высокомолекулярные органические соединения, смолы, полимеры другие органические вещества. [c.163]

    Основные научные исследования посвящены изучению действия азотной кислоты на органические соединения. Открыл (1888) нитрующее действие слабого раствора азотной кислоты на алифатические (реакция Коновалова), алициклические н жирноароматические углеводороды. Разработал (1888— 1893) методы получения оксимов, альдегидов, кетонов и спиртов на основе нитросоединений жирного ряда. Своей реакцией он, по словам Н. Д. Зелинского, оживил химических мертвецов , какими считали в то время парафиновые углеводороды. Использовал реакции нитрования для определения строения углеводородов. Разработал (1889) методы выделения и очистки различных нафтенов. [c.252]


    В признание достижений в области развития органической химии и химической промышленности, а также за пионерскую работу по алициклическим соединениям В признание выдающейся деятельности в области развития химии за открытие элементов радия и полония, за выяснение природы радия и выделение его в металлическом виде и за исследование соединений этого замечательного элемента За открытие реакции Гриньяра — метода, который стал весьма плодотворным инструментом в развитии органической химии за последние несколько лет За метод гидрогенизации органических соединений в присутствии мелкодисперсных ме- [c.701]

    А. Е. Фаворский, выдающийся представитель научной школы Бутлерова, разрабатывал вопросы теории химического строения, роли взаимного влияния атомов и групп атомов. Он развивал идеи А. М. Бутлерова и В. В. Марковникова и других своих предшественников на примере изомерных превращений сравнительно несложных органических соединений алифатического и алициклического рядов. Излюбленным объектом работ А. Е. Фаворского [1, 2] явилось изучение устойчивости молекул и в связи с этим молекулярных перегруппировок и путей прохождения реакций. В его статьях повсюду дается развернутая картина хода молекулярных перегруппировок и синтетических реакций. [c.7]

    Возможность превращения углеводов и их производных в соединения алициклического и ароматического рядов при помощи обычных методов органического синтеза давно привлекает внимание многих исследователей. [c.74]

    Углеводороды — наиболее простые по составу органические соединения, состоящие только из атомов углерода и водорода. Общая формула углеводородов СяН, . Они различаются по строению углеродного скелета (прямые углерод — углеродные цепи, разветвленные, замкнутые в циклы) и по характеру связей между атомами углерода (предельные, или насыщенные, и непредельные, или ненасыщенные, углеводороды). По первому признаку (стр. 20) углеводороды принято делить на три большие группы алифатические, алициклические и ароматические. [c.22]

    В каждом ряду органические соединения делятся на классы в зависимости от состава и строения. Наиболее простыми представителями соединений жирного, алициклического и ароматического рядов являются углеводороды. Заменяя атомы водорода в углеводородах на другие атомы или группы атомов функциональные группы), переходят от углеводородов к другим классам органиче- [c.41]

    В каждом ряду органические соединения делятся на классы в зависимости от состава и строения Наиболее простыми представителями соединений жирного, алициклического и ароматического рядов являются углеводороды. Заменяя атомы водорода в углеводородах на другие атомы или группы атомов (функциональные группы) переходят от углеводородов к другим классам органических соединений данного ряда. Атомы-заместители и функциональные группы определяют главнейшие направления химических превращений данного класса органических соединений. [c.46]

    Способы получения алициклических соединений. Алициклические соединения различных классов можно получать из соединений жирного или ароматического рядов или из других алициклических соединений. Последнюю группу способов мы специально рассматривать не будем, так как это преимущественно обычные уже изученные ранее переходы между классами органических соединений. Некоторые особенности алициклических соединений рассматриваются в разделе Химические свойства . [c.328]

    Циклизация органических соединений при электровосстановлении известна давно, но только в последнее время реакции этого типа начинают привлекать внимание как путь получения алициклических и гетероциклических соединений. [c.58]

    Многочисленные попытки установить количественную корреляцию между оптическим вращением и структурой органических соединений в конце концов позволили Маркеру (1936) составить последовательность перенумерованных заместителей при асимметрическом атоме углерода и сформулировать для соединений СЙК К"В " правило если атом водорода находится в вершине тетраэдра, удаленной от наблюдателя, а три других заместителя в плоскости, обращенной к наблюдателю то моделям, в которых рост порядковых номеров групп В, К, К" идет по часовой стрелке, отвечает левое вращение, и наоборот. Позднее (1959) Брюстер для распределения заместителей в такой ряд использовал данные по их поляризуемости на первом месте стоят заместители с большей поляризуемостью. Таким путем Брюстеру удалось в хорошем соответствии с опытными данными рассчитать угол вращения для многих органических соединений алифатических и алициклических углеводородов и их производных, терпенов и других молекул с двойной связью в цикле. [c.205]

    Номенклатура органических соединений. Систематическая номенклатура органических соединений исходит из строения молекулярного скелета соединений. Названия соединений составляются из корня и приставок (суффиксов). В на 5ваниях предельных углеводородов используется приставка ан, непредельных с одной двойной связью — ен, непредельных с двумя двойными связями — диен, непредельных с тройной СВЯЗ11Ю — ин. Корни наименований в зависимости от числа углеродных атомов в скелете образуются ИЗ греческих числительных С5 — пент, Се — гекс, С — гет, Са — окт и т. д., первые четыре предельные углеводорода с нормальной (не разветвленной) цепью имеют эмпирические названия С — метан, С2 — этан, С3 —пропан, С4 — бутан. В названиях алициклических углеводородов перед корнем ставится приставка цикло , а после корня — соответствующие суффиксы ан, ен, диен. Названия соединений, содержащих различные функциональные группы, составляются из названия углеводорода, произ- [c.143]

    Псе органические соединения с установленной структурной формулой распреле-лены по 4 разделам 1 — алициклические соединения. II — изоциклические соединении. [c.123]

    Карбоциклические соедииеиия — класс органических соединений, характеризующихся наличием колец (циклов) из атохмов углерода. К. с. отличаются от гетероциклических соединений отсутствием в кольцах каких-либо других атомов, помимо атомов углерода-. К. с. подразделяются на алициклические — насыщенные (циклопарафины), ненасыщенные и ароматические  [c.64]

    В состав многих ферментов, помимо полипептидных цепей из десятков, сотен и тысяч молекул аминокислот, составляющих специфическую белковую (протеиновую) его часть, входит одна или несколько молекул относительно низкомолекулярного органического соединения небелковой природы (основания, кислоты, спирта, кетона и т. д. алифатического, алициклического или гетероциклического ряда) — так называемая простетическая группа, или кофермент. В таком случае протеиновая часть фермента назь1вается апоферментом. В состав некоторых ферментов также входят неорганические кофакторы — ионы металлов Ре, Со, Си, Мп и др. [c.12]

    В состав многих органических соединений входят гщклы, включающие различные атомы Если цикл образован только атомами углерода, то соответствующее соединение относят к карбоцикли-ческим Карбоциклические соединения могут быть ароматическими и неароматическими Последние обычно называют алициклическими Они широко распространены в природе В состав нефти входят алициклнческие углеводороды или циклоалканы Алициклы различного размера содержатся в смоляных кислотах, стероидных гормонах, простагландинах, душистых веществах, терпенах, витаминах, природных инсектицидах [c.6]

    Нэпа и сотрудники [215] предложили новый метод количествеиного определения галогена в органических соединениях, основанный на использовании реакции дегалогенирования. Существо метода состоит в том, что сплав Ренея (сплав никеля с алюминием) обрабатывают водным раствором едкого натра в присутствии галогенорганического соединения. Действие щелочи на сплав обеспечивает образование катализатора (скелетного никеля) и необходимого для восстановления водорода. Этот метод с успехом применялся для определения галогенов во многих алифатических, ароматических, алициклических и гетероциклических соединениях. Определение осуществляют по следующей общей методике. [c.117]

    Научные работы посвящены квантовой химии, химической термодинамике и молекулярной спектроскопии. Разработал приближенные методы расчета термодинамических свойств для большой группы органических соединений (парафиновых и алициклических углеводородов и др.). Результаты, полученные с помощью этих методов, позволили предсказать направление и положение равновесия химических реакций, послужили основой для объяснения скоростей реакций с привлечением статистической теории. С целью подтверждения своих теоретических выводов ировел ряд спектроскопических измерений. Нашел, что потенциальный барьер внутреннего вращения молекулы этана составляет 3 ккал/моль (а не О, как предполагали ранее). Высказал (1947) предположение, что циклопентан существует в складчатой конформации. [332] [c.395]

    ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ — хим. соединения, содержащие углерод. Кроме углерода, в состав органич. соединений входят многие элементы, чаще всего водород, кислород, азот, фосфор и сера. Главными источниками получения О. с. для пром-сти являются ископаемые угли, нефть, древесина, жиры и различные виды растительного и животного сырья. О. с. разделяются на три больших класса сообразно строению основного скелета своей молекулы 1) вещества с открыт, цепями углеродных атомов составляют класс жирных (алифатических, алициклических) соединений 2) вещества, содержащие в молекуле циклы иа углеродных атомов, составляют класс карбоциклических (изоцикличе-ских) соединений 3) вещества циклического строения, в состав циклов к-рых, кроме углерода, входят также атомы других элементов (азота, серы и др.), составляют класс гетероциклических соединений. [c.417]

    Альдегиды отличаются от кетонов своей способностью восстанавливать реактивы Фелинга или Толленса [364] однако многие кетоспирты, гидразины, ароматические амины, много-основные фенолы, аминофенолы, а-дикетоны и некоторые другие классы органических соединений обладают аналогичными восстановительными свойствами. Так, например, алкалоид синоменин XXVII восстанавливает реагенты Фелинга и Толленса, хотя он и не является альдегидом [175]. Особенностью альдегидов является то, что их окисление приводит всегда к карбоновым кислотам. Например, строфантидип XXXIII не восстанавливает реактив Фелинга, тем не менее присутствие в нем альдегидной группы было установлено благодаря образованию карбоновой кислоты при окислении раствором перманганата в ацетоне. Следует отметить, что выход кислоты невелик, но если защитить вторичную спиртовую группу ацетилированием, то при окислении трехокисью хрома в уксусной кислоте ацетилированная кислота образуется с более высоким выходом [213]. При дегидрировании шестичленных алициклических кетонов образуются фенолы [233]. [c.35]

    Термин углеводород относится к таким органическим соединениям, которые содержат только углерод и водород. Углеводороды и их производные делятся по структурным признакам па три больших класса. Алифатические углеводороды состоят из пеней углеродных атомов, расположенных не в виде циклов. Веш,ества этого класса иногда называются соединениями с открытой цепью. В алициклических углеводородах цепи атомов углерода образуют циклы. За исключением небольшого числа особых циклических соединений, алифатические и алициклическпе углеводороды с близким мо.лекулярпым весом подобны друг другу как по своим физическим, так и по химическим свойствам. Третий класс представлен ароматическими углеводородами, содержащими шестичленные циклы, включающие три углерод-углеродные двойные связи. Характерные особенности физических и химических свойств связаны с расположением двойных связей в ароматических системах. На рис. 2.1 показаны примеры этих трех к.лассов углеводородов. [c.28]

    В этой главе было цриведено четыре реакции циклизации бифункциональных алифатических молекул. В предыдущей главе была рассмотрена еще одна реакция, а именно внутримолекулярная альдольная конденсация. Большое внимание было уделено развитию реакций циклизации как с практическими, так и с теоретическими целями. Алициклические системы весьма часто встречаются в природных продуктах, и целый ряд синтезов пяти- и шестичленных циклов находит применение в химии стероидов и терпенов (гл. 25). Интерес к синтезу более крупных циклов возрос в связи с открытием Ружичкой в 1926 г. факта, что активные составные части двух экзотических душистых начал, мускуса и цибета, не что иное, как макроцикли-ческие кетоны. Гималайская мускусная кабарга и африканская циветта могут быть источником указанных соединений, но не в количестве, достаточном для удовлетворения потребности в душистых веществах. В связи с этим в Швейцарии, где были сделаны особенно крупные успехи в тонком синтезе органических соединений, было обращено внимание на синтез макроцикли-ческих кетонов. [c.329]

    Процессы электрохлорирования органических соединений протекают с существенно большей селективностью, чем при фторировании. В последнее время усиленно изучались процессы электрохимического хлорирования низших предельных, непредельных [170—173] и алициклических углеводородов [174, 175]. [c.24]

    Уже в первой своей статье из цикла исследований по молекулярным рефракциям органических соединений Брюль писал, что молекулярная рефракция представляет средство для решения вопроса о присутствии в веществе циклических, двойных или ацетиленовых связей и о числе их [37, с. 229]. Брюлю (1882) удалось сделать правильный вывод о том, что кратные связи — это отнюдь не двойные или тройные в точном смысле этого слова, а что в них сила сродства атомов не достигает своего максимума. В бензоле Брюль принял существование трех двойных связей, однако из тех же самых данных делался вывод (Шрёдер, 1882) о том, что бензолу отвечает призматическая формула Ладенбурга. Тем не менее, несмотря на некоторую неоднозначность выводов, рефрактометрия сыграла большую роль в истории органической химии как инструмент структурного анализа, особенно в исследовании терпеновых алициклических соединений. [c.303]


Смотреть страницы где упоминается термин Органические соединения алициклические: [c.1790]    [c.15]    [c.71]    [c.13]    [c.285]    [c.369]    [c.59]    [c.393]    [c.60]    [c.298]   
Общая химия 1982 (1982) -- [ c.405 ]

Общая химия 1986 (1986) -- [ c.449 ]

Общая химия Издание 18 (1976) -- [ c.460 ]




ПОИСК





Смотрите так же термины и статьи:

Алициклические соединения



© 2025 chem21.info Реклама на сайте