Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электростатические и водородная связь

    Реактивация агрегированных белков. Ее часто удается осуществить, разрушив межмолекулярные нековалентные контакты (гидрофобные, электростатические, водородные связи). Для этого используют те же денатуранты, которые разрушают нековалентные взаимодействия в нативных белках, вызывая их обратимую денатурацию концентрированные растворы мочевины и гуанидинхлорида, экстремальные значения pH и т. п. [c.135]


    Огромную роль в межмолекулярных взаимодействиях играет водородная связь, поскольку ею в значительной мере определяется возможность образования комплексов, мицелл и ассоциаций молекул в объеме масла и на поверхности металлов. Межмолекулярная водородная связь зависит от электростатических и донорно-акцепторных взаимодействий между молекулами—донором (АН) и акцептором (В) водорода. Энергия водородной связи по величине (8—60 кДж/моль) уступает энергии химических связей, но именно она в межмолекулярных связях во многом определяет ассоциацию молекул воды, спир- [c.203]

    Энергия взаимного притяжения молекул для всех указанных типов взаимодействия приблизительно обратно пропорциональна шестой степени расстояния между молекулами. Указанные взаимодействия в некоторых случаях приводят к ассоциации молекул жидкости (так называемые ассоциированные жидкости). Между молекулами ассоциированной жидкости образуются кратковременные непостоянные связи, К таким связям относится водородная связь, которая создается за счет электростатического притяжения протона одной молекулы к аниону или электроотрицательному атому (главным образом к атомам фтора, кислорода, азота, хлора) другой молекулы. [c.163]

    Большое влияние на растворяющую способность оказывает водородная спязь, которая образуется под влиянием электростатического притяжения протона одной молекулы к аниону или электроотрицательному атому (например, фтора, кислорода, азота, хлора) другой молекулы. Наличие водородной связи приводит к ассоциации молекул, например для метилового спирта  [c.87]

    Как известно, энергию водородных связей в общем случае можно представить как сумму вкладов электростатического, обменного, поляризационного и дисперсионного взаимодействий [206]. Для органического вещества торфа, содержащего большое число дипольных функциональных групп, существование электростатической составляющей водородной связи в формировании взаимодействия вода — торф вполне очевидно. Наличие в органических соединениях торфа структур полисопряжения, а также ароматических структур с ненасыщенными связями предопределяет возможность реализации слабых водородных связей [207]. Однако на фоне преобладания электростатической составляющей другими составляющими, ответственными за формирование водородных связей в торфе, по-видимому, можно пренебречь. [c.65]

    Как известно, устойчивость гидрофильных коллоидов обычно выше предсказываемой теорией ДЛФО, учитывающей молекулярное протяжение и электростатическое отталкивание. Однако лишь в последнее время удалось установить прямую связь между устойчивостью гидрофильных коллоидов и толщиной граничных слоев воды, оцененной независимыми методами. Для дисперсий кремнезема и алмаза экспериментально прослеживается влияние на их устойчивость pH дисперсионной среды и температуры. Причиной этого влияния является изменение дальнодействия структурных сил отталкивания, стабилизирующих дисперсию. Стабилизация дисперсий при низких pH связана с увеличением числа поверхностных ОН-групп, способных к образованию водородных связей с молекулами воды, что ведет к росту сил структурного отталкивания. Повышение температуры вызывает ослабление сетки направленных водородных связей в воде, что уменьшает дальнодействие структурных сил и приводит к снижению устойчивости дисперсий. Наблюдающаяся обратимость температурной зависимости устойчивости свидетельствует об обратимости структурной перестройки граничных слоев. [c.168]


    Из приведенных данных но исследованию устойчивости дисперсии алмаза в растворах K I следует, что в зависимости от pH дисперсионной среды и концентрации электролита и, как следствие этого, от состояния поверхности дисперсия алмаза ведет себя либо как лиофилизованная (кислая область), либо как иопно-стабилизированная (щелочная область) дисперсная система, обнаруживая тем самым различную чувствительность к добавлению индифферентного электролита. В зависимости от состояния поверхности частиц алмаза (соотношения числа диссоциированных и недиссоциированных поверхностных групп), возможности образования водородных связей между молекулами воды и поверхностными группами алмаза, а также от концентрации добавленного электролита меняется структура воды в ГС, и, как следствие, соотношение между молекулярной, ион-но-электростатической и структурной составляющими энергии взаимодействия частиц. [c.184]

    Напротив, все меры, ведущие к росту сил электростатического и структурного отталкивания, улучшают смачивание. Эта цель достигается приданием высокого и одинакового по знаку потенциала поверхностям пленки и (или) гидрофилизацией подложки, например путем увеличения числа центров, способных к образованию водородных связей с молекулами воды. При адсорбции неионогенных гидрофильных ПАВ или полимеров может проявиться дополнительно действие сил стерического отталкивания адсорбционных слоев. Понимание причин, управляющих смачиванием, позволяет в каждом конкретном случае выбирать оптимальные методы для решения практических задач. [c.218]

    Рассмотренные в этой главе типы химической связи в твердых телах систематизированы в табл. 14-3. Ионные, или электростатические, связи, а также ковалентные связи характеризуются энергией связи порядка 400 кДж моль Металлические связи могут иметь различную прочность, однако она сопоставима с прочностью ионных и ковалентных связей. Водородные связи намного слабее энергия связи между атомами О и Н до- [c.639]

    Элементарной структурной ячейкой силикатов является кремнекислородный тетраэдр такие тетраэдры могут образовывать циклические, цепные, листовые и трехмерные каркасные структуры. Часть атомов кремния способна замещаться алюминием, но при этом компенсация заряда требует введения дополнительных катионов, что приводит к усилению электростатического вклада в химическую связь кристалла. На примере силикатов иллюстрируются четыре из пяти типов связи, обсуждавшихся в данной главе ковалентная связь между атомами кремния и кислородом в тетраэдрах, вандерваальсовы силы между силикатными листами в тальке, ионное притяжение между заряженными листами и цепочками, а также водородные связи между молекулами воды и силикатными атомами кислорода в глинах. Если включить в этот перечень еще никелевые катализаторы на глиняном носителе, то мы охватим и пятый тип химической связи (металлический). [c.640]

    Белковая цепь приобретает чрезвычайную устойчивость, сворачиваясь в правостороннюю а-спираль (рис. 21-17). В такой структуре аминокислотные остатки направлены наружу от оси спирали, а группы С=0 одного витка спирали связаны с группами Н—N следующего витка водородными связями. Водородные связи образуются между сильно электроотрицательными атомами, например Р или О, и атомами водорода с небольшим локальным избытком положительного заряда. Такие связи имеют главным образом электростатическое происхождение и зависят от способности двух атомов к тесному сближению. Атомы О и Р, имеющие небольшие размеры, способны давать такие связи более крупные атомы О обычно не могут образовать водородных связей. В белках водородные связи играют очень важную роль они возникают между кислородным атомом карбонильной группы и атомом водорода аминогруппы, принадлежащими полипептидной цепи. Как видно из рис. 21-13, частично двоесвязный характер пептидной связи С—N не только обеспечивает плоскостность пептидного звена, но также делает атом кислорода несколько отрицательным, а атом азота с присоединенным к нему атомом водорода несколько положительными. Это и создает благоприятные условия для образования водородных связей. [c.316]

    Роль фермента заключается в том, что он предоставляет поверхность, к которой может прикрепляться тот или иной субстрат (молекула, подвергаемая воздействию на поверхности), и облегчает образование или разрыв связей в этой молекуле. Место на поверхности фермента, проявляющее такую активность, называется активным центром фермента. Фермент выполняет две функции распознавание и катализ. Если фермент будет без разбора связывать каждую оказавшуюся вблизи молекулу, то лишь небольшая часть времени израсходуется на катализ реакции, для которой предназначается данный фермент. Но фермент окажется точно так же бесполезным, если, связывая нужную молекулу, он не будет способствовать образованию или разрыву в ней надлежащих связей. Распознавание ферментами своих истинных субстратов осуществляется при помощи расположенных определенным образом в активном центре фермента боковых аминокислотных групп, способных взаимодействовать с молекулой субстрата электростатически, либо в результате образования водородных связей или же притяжения гидрофобных групп. Такой отбор молекул путем связывания с ферментом называется его специфичностью. [c.317]


    Наиболее важный класс глобулярных белков образуют биологические катализаторы, ферменты. Они характеризуются каталитическим механизмом, позволяющим им ускорять достижение конкретной реакцией состояния термодинамического равновесия, а также специфичность к субстрату, благодаря которой они способны делать выбор между потенциальными молекулами субстратов, воздействуя на одни из них и отказываясь воздействовать на другие. Участок поверхности фермента, на котором происходит катализ, называется активным центром. Механизм катализа может осуществляться при помощи заряженных групп, доноров и акцепторов электрона или протона, а также при помощи атомов металла в активном центре фермента. Избирательность ферментов обусловливается формой их поверхности и характером взаимодействия с субстратом, например водородной связью, электростатическим взаимодействием или гидрофобным притяжением. Фермент и его субстрат соответствуют друг другу по форме и размеру, как ключ и замок. [c.339]

    Согласно Н. Д. Соколову, при образовании водородной связи помимо чисто электростатического эффекта взаимодействия полярных связей А— Н и В—Кз происходит делокализация электронного заряда, т. е. частичный перенос заряда от молекулы донора В—К2 к молекуле акцептора —Н. Для упрощения рассмотрим только мостик А—Н...В. В связи А—Н положительный заряд на самом атоме Н мал. Но в процессе образования Н-связи электронный заряд с атома Н перетекает на атом А, тем самым высвобождая 5-орбиталь водорода для приема от атома В электронного заряда неподеленной [c.137]

    В неполярной среде ион отличается значительным дальнодействием по сравнению с полярными жидкостями в отличие от водных растворов, где ион полностью нейтрализуется полярными молекулами, в неполярной среде происходит лишь частичная компенсация его заряда вследствие малого содержания дипольных молекул и, по-вндимому, из-за сложного строения дифильных молекул. Носители тока в неполярных средах могут иметь переменную величину подвижность таких ассоциатов меньше, чем у исходного иона. Возможно, при электрической проводимости большую роль играют именно такие системы с центральным ионом. Электростатическое диполь-дипольное взаимодействие молекул невелико и, по-видимому, не имеет большого значения при образовании молекулярных димеров, где главное место отводится водородным связям. [c.27]

    Водородная связь представляет собой как бы вторую побочную валентность водородного атома, которую он может проявлять по отношению к сильно отрицательным атомам, если основная валентность связывает его с атомом, тоже сильно отрицательным. В жидком состоянии фтористый водород имеет молекулу H Fg. При растворении его в воде образуются ионы Н+ и НРГ. В анионе HFF водород связывает оба атома фтора не двумя ковалентными связями, так как он не может иметь больше одной такой связи, а электростатическим взаимодействием протона Н+ с ионами Р . Сильно электроотрицательный атом F отнимает электрон от атома Н и последний превращается в протон Н+, способный своим зарядом довольно прочно связать второй ион F . Это ведет к образованию водородной связи типа X . ., H+X , которую называют водородным мостиком. [c.79]

    На основании известных фактов о том, что ири любых pH (скажем, ири физиологическом значении 7,35), ионной силе и даже диэлектрической проницаемости аминокислоты и белки могут существовать в различных ионизационных состояниях, можно ожидать, что молекулы эти будут взаимодействовать с водной средой благодаря образованию ионных (электростатических) п водородных связей. Вот почему каждый белок обладает присущей ему специфической степенью гидратации, или, другими словами, он должен связаться с определенным количеством воды для того, чтобы сохранить свою целостную структуру. Молекулы [c.43]

    Адгезия между поверхностью волокна и связующим реализуется за счет дисперсионных, электростатических и водородных связей. С увеличением степени графитации адгезия заметно снижается. [c.531]

    Специфические силы взаимодействия играют существенную роль при хроматографическом разделении смеси веществ, обладающих различным строением, но близкими температурами кипения. К ним относится водородная связь, возникающая между атомом водорода и такими атомами, как О, С1, Р, N. В образовании водородной связи наряду с электростатическими взаимодействиями существенную роль играет электронное взаимодействие. Специфическими силами может быть также обусловлено комплексообразование. [c.171]

    Соединения водорода кислотного или потенциально кислотного характера, например вода Н2О, два атома водорода которой являются акцепторами электронов, с подходящими донорами электронов образуют водородные связи А — Н...В. Последние длиннее ковалентных, но несколько короче ван-дер-ваальсовских связей между молекулами А — Н и В. По своей природе они близки до-норно-акцепторным связям, усиленным электростатическим взаимодействием А —Н+...В , -де В может быть О, Ы, Р, а также С1, 5 и некоторые другие элементы. Очень важной особенностью водородной связи является то, что она всегда служит продолжением по прямой линии связи А — Н. Это обусловлено тем, что неподеленные электроны атома В находятся на вытянутых гибридных орбиталях зр, 5р2, зр , донорно-акцепторное взаимодействие устанавливается при условии копланарности связи А — Ни орбитальной оси неподеленных электронов В. Таким образом, водородная связь — это строго направленная связь. Энергия водородной связи невелика, обычно всего 3—7 ккал/моль. Но в твердых веществах, а также в растворах одновременно образуется множество водородных связен. Вот почему водородные связи прочно соединяют молекулы и вообще отдельные части структуры твердого вещества. Правда, даже при небольшом нагревании эти непрочные связи распадаются, что мы наблюдаем, например, при таянии льда или свертывании белка при нагревании. [c.89]

    Между цепями находятся ионы Ма+ и молекулы НзО, которые в свою очередь связывают их между собой как за счет электростатических сил, так и через водородные связи. [c.520]

    Образование водородной связи обязано ничтожно малому размеру положительно поляризованного аюма водорода и его способности глубоко внедряться в электронную оболочку соседнего (ковалентно с ним не связанного) отрицательно поляризованного атома. Вследствие этого при возникновении водородной связи наряду с электростатическим взаимодействием проявляется и донорно-акцепторное взаимодействие. Водородная связь весьма распространена и играет важную роль при ассоциации молекул, в процессах кристаллизации, растворения, образования кристаллогидратов, электролитической диссоциации и других важных физико-химических процессах. Например, в твердом, жидком и даже в газообразном состоянии молекулы фторида водорода НР ассоциированы в зигзагообразные цепочки вида [c.92]

    Кинетические данные показывают, что аналогично влияет температура на длительность коагуляции. Из данных по зависимости длительности разделения фаз от температуры могут быть определены пороговые температуры коагуляции Гпор, и Тпор,, которые, так же как Спор, и Спор > являются характерными параметрами процесса коагуляции для данного типа латекса [45]. Если при введении электролита в латексные системы происходит резкое уменьшение сил электростатического отталкивания между частицами за счет снижения -потенциала частиц и подавления диссоциации адсорбированных молекул ПАВ (и изменения растворимости молекул ПАВ), то под влиянием теплового воздействия происходит ослабление водородных связей молекул воды и ПАВ адсорбционного слоя, что также способствует гидрофобизации системы и понижению ее устойчивости. В интервале времени тг — ть по-видимому, преодолевается энергетический барьер, препятствующий коагуляции системы и разделению фаз. При проведении коагуляции в условиях, при которых концентрация электролита Сэл Спорг и [c.258]

    Молекулярные представления о природе поверхностных явлений основаны на механизме межмолекулярного взаимодействия между частицами твердого тела и газа, а такж частиц газа между собою. Если исключить пока хемосорбционные процессы, то основной вклад в поверхностные явления вносят дисперсионные силы. Оказывают влияние на энергетику поверхностного взаимодействия также электростатические силы и водородная связь. В целом можно утверждать, что чем больше удельная поверхность пор 5 и чем ближе разделяемая газовая смесь по своим свойствам приближается к неидеальным системам, тем сильнее будет сказываться влияние поверхностных явлений на процессы в пористой мембране. [c.42]

    При образовании раствора в общем случае происходит изменение свойств и растворителя, и растворенного вещества (растворенных веществ). Это обусловлено тем, что в растворе действуют силы, вызывающие и межмолекулярное взаимодействие (электростатическое, ван-дер-ваальсовы силы), ионно-дипольное взаимодействие, проявляющиеся на сравнительно значительных расстояниях, и специфическое взаимодействие (донорно-акцепторное, водородная связь), сказывающееся на сравнительно небольших расстояниях. Первое является общим для всех веществ оно связано с совокупностью физических процессов. Второе связано с перестройкой электронных оболочек молекул, атомов и ионов оно обусловлено химическими изменениями. [c.133]

    Ферменты — высокомолекулярные белковые соединения, состоящие из аминокислот, связанных пептидными связями. В составе природных белков встречается около двадцати аминокислот. Молекулярная масса ферментов лежит в пределах от 10 до 10 . Молекула фермента в своем составе имеет чередующиеся полярные группы СООН, ННа, МН, ОН, 5Н и другие, а также гидрофобные группы. Первичная структура фермента обуславливается порядком чередования различных аминокислот. В результате теплового хаотического движения макромолекула фермента изгибается, свертывается в рыхлые клубки. Между отдельными участками полипептидной цепи возникает межмолекулярное взаимодействие, приводящее к образованию водородных связей другие участки могут взаимодействовать за счет электростатических или ван-дер-ваальсовых сил  [c.632]

    Одним из важных практических выводов при рассмотрении природы адсорбционного взаимодейств1[я является вывод о значительно лучшей адсорбции веществ в трещинах и порах, когда проявляется преимущественно дисперсионное взаимодействие, так как вблизи адсорбированной молекулы находится большее число атомов твердого тела. Если же в адсорбционном взаимодействии значителен электростатический вклад, то в щелях и порах положительные и отрицательные заряды компенсируют друг друга и наибольший потенциал оказывается на выступах, где и будет преобладать адсорбция, особенно при образовангш водородных связей (адсорбция воды, метилового спирта и др.). Кроме того, из уравнений (И1.6) и (III. 7) следует, что чем большее число атомов имеет молекула адсорбата, тем с большей энергией она будет притягиваться к адсорбенту. [c.111]

    Упорядоченная структура предполагает наличие пяти- и ще-стичленных колец, а не цепей. Возможно, в качестве простейшего предположения следует рассмотреть углеводороды, например бензол, нафталин или индол. Однако эти соединения совершенно гидрофобны, а такое свойство — недостаток, поскольку биологические процессы проходят в водной среде. Кроме того, углеводороды не способны участвовать в различных нековалентных взаимодействиях в образовании водородных связей и в особенности электростатических связей. [c.105]

    Подобные аномалии у спиртов объясняются возможностью образования межмолекудярньтх водородных связей и за счет них - асоциаций молекул. Эти связи возникают между атомами водорода и электроотрицательными атомами других молекул и образуются за счет электростатического взаимодействия двух разноименных полюсов диполей. [c.19]

    Водородная связь образуется путем электростатического и донорно-акцепторно-го взаимодействия. Энергия водородной связи включает три составляющие электростатическую энергию притяжения, преобладающую на больших расстояниях, энергию поляризации (ориентационное и индукционное взаимодействие) и переноса заряда, проявляющуюся при уменьшении расстояния и способствующую притяжению молекул, и энергию отталкивания. Силы притяжения и отталкивания в водородном мостике сбалансированы. В зависимости от энергии связи водородные связи подразделяют на сильные (120-250 кДжмоль ) и слабые (8-28 кДжмоль ). Появление водородной связи понижает суммарную энергию системы. [c.96]

    Образование водородной связи обязано ничтожно малому размеру положительно поляризованного атома водорода и его способности глубоко внедряться в электронную оболочку соседнего (ковалентно с ним не связанного) отрицательно поляризованного атома. Вследствие этого наряду с электростатическим взаимодействием в возникновении водородной связи существенную роль играет и донорно-акцепторное взаимодействие. Так, молекула воды может образовать четыре водородные связи — за счет двух атомов водорода и двух несвязывающих электронных пар атома кислорода  [c.108]

    Различают физическую адсорбцию, происходящую за счет дисперсионных (ван-дер-ваальсовых) взаимодействий молек ул адсор-бата с адсорбентом, образования водородных связей и других сил электростатического характера, и химическую адсорбцию (хемосорбцию), происходящую за счет образования химических связей между адсорбатом и адсорбентом. Для физической адсорбции характерны теплоты адсорбции -2 -5 кДж/моль, для химической адсорбции значения теплот обычно превышают 10 кДж/моль. Химическая адсорбция может сопровождаться диссоциацией молекул адсорбата и другими его химическими превращениями. [c.281]

    Рассмотрим характер конформационных изменений, возникающих при комплексообразовании карбоксипептидазы А с субстратоподобным ингибитором [15]. В активном центре свободного фермента (см. рис. 5) имеется система водородных связей (пунктир), которая простирается от Aгg-145 через амидные связи полипептидной цепи (01и-155, А1а-154, 01п-249) и молекулу воды (она не указана на рис. 5) до фенольного гидроксила Туг-248. При контакте этого же фермента с квазисубстратом глицил- -тирозином (см. рис. 7) электростатическое взаимодействие свободной карбоксильной группы квазисубстрата с гуанидиновой группой Aгg-145 (пунктир) вызывает смещение последней на 2 А (по сравнению с ее положением в свободном ферменте). Более того, это смещение одного остатка влечет за собой нарушение всей системы водородных связей, что приводит к повороту боковой цепи Туг-248 с перемещением ее фенольного гидроксила на 12 А. В результате между ней и амидным атомом азота в молекуле квазисубстрата образуется водородная связь (пунктир на рис. 7). [c.24]


Смотреть страницы где упоминается термин Электростатические и водородная связь: [c.221]    [c.325]    [c.325]    [c.464]    [c.221]    [c.447]    [c.501]    [c.198]    [c.619]    [c.139]    [c.115]    [c.264]    [c.316]    [c.37]    [c.63]    [c.23]    [c.43]   
Теория резонанса (1948) -- [ c.75 , c.76 ]




ПОИСК





Смотрите так же термины и статьи:

Водородные связи

Связь водородная, Водородная связь



© 2025 chem21.info Реклама на сайте