Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфоресценция кислорода

    Определение констант тушения триплетных состояний. Изучение констант тушения триплетных состояний удобно проводить в вязких растворах. При температурах, близких к комнатной, могут быть использованы растворы 1-бромнафталина в глицерине или полиэтиленгликоле. При низких температурах выбор растворителя более широкий. В качестве тушителя применяют соединения с тяжелыми атомами, кислород, парамагнитные стабильные радикалы, доноры электронов или атомов водорода. Весьма удобным объектом исследования являются соли уранила, флуоресценция которых тушится аминами, спиртами, анионами галогенов и многими другими соединениями. Чтобы выяснить статический или динамический характер тушения, необходимо провести параллельное исследование кинетики и интенсивности фосфоресценции в одних и тех же растворах и определить константы тушения, представив данные в координатах Штерна — Фольмера <ро/ср—[Q] и to/t—[Q]. [c.115]


    При использовании чрезвычайно чистых растворителей и тщательном удалении кислорода из системы можно измерить затухание фосфоресценции и в жидких средах. [c.278]

    Для получения спектров фосфоресценции применяют органические растворители, кристаллизующиеся при низких температурах. Эти растворители должны отвечать следующим требованиям быть химически инертными не поглощать возбуждающий свет и свет фосфоресценции быть хорошими растворителями для проб быть устойчивыми к воздействию мощных световых потоков. Чаще всего в качестве растворителей используют смеси этиловый спирт - диметилформамид в соотношениях от 2 1 до 4 1 этиловый спирт - изопентан - диэтиловый эфир в соотношении 1 2 2 или 2 5 5. Указанные растворители кристаллизуются в стеклообразную массу при температуре кипения жидкого азота 77 К. Перед применением из растворителей удаляют водяные пары и воздух. Это позволяет юба-виться от кислорода, являющегося сильным тушителем фосфоресценции. Кроме того, в результате указанной процедуры растворители кристаллизуются в однородную массу, лишенную трещин и не обладающую заметным светорассеянием. [c.516]

    Еще одно интенсивно развивающееся направление в люминесцентном органическом анализе — фосфоресценция при комнатной температуре. Появление фосфоресценции при комнатной температуре связано с уменьшением скорости тушения кислородом триплетных состояний молекул сорбированных органических соединений. Это уменьшение обусловлено снижением подвижности [c.311]

    При исследовании хемилюминесценции, сопровождающей термический распад различных веществ в средах, способных к окислению, и в инертных растворителях, было обнаружено резкое усиление интенсивности хемилюминесценции при подаче в систему кислорода [42, 220]. Такое влияние кислорода представлялось на первых порах удивительным, так как из литературы известно, что кислород является тушителем флуоресценции и фосфоресценции [223, 224]. Давно уже отмечалось усиление хемилюминесценции кислородом в других системах. Однако этот эффект оставался без объяснения [19]. [c.105]

    Как видно из табл. 1.5, в спектрах фосфоресценции бензо-фенона, адсорбированного на оксидах с основными или слабо кислыми свойствами, наблюдаются четыре компоненты колебательной структуры, причем расстояние между ними уменьшается с увеличением кислых свойств поверхности. Известно, что фосфоресценция кетонов обусловлена электронными переходами с триплетного уровня карбонильной связи на различные колебательные уровни ее основного синглетного состояния 49]. Расстояние между компонентами колебательной структуры отвечает частотам валентных колебаний карбонильной группы. Исходя из этого можно сделать вывод, что при взаимодействии -с более кислыми поверхностными центрами жесткость колебаний связи С = 0 уменьшается. Это можно объяснить тенденцией, возникшей вследствие образования водородной связи, карбонильного кислорода превратиться в гидроксильную группу. К сожалению, точность измерения положений максимумов колебательной структуры недостаточна для надежного построе-яия искаженных в результате образования водородной связи потенциальных кривых карбонильной связи. При взаимодейст- [c.31]


    Большой группой катализаторов, перспективных для изучения методом фосфоресценции, являются системы, содержащие высшие оксиды ванадия, молибдена, вольфрама, висмута и др. Люминесценция ванадатов и вольфраматов щелочных и щелочноземельных металлов хорошо известна и неоднократно описывалась в литературе [49, 50]. Принято считать, что центрами свечения в них являются более или менее искаженные тетраэдрические оксокомплексы [М04] + с металлом, находящимся в высшей степени окисления. Поскольку фосфоресценция возбуждается в полосе с переносом заряда, обычно полагают, что при поглощении кванта света происходит перенос электрона с одного из находящихся в ближайшей координационной сфере комплекса атомов кислорода на вакантную /-орбиталь центрального иона. При этом образуется синглетное электронновозбужденное состояние 1, в котором суммарный электронный спин, так же как и в исходном комплексе, равен нулю. Существует, однако, и лежащее ниже триплетное состояние Г , которое может заселяться в результате интеркомбинационного перехода. Его дезактивация приводит к фосфоресценции со временем жизни, лежащим в пределах 10 2—10 с. [c.32]

    Наиболее интересные результаты были получены для разбавленных нанесенных катализаторов, так как в них все центры свечения находятся на поверхности и доступны для адсорбированных молекул. Это было, в частности, подтверждено обратимым тушением фосфоресценции при адсорбции парамагнитных молекул кислорода, а также диамагнитных молекул водорода, моноксида углерода и олефинов. [c.32]

    Что касается использования для изучения природы и энергетических характеристик связи металл — кислород спектров фосфоресценции, то оно пока еще проблематично. Не следует забывать, что в этом направлении опубликовано всего лишь несколько работ, которые отнюдь не исчерпывают и даже не вскрывают всех возможностей метода. Кроме того, нужно помнить, что фосфоресценция является достаточно широко распро- [c.34]

    В темноте на воздухе фосфор светится. Это происходит оттого, что постоянно присутствующие над ним пары (несмотря на малую упругость пара белого фосфора при комнатной температуре) окисляются кислородом воздуха с выделением света. Многие вещества, например спирт, эфир, скипидар, сероводород, двуокись серы, хлор, аммиак, ослабляют или подавляют фосфоресценцию. В чистом кислороде при обычном давлении свечения не бывает, но оно появляется при уменьшении давления. При медленном окислении фосфора во влажном воздухе образуется главным образом фосфористая кислота и затем фосфорноватистая. [c.674]

    Упражнение 28-8, Флуоресценция, многих соединений может быть потушена (уменьшена или даже сведена к нулю) различными способами. Объясните, как могут влиять на степень флуоресценции, наблюдаемую для растворов флуоресцентных веществ, концентрация, температура, вязкость, а также присутствие растворенного кислорода и примесей. Можно ли ожидать аналогичных эффектов при фосфоресценции Объясните. [c.440]

    Тушение, следовательно, осуществляется при крайне низких концентрациях тушителя, и действительно, для того чтобы наблюдать триплет-синглетную фосфоресценцию в жидких растворах, необходимо использовать тщательно очищенные вещества и растворители. Кроме того, основное состояние молекулярного кислорода — триплетное, поэтому он эффективно тушит другие триплетные молекулы следовательно, необходимо как можно сильнее снизить и концентрацию молекулярного кислорода. Наибольшие времена жизни триплетов в жидкостях при комнатной температуре составляют около 20 мс, однако пока не известно, чем определяется этот предел — тушением примесями или же интеркомбинационной конверсией Более подробно этот [c.98]

    Как фосфоресценция, так и замедленная флуоресценция в жидком растворе при комнатной температуре тушатся чрезвычайно малыми концентрациями молекулярного кислорода, и наиболее надежным способом удаления кислорода является [c.226]

    Иногда изомерная молекула, образующаяся в результате поглощения света, имеет некоторую вероятность вновь вернуться в начальное электронно возбужденное состояние (например, при помощи тепловой энергии). Продукты фотохимической диссоциации также могут в некоторых случаях образовывать электронно возбужденную молекулу путем рекомбинации. Если это точное обращение первичного фотохимического процесса происходит по истечении некоторого периода времени, более продолжительного, чем длительность обычной флуоресценции (Ю сек.), мы наблюдаем явление задержанной флуоресценции, или фосфоресценции. Химические реакции метастабильного, изомерного фотопродукта или продуктов диссоциации ведут к тушению этой задержанной флуоресценции. Таков механизм сильного тушения фосфоресценции многих красителей кислородом (см. стр. 200). [c.166]

    Тушение кислородом флуоресценции различных красителей (включая хлорофилл) было впервые исследовано Каутским и его сотрудниками. Каутский и Гирш [13] установили, что флуоресценция некоторых красителей, адсорбированных на силикагеле, значительно ослабляется в присутствии кислорода при давлении в несколько сот миллиметров, и их послесвечение (фосфоресценция) уже полностью подавляется при значительно меньших давлениях этого газа. Позднее подобное тушение наблюдалось в растворах флуоресцирующих красителей, включая растворы хлорофилла в ацетоне. [c.189]


    Скорость запрещенных по спину переходов может быть существенно изменена под влиянием внешнего окружения. Такое воздействие можно наблюдать при добавлении парамагнитных молекул в растворитель. Хотя О2 и N0 уменьшают выход фосфоресценции вследствие своего участия в эффективном бимолекулярном тушении, они вызывают одновременно рост скоростей оптического перехода и IS . Поглощение при переходе T l- -So также возрастает по интенсивности в тех случаях, когда присутствуют парамагнитные соединения. Например, поглощение при переходе Ti- -So в бензоле ( 310—350 нм) практически исчезает, когда удаляются последние следы кислорода. Наиболее драматическую картину поглощения 7- -S представляют растворы пирена, которые в обычном состоянии бесцветны, но приобретают насыщенный красный цвет в присутствии кислорода при высоком давлении. Тяжелые атомы в своем окружении способствуют также росту вероятности излучательных и безызлучательных переходов путем индуцирования заметного спин-орбитального взаимодействия в растворе. Так, растворы антрацена и некоторых его производных начинают слабее флуоресцировать при добавлении бромбензола, тогда как интенсивность триплет-триплетного поглощения возрастает в результате усиления IS Si T i. Как мы отмечали ранее, эти процессы наиболее значительны для переходов, включающих возбужденные состояния (л, л ). Спин-орбитальное взаимодействие всегда пренебрежимо мало в симметричных ароматических соединениях, и именно здесь изменение скоростей переходов под воздействием окружения наиболее заметно. В то же время сильное спин-орбитальное взаимодействие всегда существует в состояниях (п, л ), и в этом случае воздействие внешнего возмущения более слабое. Эти эффекты наблюдаются как в твердых, так и в жидких растворах. Например, фосфоресцент-ное время жизни в бензоле, растворенном в стеклообразной матрице при 4,2 К, уменьшается от 16 с в СН4 или Дг до 1 с в Кг и до 0,07 с в Хе отношение <рр/ф1 возрастает, и все процессы IS Si T i, T,- So+hv и Ti So протекают быстрее в растворителе с большей атомной массой. [c.107]

    Похоже, что замещение в положении 4 бензофенона влияет на эффективность фотовосстановления, изменяя характер возбужденного состояния. В табл. 6.1 представлены константы скорости восстановления триплетов бензофенона и некоторых его производных. Мы уже говорили о спектроскопии этих аномальных кетонов. Для арилкетонов конфигурации (п,я ) и (л,л ) гораздо ближе по энергии, чем для алкилкетонов и в случае некоторых замещенных производных низшим возбужденным состоянием может быть (л,л ). Например, время жизни фосфоресценции 4-фенилбензофенона почти в 50 раз больше, чем нормального бензофенона, если полагать, что нижний триплет является состоянием (л,л ). Это заключение подтверждается как структурой эмиссионных спектров, так и исследованиями ЭПР. В состоянии (я,л ) возбужденный карбонильный кислород не столь электронодефицитен, как в состоянии (л, л ), а энергия возбуждения частично делокализо-вана по л-системе, так что энергии активации не перекрываются. Вследствие этого состояние (л,л ) гораздо менее реакционноспособно, чем состояние (л, л ), поэтому фотовосстановление 4-фенилкетона будет неэффективным. У 4-метилкетона триплетное состояние, возможно, является смешанным, и скорость его восстановления лежит между таковыми для бензофенона и 4-фенилбензофенона. Если заместителями являются электронодонорные группы, как в аминобензофеноне, то нижними триплетами становятся состояния с переносом заряда [c.169]

    Молекулы в триплетном состоянии легко теряют свою энергию в различных безызлучательных процессах. Они могут дезактивироваться молекулами с неспаренными электронами, например кислородом, или в столкновениях с другими окружающими молекулами. Поэтому фосфоресценция в жидких растворах при комнатной температуре наблюдается чрезвычайно редко. Как правило, фосфоресценцию наблюдают в жестких средах или при пониженных температурах. Син-глет-триплетное поглощение очень слабо. Поэтому заселение триплетного уровня производится не прямым поглощением света в полосе синглето-триплетного перехода, а путем интеркомбинационной конверсии через синглетное состояние. [c.128]

    Замедленная флуоресценция представляет собой испускание, имеющее спектральные характеристики обычной флуоресценции, но со значительно большими временами нарастания и затухания. Часто длительность затухания того же порядка, что и у фосфоресценции. Замедленная флуоресценция зависит от квадрата ин-feн ивнo ти падающего света, это объясняется тем, что триплетное состояние (Г]) возникает лишь от первоначального возбуждения через возбужденное синглетное состояние (З , и для возникновения флуоресценции такого типа необходимо протекание двух этих процессов. Замедленная флуоресценция чувствительна к действию кислорода, который эффективно тушит триплетное состояние. [c.266]

    Выделение нужной спектральной области достетается за счет использования различных оптических фильтров. Интенсивность люминесценции или фосфоресценции регистрируется фотоэлектронными умножителями (ФЭУ) или фотодиодами. В пламенной хемилюминесценции обычно используется водородно-воздушное или кислородное пламя. В качестве газа-реагента применяют озон, этилен, кислород. [c.921]

    Исследование свойств двоесвязанного кислорода люминесцентным методом [269] в ванадиевых и молибденовых катализаторах на силикагеле КСК (удельная поверхность 340 м /ч, концентрация она до 5% масс., концентрация иона Мо + 0,7% масс.), показало, что в спектре фосфоресценции ванадиевого и молибденового катализаторав имеются два максимума. Это указывает на налмч1ие в них поверхностных соединений двух типов, например на окисле ванадия соеииншия такие  [c.130]

    Мощность флуоресцентного и фосфоресцентного излучения, испускаемая пробой, является прямой функцией квантового выхода. Поэтому квантовый выход интересующего процесса люминесценции должен быть постоянным и воспроизводимым, если необходимо разработать успешный флуориметрический или фосфориметрический метод анализа. Когда квантовый выход значительно уменьшается, то говорят, что люминесценция затухает. К сожалению, многие посторонние вещества могут оказывать влияние на квантовый выход и тушить люминесценцию. В частности, тяжелые атомы или парамагнитные частицы сильно влияют на скорость интеркомбинационной конверсии, которая, в свою очередь, изменяет квантовый выход флуоресценции или фосфоресценции, тем самым приводя к погрешности в анализе. В фосфориметрии, конечно, желательно увеличить скорость интеркомбинационной конверсии, в то время как в флуориметрии — уменьшить. Поэтому, для того чтобы предотвратить тушение в большинстве флуориметрических методик, тяжелые атомы и парамагнитные частицы должны быть удалены из раствора пробы. Кислород, будучи парамагнитным, является особенно серьезной помехой, и его также удаляют, пропуская азот через анализируемые растворы. [c.660]

    Хемилюминесценцию можно считать одним из типов фосфоресценции. Например, для люцигенина и люминала первую ступень процесса можно рассматривать как образование пероксида. Считают, что триплетное состояние или магнитное поле, связанное с атомом кислорода, Б молекуле реагента облегчает синглетно-триплетное превращение. Когда промежуточный продукт распадается, остающаяся молекула оказывается в возбужденном нестабильном триплетном состоянии возвращение в основное синглетное состояние сопровождается испусканием света. [c.109]

    На основе сопоставления рассчитанных сдвигов полос поглощения с экспериментальными можно сделать определенные выводы о возможности существования комплексов состава 1 2, Так, в работе [15] сделан вывод о невозможности гидратирования атома кислорода кетогруппы двумя молекулами воды, поскольку рассчитанный коротковолновый сдвиг п->п -полосы ацетона в комплексе состава 1 2 значительно превышает экспериментальное значение (см. табл. 4). Правдоподобность такого вывода далеко не бесспорна, поскольку в [19] на основе интерпретации экспериментального ИК-спектра ацетона в растворе метанола получено заключение о возможности формирования одним атомом кислорода ацетона двух ВС с двумя молекулами метанола. Вывод о возможности гидратирования атома кислорода тракс-акролеина двумя молекулами воды сделан в [2], поскольку рассчитанный сдвиг п я -полосы в комплексе состава 1 2, равный 0,25 эв, лучше совпадает с измеренным сдвигом соответствующей полосы кротональдегида в растворе воды (—0,28 эв). Возможность образования двух ВС молекулами, которые имеют два координационных центра, утверждается в [20] на основе экспериментального изучения сдвигов полосы фосфоресценции пиразина в растворе этанола. При увеличении концентрации воды в этом растворе наблюдалось скачкообразное изменение величины сдвига полосы фосфоресценции (и полосы возбуждения фосфоресценции) пиразина, интерпретированное как результат последовательного замещения в комплексе пирасин— этанол состава 1 2 сначала одной, а потом и другой молекулы эчаиола на молекулы воды. [c.37]

    Наиболее чувствительным способом обнаружения 62 в количествах примерно до 10-8% (5-10-4 мм р/ге. ст.) является гашение фосфоресценции трипафлавинабсорбатов [102]. Однако определению мешают Н2О ( ) и NHg. Другой способ основан на образовании белого тумана или фосфоресценции, которые появляются при пропускании исследуемого газа над белым фосфором [103]. Метод позволяет обнаружить до 10 5% О2 в этом случае мешают СО, С2Н4, 2 2 и другие органические вещества. Кислород в количестве менее 10-з% можно обнаружить по красной окраске щелочного раствора FeS04, смешанного с пирокатехином [104]. Бесцветный щелочной раствор пирогаллола в присутствии [c.337]

    Флуоресценция является результатом излучательного перехода из возбужденного синглетного состояния в основное состояние. Возбужденное синглетное состояние представляет собой своего рода бирадикси, в котором электроны находятся на незаполненных орбиталях. Можно ожидать, что такие состояния будут чрезвычайно реакционноспособными и будут дезактивироваться при димеризации, при реакции с кислородом, под действием ингибиторов свободнорадикальных процессов и т. д. Следовательно, мы должны ожидать, что все те факторы, которые будут увеличивать вероятность реакций возбужденного синглетного состояния, будут способствовать тушению флуоресценции. Очевидно, фосфоресценция будет подвержена влиянию тех же факторов ожидаемое различие будет определяться различием в реакциях и реакционной способности синглетного и триплетного состояний. [c.805]

    В жидких растворах скорость излучательного /"[ о-пере-хода гораздо меньше скоростей интеркомбинационной конверсии и (или) тушения триплетного состояния примесями. Поэтому эффективность фосфоресценции в жидких растворах мала, и до последнего времени ее наблюдали чрезвычайно редко. Первые количественные измерения провела в 1930 г. Будэн [31]. При помощи визуального фосфороскопа она наблюдала при комнатной температуре долгоживущую фотолюминесценцию эозина в глицерине, время жизни которой составляло 1,1 мс, а интенсивность была в 400 раз ниже интенсивности быстрой флуоресценции. Несколько лет спустя Каутский [32] сообщил о долгоживущем испускании ряда красителей в растворах, освобожденных от кислорода. В последующие годы этому вопросу уделяли мало внимания. Положение изменилось после того, как была развита методика импульсного фотолиза. Применив ее, Бекстрём и Сандрос [33] исследовали тушение триплетного состояния диацетила — вещества, уже давно известного своей способностью фосфоресцировать. [c.50]

    Таким образом, интенсивность замедленной флуоресценции тоже должна затухать экспоненциально, но со временем жизни, равным половине времени жизни фосфоресценции. Действительно, этот вывод подтвердился на примерах фенантрена в этаноле [46], аценафтена, бензантрацена, флуорантена и пирена в жидком парафине [115] и красителей в этаноле при низкой температуре [36]. В жидком растворе фосфоресценция обычно гораздо слабее замедленной флуоресценции, поэтому измерения времени жизни последней являются удобным способом определения времени жизни триплетов в жидкости. Если в одном и том же растворе, освобожденном от кислорода, измерить tbjt(=t/2), 0/ф и /а и независимым способом определить фь то, пользуясь уравнением (138), можно получить значение вероятности рс (подробнее об этом и других приложениях замедленной флуоресценции см. в гл. IV). [c.104]

    Дюпюи [120] не обнаружил замедленной флуоресценции хри-зена, нафталина и фенантрена в некоторых кристаллических углеводородных матрицах, но зарегистрировал ее в присутствии небольших количеств бензола. По его предположению, эта особенность обусловлена образованием димеров в результате концентрации флуоресцирующего углеводорода в островках бензола, которые образуются, когда кристаллизующаяся матрица выталкивает бензол. Дюпюи, как и Адзуми и Мак-Глинн, предположил, что диффузией в стекле можно пренебречь и что именно поэтому не наблюдается тушения кислородом. Однако осталось невыясненным, какой процесс определяет время жизни замедленной флуоресценции. Гетерогенные матрицы исследовали также Мак-Глинн и сотр. [121]. В случае пирена в чистых нзо-пентановых стеклах испускалась только фосфоресценция, но если вводили небольшие количества воды, то получившиеся слегка туманные стекла испускали как фосфоресценцию, так и замедленную флуоресценцию. При средних концентрациях в замедленной флуоресценции присутствовали полосы мономера и полосы димера, причем интенсивность первых была пропорциональна квадрату интенсивности возбуждающего света, а интенсивность последних — первой ее степени. Полосы димера Мак-Глинн и сотр. приписали сначала долгоживуи ему возбужденному димеру, а позднее — кристалликам пирена. Очевидно, такие гетерогенные стекла являются слишком сложными системами и, для того, Чтобы понять полученные результаты и, в частности, решить, не обусловлены ли микрокристаллами вещества некоторые другие эффекты, требуются дополнительные исследования. [c.106]

    В гл. И было кратко обсуждено тушение флуоресценции растворенным кислородом, а примеры этого тушения приведены в гл. V. Обычные растворители, насыш,енные воздухом, содержат около 10 М кислорода. Степень тушения флуоресценции этим кислородом варьирует от 1% для соединений, имеюших сильную первую полосу поглощения и низкий квантовый выход флуоресценции, до 95% для веществ с долгоживущей флуоресценцией. Тушение кислородом фосфоресценции и замедленной флуоресценции намного больше, поэтому необходимы специальные предосторожности, описанные в разделе III, И, 2. Тушение флуоресценции кислородом можно легко предотвратить, пропуская в раствор перед измерением азот из баллона (содержание кислорода менее 10 %). В большинстве случаев достаточно закрыть кювету плотной крышкой со стеклянной трубкой для ввода газа. Для более сильного обескислороживания кювету надо закрывать стеклянной пробкой с вводной трубкой. Для присоединения кюветы к баллону с газом лучше всего использовать шланг из полиэтилена или гибкую металлическую трубку, а не резиновые шланги. Если проводятся точные измерения и если процесс откачивания занимает значительное время, газ необходимо заранее насыщать парами растворителя для предотвращения потерь за счет испарения. [c.224]

    Хотя почти все аналитические применения фосфоресценции связаны с измерениями при низкой температуре, имеет смысл рассмотреть и измерения в твердых прозрачных органических стеклах (полимерах) при комнатной температуре. Так, например, Остер и сотр. [360] нашли, что в этих условиях многие ароматические углеводороды и красители фосфоресцируют. Для введения вещества в твердый раствор они использовали три метода высаживание из растворителя, плавление с растворяемым веществом и полимеризацию мономера, в котором вещество было растворено. Для ароматических углеводородов использовали полистирол, полиметилметакрилат, поливпнилацетат, ацетат целлюлозы, этил- или метилцеллюлозы и поликарбонат. Для водорастворимых красителей авторы применяли поливиниловые спирты различной степени ацетилирования и некоторые производные целлюлозы. Они нашли, что кислород тушит фосфоресценцию, и использовали этот факт для определения скорости диффузии кислорода в пластмассу. Поскольку время жизни фосфоресценции обычно зависит от природы полимера и от температуры, был сделай вывод, что на триплетное тущение влияет не только микроброуновское движение полимерных сегментов, но также специфическое взаимодействие с полимерной матрицей. [c.444]

    Испускание замедленной флуоресценции многих красителей, адсорбированных на силикагеле, имеет время жизни, значительно превышающее 1 мс, и тушение молекулярным кислородом очень сильное. Так, в случае трипафлавина при давлении кислорода около 0,5-10 атм происходит 50%-ное тушение замедленной флуоресценции [415—417]. Полностью непотушенное испускание такой системы лучше всего получить откачиванием ее до высокого вакуума. Калибровка при таких низких концентрациях кислорода представляет некоторые трудности. Вместо интенсивности за меру содержания кислорода можно принять время жизни замедленной флуоресценции [см. уравнение (71)]. Этот метод применим и для замедленной флуоресценции или фосфоресценции в растворе, где время жизни находится в пределах 1—10 мс. [c.473]

    Другое объяснение анаэробного торможения выдвинуто Вильштеттером [7] и Франком [11]. Эти исследователи полагают, что первой ступенью фотосинтеза может быть фотохимическое дегидрирование хлорофилла кислородом, приводяш ее к образованию фотохимически активного монодегидрохлорофилла . Эта гипотеза имеет известное сходство с концепцией дисмутации энергии , описанной в главе IX. Возможно, что нет нужды в специальном объяснении роли кислорода в фотосинтезе, так как не доказана его необходимость для этого процесса. Так, Харвей [5] воспользовался исключительно чувствительными к кислороду светяш имися бактериями и показал, что у водорослей выделение кислорода начинается в течение первой секунды с начала освещения даже в среде, лишенной всяких следов кислорода. Франк и Прингсхейм, наблюдая тушение фосфоресценции адсорбированных красителей, обнаружили, что водоросли выделяют кислород при первой вспышке даже после 2-часового пребывания в чистейшем азоте. После выяснения сходства фотохимического процесса у зеленых растений и пурпурных бактерий Гаффрон [8, 10] отметил, что многие пурпурные бактерии живут лишь в строго анаэробных условиях. Это также служит доказательством, что кислород не необходим для фотосинтеза. [c.335]


Смотреть страницы где упоминается термин Фосфоресценция кислорода: [c.54]    [c.54]    [c.616]    [c.179]    [c.303]    [c.124]    [c.26]    [c.741]    [c.37]    [c.44]    [c.92]    [c.275]    [c.360]    [c.472]   
Фотосинтез 1951 (1951) -- [ c.335 ]




ПОИСК





Смотрите так же термины и статьи:

Фосфоресценция



© 2024 chem21.info Реклама на сайте