Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перхлорат определение в нитрате

    Нитрон применяют для определения нитратов, пикратов, перренатов и перхлоратов. Определению не мешают кислоты серная, соляная, фосфорная, борная, муравьиная, уксусная, бензойная и винная, а также желатин, декстрин, сахароза, иодаты, сульфаты магния и аммония, алюминий, сульфат калия и хлорид магния. Нитрон хранят в темноте. [c.183]

    Известный метод отделения нитратов основан на том, что нитраты бария и серебра растворимы. Это позволяет отделить осаждением анионы, образующие с барием и серебром нерастворимые соли. С помощью сульфата серебра можно отделить хлориды от нитратов. Этот метод применен для удаления мешающих примесей при определении нитратов в растворах гальванических ванн [5]. В этой работе в качестве осадителя использовали смесь хлорной кислоты и перхлоратов бария и серебра, компоненты которой не мешают последующему спектрофотометрическому определению нитратов. Раствор реагента приливают по каплям до тех пор, пока не перестанет выделяться осадок. Через 1 ч или более раствор фильтруют, промывают три раза водой и объединенный раствор, содержащий фильтрат и промывные воды, анализируют. [c.119]


    Определение хлората и перхлората в нитрате. Навеску 10 г анализируемого нитрата смешивают с 15 г чистого карбоната кальция и нагревают в тигле при темно-красном калении в течение 30 мин. Хлорат и перхлорат превращаются в хлорид, который и определяют. В другой навеске пробы определяют хлорат титрова- нием раствором соли железа (II) (см. стр. 1131). [c.1132]

    Для титрования церия(IV) по методу восстановления предложены аскорбиновая кислота [8—10] (см. также Ванадий ), щавелевая кислота [И, 12], соль Мора [11, 13], (см. также Ванадий ), перхлорат и нитрат ртути(1) [14, 15], арсенит натрия [16], перекись водорода [17], нафтиламин [18], цИстеин [19], метиленовая голубая [20], гидрохинон [21]. В разделе Марганец упоминается титрование церия(IV) нитритом натрия. Купферон, применяемый для осаждения церия (III), также является восстанови-теле.м по отношению к церию (IV) и может быть применен для его определения,[ 11 ]. В водно-органической среде церий (IV) может быть оттитрован ферроценом [22]. [c.295]

    Полный аиализ за исключением определений нитрата и перхлората [c.95]

    Перхлоратов определение во взрывчатых веществах. Перхлораты определяют во взрывчатых веществах с целью контроля их качества, а также с целью их идентификации. Анализируемый образец сжигают, чтобы перевести перхлораты в хлориды, и методом потенциометрического титрования устанавливают содержание хлорид-ионов. Титрантом служит раствор нитрата ртути (П). Конечную точку титрования устанавливают, используя хлоридный электрод 94-I7B и электрод сравнения 90-02. [c.89]

    Метод разложения образцов нагреванием со смесью карбоната калия и магния [6.147], карбоната натрия и магния [6.148], карбоната лития и цинка [6.148] или карбоната натрия и цинка [6.149] используют при качественном обнаружении галогенов, азота, фосфора, серы, мышьяка и сурьмы, а также кислородсодержащих анионов хлората, перхлората, бромата, нитрата и др. Для количественного определения серы в угле пробу нагревают со смесью пероксида бария и алюминия [6.150], для определения серы в золе, руде и стали применяют смесь Эшка и цинка [6.151 ]. [c.287]

    Большое значение имеет определение хлоридов в природных водах при помощи кондуктометрического титрования перхлоратом или нитратом ртути. Возможны оире-делен ия в очень разбавленных растворах хлоридов (порядка 2-10- н.). [c.90]


    Определение серы и галогенов по Шенигеру. Точную навеску вещества, завернутую предварительно в обеззоленный фильтр, укрепляют в платиновой проволоке, впаянной в стеклянную палочку. Эта палочка укреплена в пробке для колбы. Затем фильтр с навеской поджигают и сразу же вносят в колбу, наполненную предварительно кислородом, и плотно закрывают ее пробкой. Продукты сгорания поглощают водой с добавлением пероксида водорода. При определении галогенов полученный раствор подкисляют азотной кислотой и титруют раствором нитрата ртути в присутствии индикатора. При определении серы растворенные продукты сгорания титруют раствором перхлората бария. [c.50]

    Различное влияние, оказываемое органическими растворителями на неорганические соединения, часто используют в анализе. Например, хлорид лития можно отделить от галогенидов других щелочных металлов экстракцией спиртом или эфиром. Метод количественного определения калия в виде перхлората основан на том, что его растворимость уменьшается при добавлении спирта, а перхлорат натрия при этом переходит в раствор. Хлориды и нитраты щелочноземельных металлов можно разделить смесью спирт-1-эфир. [c.197]

    К числу мембранных электродов относят прежде всего давно известный стеклянный электрод, широко применяющийся для определения активности ионов водорода — измерения pH. В последние годы предложено много других мембранных электродов, посредством которых измеряют активность (концентрацию) различных ионов и проводят потенциометрическое титрование. Известны, например, электроды для определения ионов натрия, калия, кальция, магния, цинка, свинца, лантана, хлора, брома, иода, фтора, нитрата, перхлората. [c.468]

    Из анионов определению алюминия не мешают значительные количества СГ-иона (до 3 г), нитраты, перхлораты, до 0,3 г сульфат-иона, 50-кратные количества фосфат-иона, ионы СОз , 50з , ЗгОз , ацетаты. Мешают фториды, тартраты, цитраты, перекись водорода. [c.107]

    В настоящее время выпускаются нитрат-, тетрафторборат-, перхлорат-селективные электроды с пластифицированными мембранами, которые позволяют измерять концентрацию соответствующих ионов в диапазоне от 1 до 10 моль/л при температурах от О до 40 °С. Разработаны также электроды для определения Са ", На", К". Так, например, поливинилхлоридная матрица, пластифицированная трибутилфосфатом, селективна к ионам Са ". Та же мембрана, пластифицированная дибутилфосфатом, реагирует на изменение концентрации ионов К" в присутствии На". Следует помнить, что в основе действия всех этих мембран лежат те же принципы, что и рассмотренные выше. Необходимым условием отклика мембраны является равновесие реакции определяемого иона с комплексообразующим реагентом или с ионообменником. [c.209]

    Обращает на себя внимание, что константы равновесия, определенные на фоне сульфатов, нитратов и перхлоратов щелочных и щелочно-земельных металлов в водных растворах не зависят или сравнительно мало зависят от ионной силы, в то время как солевой эффект в неводных средах значителен, зависит от природы электролита фона и растворителя (рис. 1.2). [c.29]

    Для полного разложения почти всех урановых руд и пород может быть рекомендован следующий метод соответствующую навеску прокаленной при 500— 600° руды обрабатывают концентрированной HNOз или царской водкой при нагревании неразложившийся остаток отфильтровывают, промывают затем озоляют фнльтр и прокаливают при 500—600°. Прокаленный остаток обрабатывают концентрированной НР с доб лением небольшого количества НМОз или Н.,804 если необходимо, обработку плавиковой кислотой повторяют несколько раз до полного разложения силикатов. Так как при дальнейшем отделении и определении урана в большинстве случаев присутствие Р -иона нежелательно, то после разложения руды плавиковой кислотой фториды переводят в сульфаты, перхлораты или нитраты выпариванием с Н,804, НСЮ4 или НМОз. Полученные соли растворяют в разбавленной НЮз если при этом остается нерастворимый остаток, то его отфильтровывают, а затем разлагают сплавлением с бисульфатом калия. [c.344]

    Уиллард и Янг применяли оксалат натрия как исходное вещество для установки титра растворов церия (IV) в серной кислоте. В отсутствие катализатора необходимо поддерживать температуру 70—75° С. Конечную точку лучше всего определять потенциометрически, хотя возможно и визуальное определение ее, основанное на использовании желтой окраски растворов церия (IV), однако при этом необходимо введение соответствующей поправки с помощью холостого опыта. В присутствии катализатора хлорида иода титрование можно проводить при комнатной температуре. Правда, если в качестве индикатора используется ферроин, то температуру все же следует поддерживать выше 45° С (тогда удается избежать местного окисления индикатора, так как он тут же снова восстанавливается) в то же время температура не должна превышать 50° С, иначе произойдет разрушение индикатора избытком церия (IV). Уитли и Уотсон 33 применяли в качестве катализатора Мп , а в качестве индикатора — ферроин и проводили титрование как при комнатной температуре 32, так и при 40—50° С. Смит и ГецЗ установили, что оксалат натрия в 1—2 М хлорной кислоте можно титровать при комнатной температуре перхлоратом или нитратом церия (IV), но не сульфатом. Позднее Смитуудалось установить титр полученного электролитическим путем перхлората церия (IV) с помощью оксалата при комнатной температуре. Нитроферроин имеет преимущество перед ферроином, так как в связи с более высоким потенциалом он в меньшей степени подвержен местному окислению. [c.421]


    Полученную кислоту можно оттитровать стандартным раствором основания. Колонку регенерируют путем промывания ее 3—4 н. соляной кислотой и водой. Этот способ применим для определения суммарной концентрации солей, поскольку НА можно вымыть из колонки и оттитровать. Самуэльсон 2 применил этот метод к определению нитратов, точность метода оказалась равной 0,2%. Аналогичным образом можно определить отдельно содержание в растворе сульфатов, перхлоратов, ацетатов, галогенидов и пр. Этот метод позволяет просто определять концентрацию растворов солей, точную навеску которых трудно взять вследствие их гигроскопичности или неопределенного содержания в них воды. Другое применение метода заключается в приготовлении титрованных растворов кислот путем взятия навесок соответствующих солей (HNO3 из AgNOs, H l из Na I и т. д.). [c.571]

    Реакции синтеза и разрушения органических соединений лежат в основе определения нитрат-, нитрет-, аммоний-ионов, а также брома, хлора, перхлората и других окислителей. Кроме того, реакции синтеза органических красителей используются в косвенных методах определения многих ионов, которые осаждаются о-окси-хинолином. После осаждения оксихинолипата металла его отделяют и растворяют в кислоте. Затем полученный о-оксихинолин сочетают с продуктом диазотирования сульфаниловой кислоты и получают азокраситель. Измеряют оптическую плотность полученного красителя и по предварительно построенному калибровочному графику находят содержание определяемого металла. [c.372]

    Нерастворимый в воде осадок ионного ассоциата ВР1 с тетра-фениларсонием можно экстрагировать дихлорметаном [3], что использовано для экстракционного титрования. Избыток ТФАХ в водной фазе определяют амперометрически или фотометрически при 220 нм. Фторид и борат не мешают определению. Мешают анионы, взаимодействующие с ТФАХ, в том числе хлорат, перхлорат и нитрат. [c.220]

    К-(4-хлорбензил)-1-нафтилметиламин нрименен для определения нитрат-ионов в смеси с перхлорат-ионами после предварительного осаждения СЮ -ионов с помощью хлорида тетрафенилфосфо-ния [855]. [c.52]

    Ниже приведен метод, разработанный Айрисом и Янгом которые рекомендуют получать окраску в горячем спиртовом растворе соляной кислоты, чтобы предупредить осаждение окрашенного продукта реакции, если концентрация рутения довольно высока. Осмий и палладий сильно мешают, поглощая свет той же длины волны (620 мц), которую применяют при определении светопоглощения комплекса рутения также мешают железо(И1), медь, кобальт, хром и, в меньшей степени, никель. Родий, иридий или платина не дают цветных реакций. Бромид, сульфат, перхлорат и нитрат при концентрации 100 ч. на млн. не влияют на определение. [c.703]

    Фрезер и Крауфорд [132] описали метод одновременного определения содержания углерода, водорода и азота в летучих веществах. Кэмпбел и др. [133] анализировали металлоргани-ческне перхлораты и нитраты на ,II,N-aнaлизaтope Колемана Райт [134] разработал метод определения углерода, водорода й азота во взрывчатых органических соединениях путем осторожного пиролиза. Чумаченко и Пахомова усовершенствовали методику, описанную ими ранее [129]. Янике и Уолиш [136] для определения углерода, водорода и азота применяли масс-спект-ральный метод исследования состава образующихся продуктов сгорания Пять определений углерода, водорода и азота было выполнено ими за 1 ч при использовании 300 мкг вещества. Ряд авторов сравнивали по точности и надежности промышленные С,Н,Ы-анализаторы и классические методы Прегля и Дюма. [c.316]

    Жидкостные ионообменные электроды, чувствительные к нитрат-, перхлорат-, фтороборат- и хлорид-ионам, обычно работают в диапазоне от 10 до 10 М. Хлоридселективный электрод этого типа не столь чувствителен к сульфид- и галоге-нид-ионам, как твердотельный электрод. Поэтому его можно использовать в тех случаях, когда нельзя исключить присутствие сульфидов или галогенидов. Перхлорат-Егые и фтороборатные электроды имеют ограниченное применение в анализе. Однако нитратный электрод широко используют для прямого определения нитратов. [c.119]

    Стандартная энтальпия образования ионов Zr H- и Hf + в водном растворе была определена по энтальпии растворения галогенидов металлов в растворах минеральных кислот. Трудности определения энтальпий образования рассматриваемых ионов связаны со сложностью. химического поведения соединений циркония и гафния в водном растворе, их ярко выраженной склонностью к гидролизу, полимеризации и комплексообразованию. Исследование равновесий показало, что при концентрации циркония 10-3 моль/л и менее и концентрации минеральной кислоты (хлорной, соляной или азотной) 2 моль/л и более в растворе доминирует негидролизованный мономерный ион Zr +, практически не образующий устойчивых ассоциатов с перхлорат-, хлорид- и нитрат-ионами. В этих условиях растворение кристаллических Zr U и 2гБг4 в растворе минеральной кислоты можно представить схемой [c.203]

    Хлориды, сульфаты, нитраты н перхлораты не мешают определению алюминия оксихинолиновым методом. Фториды мешают даже в малых количествах [77, 644]. Добавление I—5 г Н3ВО3 уменьшает ошибку, но этим путем можно маскировать лишь до 2 жгР -иона [644]. Добавление бериллия (Ве А1> 1) устраняет мешающее влияние фторидов вследствие образования его фторидного комплекса [398]. Тартраты не мешают, но в их присутствии образуется болеемелкий осадок. В присутствии цитратов и оксалатов осаждение полное ЗДько при pH > 7—8. [c.37]

    Влияние анионов. Большие количества хлоридов, нитратов и сульфатов не мешают определению алюминия [750]. Не мешают бромиды и иодиды [646]. Перхлораты не мешают до 1 М концентрации. Если ЗЮа находится в истинном молекулярном растворе, то не мешает при соотношении А12О3 ЗЮз = 1 4. В присутствии полимеризованной ЗЮг при соотношении больше 1 4 результаты завышаются на 10°/о и выше. Перед определением алюминия целесообразно обрабатывать анализируемый раствор едким натром для перевода ЗЮа в молекулярную форму [109]. Фториды уже в количестве 10 мкг мешают экстракции оксихинолината алюминия, введение борной кислоты не устраняет их влияния [646]. При определении алюминия в тории небольшие количества фторидов (до 500 мкг) не мешают, так как торий связывает фторид в прочный комплекс [957]. Согласно Джентри и Шеррингтону [750], до 0,15 г фосфатов мало влияет на определение алюминия, но > 200 л/сг фосфорной кислоты мешает восстановлению железа [646]. До 0,2 г тартрата в 50 мл раствора мешает мало [750] по другим данным, допустимо 0,3 г винной кислоты в 80 мл раствора [869]. Поэтому винную кислоту используют для маскирования небольших количеств железа [869]. 0,3 г винной кислоты маскирует 5,6 мкг железа. Некоторые авторы вводят винную кислоту для удержания алюминия в растворе в щелочной среде. В стандартные растворы в этом случае также вводят такие же количества винной кислоты. [c.121]

    Присутствие в исследуемом растворе хлоридов и перхлоратов допустимо. Большое количество нитрат-ионов мешает определению. Сульфаты, фосфаты и органические оксикисло-ты образуют с торием комплексные соединения и подавляют окраску. Фториды также мешают, однако их влияние устраняется при упаривании исследуемого раствора с хлорной кислотой. [c.205]

    При восстановлении амальгамированным цинком не мешают сульфаты, перхлораты и хлориды. Борная и борофтористоводородная кислоты также не мешают восстановлению. Нитраты и нитриты частично восстанавливаются до соединений с более низкими валентными состояниями азота, в том числе и до гидроксиламина, которые при последую1цем титровании растворами окислителей способны окисляться и тем самым вызывать ошибку определения урана. [c.79]

    Влияние анионов на определение урана в карбонатно-щелочном растворе изучали Виберлей и Колмэн, чьи данные приведены Родденом [8]. Они показали, что ацетаты, хлориды, фториды, нитраты, фосфаты, перхлораты и сульфаты дают лишь небольшую положительную ошибку по сравнению с раствором, не содержащим этих ионов. Наибольшие помехи оказывают хром и марганец. Малые количества меди и никеля не мешают определению урана. [c.117]

    Хлориды, сульфаты, перхлораты, фосфаты, оксалаты, фториды должны отсутствовать. Широкому применению этого метода мешает также влияние многих катионов, восстанавливаюш.ихся при более положительных потенциалах, чем —1,2 в, и некоторые анионы, образуюш.ие комплексы с ураном. Поэтому метод может быть применен только после предварительного отделения урана. На использовании каталитической волны нитрат-иона основан метод определения малых количеств урана в минералах, фосфатах, бокситах и других материалах [587, 672, 673]. [c.195]

    Другим чувствительным методом является инверсионно-вольт-амперометрический метод определения рения на фоне 4 М Н3РО4 с применением осциллографического полярографа и ртутного стационарного микроэлектрода [153]. Определение рения проводят по инверсионному анодному пику с i = —0,7 в. Определению не мешают 20 000-кратные количества молибдена и 25 000-кратные Си и РЬ, а также щелочные и щелочноземельные элементы, элементы подгруппы железа, Сг, Se, W и Мн. Трехкратный избыток Te(IV) оказывает влияние па величину пика. Мешает присутствие нитрат- и перхлорат-ионов. Метод использован для определения рения в природных материалах и в чистых веществах (окиси молибдена и вольфрама, монокристаллы металлического молиб- [c.157]

    Чжен Гуан-лу [304] разработал быстрый и точный прямой метод определения небольших количеств индия титрованием раствором динатриевой соли этилендиаминтетрауксусной кислоты при pH 2,3—2,5 или при pH 7—8 в присутствия 1-(2-пиридил-азо)-2-нафтола. Пря pH 2,3—2,5 не мешают щелочные и щелочно-гемельные металлы, алюминий и марганец. При pH 7—8 не мешают медь, цинк, кадмяй, никель, серебро, ртуть и некоторые другие элементы, если к титруемому раствору добавить достаточное количество цианида калия. Трехвалентное железо связывают фторидом калия в присутствии тартрата и небольших количеств цианида. Не мешают хлориды, сульфаты, нитраты, перхлораты, фториды, тартраты и цитраты. Мешают свинец, висмут, галлий и олово. [c.107]

    На силикагеле в кварцевой колонке концентрируют серусодержащие вещества при определении 0,005—0,02% серы в бутиловом спирте [151]. Из кислых растворов колонки с активированной окисью алюминия (80—200 меш) сорбируют сульфаты в присутствии хлоридов, нитратов, перхлоратов и большинства ионов металлов элюирование производят гидроокисью аммония. [c.57]

    Спектрофотометрические методы определения содержания отдельных РЗЭ основаны на использовании спектров поглошения растворов солей РЗЭ — хлоридов, нитратов, перхлоратов. Из всех элементов Периодической системы Д. И. Менделеева только у солей РЗЭ (и солей актинидов) наблюдаются довольно узкие полосы погло-шений с острыми максимумами в инфракрасной, видимой и ультрафиолетовой областях спектра. Узкополосные спектры поглошения аква-ионов лантаноидов объясняются особенностями строения их оболочек, причем спектр поглошения каждого РЗЭ имеет характерный, только ему присущий вид (рис. 22), так как отражает электронные переходы на оболочке 4/. Исключение составляют ионы иттрия, лантана и лютеция, которые не обладают собственным поглошением в растворах их солей. Спектры поглошения РЗЭ используют для определения содержания отдельных РЗЭ с помощью спектрофотометров или фотоэлектроколориметров, снабженных ртутной лампой СВД-120А (ФЭК-56), дающей линейчатый спектр. [c.195]


Смотреть страницы где упоминается термин Перхлорат определение в нитрате: [c.344]    [c.274]    [c.123]    [c.404]    [c.421]    [c.335]    [c.172]    [c.356]    [c.97]    [c.573]    [c.62]    [c.183]    [c.105]    [c.170]    [c.115]    [c.35]   
Методы аналитической химии Часть 2 (0) -- [ c.0 ]

Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.908 ]




ПОИСК





Смотрите так же термины и статьи:

Нитраты, определение

Перхлораты

Перхлораты, определение



© 2025 chem21.info Реклама на сайте