Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основания кулонометрическое

    Па законах Фарадея основан кулонометрический метод анализа (кулонометрия), позволяющий по количеству электричества, пошедшему па электрохимическое превращение вещества, судить о количестве вещества в растворе. Кулонометрия позволяет определять вещества, присутствующие в растворе, при их копцептрации 10 -10 моль-экв/м (ошибка при этом составляет около 1 %). [c.31]

    Одним из достижений применения в кулонометрическом титровании неводных растворителей является их дифференцирующая способность по отношению к веществам, проявляющим в этих растворах кислотные или основные свойства. Первым неводным растворителем, примененным в кулонометрическом титровании оснований, был ацетонитрил. Наилучшие результаты по определению оснований в ацетонитриле были достигнуты при его использовании с незначительным содержанием воды. В этом случае легко достигается 100 %-ная э.т.г. В качестве индифферентного электролита применяют перхлорат лития. Предложено использовать в качестве растворителя для определения оснований кулонометрическим титрованием также ацетон, пропанол или этиленгликоль. [c.45]


    На законах Фарадея основан кулонометрический метод анализа (кулонометрия), позволяющий по количеству электричества, пошедшему на электрохимическое превращение вещества, судить о количестве вещества в растворе. Например, для оп.ре-деления кислотности раствора в него помещают растворимый анод, ионы металла которого образуют с анионами кислоты малорастворимые соединения, и платиновый катод и пропускают постоянный ток, пока раствор не станет нейтральным. Затем по количеству электричества, которое пошло на выделение водорода на катоде и образование ионов ОН-, рассчитывают исходное количество эквивалентов иона водорода в исходном растворе и, деля это количество на объем раствора, находят исходную концентрацию ионов водорода в растворе. Используя серебряный анод, можно таким методом определять в растворе микроколичества НВг, а применяя анод из свинца — микроколичества НС1. [c.47]

    Для определения количества воды в нефтепродуктах в зарубежной практике применяют анализатор, основанный на кулонометрическом методе. Из оп меренного дозировочным насосом определенного количества продукта путем продувки сухим азотом отделяется влага. Газ с извлеченной влагой поступает в датчик анализатора. Чувствительным элементом датчика является спиральная стеклянная трубка с прикрепленной к ее внутренним стенкам спиралью из двух тонких платиновых проволочек, не соединенных между собой. Промежутки между витками проволочек покрыты тонким слоем твердой пятиокиси фосфора, которая интенсивно поглощает влагу. К проволочкам подведено напряжение от источника постоянного тока. [c.74]

    Разновидность метода — кулонометрическое титрование — хороший способ проведения титрационных определений без предварительного приготовления титрующих растворов. На основе кулонометрического титрования могут быть созданы удобные и простые автотитраторы, значительно превышающие по своим эксплуатационным характеристикам н надежности существующие приборы, основанные на дозированной подаче титрующих растворов. Кулонометрии присущи высокая правильность, воспроизводимость и малая погрешность анализа. [c.251]

    Кулонометрический метод анализа (кулонометрия) основан на измерении количества электричества, затрачиваемого на электрохимическое превращение вещества. [c.144]


Рис. 77. Электролизер для кулонометрического титрования кислот и оснований с рН-метрической индикацией момента завершения химической реакции Рис. 77. Электролизер для <a href="/info/738122">кулонометрического титрования кислот</a> и оснований с рН-метрической индикацией момента <a href="/info/1487674">завершения химической</a> реакции
    В кулонометрическом анализе могут быть использованы различные типы кулонометров, основанные на измерении количества Продуктов электрохимических реакций или на непосредственном интегрировании тока. И в том и в другом случае эти приборы должны находиться в цепи электролиза и быть последовательно присоединенными к ячейке с испытуемым раствором. Так как в любой части цепи величина тока одна и та же, через эти приборы в единицу времени протекает такой же ток, как и через анализируемый раствор, следовательно, одно и то же количество электричества. [c.211]

    Важнейшим условием применимости электродной реакции для целей кулонометрических определений является необходимость количественного протекания реакции со 100%-ным выходом по току. Под выходом по току понимают отношение количества вещества, выделившегося в процессе электролиза, к теоретическому количеству вещества, вычисленному на основании закона Фарадея. Из этого следует, что необходимо создать условия проведе- [c.149]

    Кулонометрическое титрование применяют и для определения различных веществ по методам кислотно-основного титрования, осаждения и комплексообразования. В первом случае поддаются определению сильные и слабые основания или кислоты. Так, для титрования оснований генерируют на платиновом аноде ионы водорода  [c.519]

    Кулонометрический метод основан на анодном растворении участка покрытия под действием стабилизированного тока в соответствующем электролите (табл. 37). Признак окончания измерения — резкое изменение потенциала в момент растворения покрытия и появления основного металла. Метод применим для определения толщины однослойных и многослойных покрытий толщиной от [c.56]

    Хотя ангидрид уксусной кислоты, несомненно, является неприятным растворителем, все же он обладает рядом интересных свойств. Его диэлектрическая постоянная (20,7) достаточно велика, чтобы относительно легко проводить электрохимические измерения. Ангидрид находится в жидком состоянии в удобной для работы, области температур (от -73,0 до +140,0 °С). Однако гораздо важнее то, что он дает возможность работать в необычайно широкой области потенциалов. Использовался при кулонометрическом титровании слабых оснований [1, 2] и полярографии катионов [3  [c.34]

    Вода. Содержание влаги в пропилене определяют в основном двумя методами титрованием реактивом Фишера и кулонометрическим методом [16]. Первый способ довольно сложен, а его точность относительно невысока. Правда, его можно усовершенствовать, в таком случае точность анализа составит +2 ч. на 1 млн. Кулонометрический метод экспериментально очень прост и вместе с тем очень точен. Он основан на электролизе влаги, уловленной из потока анализируемого газа или пара гигроскопической пленкой, например фосфорной кислотой, между двумя платиновыми электродами. [c.19]

    Кулонометрический анализ основан на измерении количества электричества, затраченного на количественное проведение данного электрохимического процесса в данной пробе, т.е. при условии, что выход по току равен 100%. [c.100]

    В табл. 2 приведены данные по определению бромных чисел смесей нефтепродуктов (олефинов и полимеров) с бензолом кулонометрическим методом. Бромное число олефинов и полимеров определяли электрометрическим методом, и на основании полученных данных рассчитывали бромное число смесей. [c.94]

    Электрохимические методы газового анализа. Электрохимический метод основан на использовании химических селективных датчиков (ХСД). В зависимости от того, какие физические свойства, зависящие от адсорбированного количества вещества, измеряются, ХСД делят на потенциометрические, кулонометрические, полярографические и т. д. По сравнению с газоанализаторами, принцип работы которых основан на других методах анализа (абсорбционном, флуоресцентном, пламенно-фотометрическом), электрохимические газоанализаторы отличаются сравнительной простотой, низкой чувствительностью к механическим воздейст- [c.212]

    Кулонометрический метод анализа при заданном потенциале основан на известных законах электролиза и характеризуется широким диапазоном определяемых количеств плутония, от нескольких десятков микрограммов до сотен миллиграммов, при высокой точности (менее 0,1%) и чувствительности (до нескольких микрограммов). Селективность метода основана на различии окислительно-восстановительных потенциалов элементов, которое можно регулировать добавлением подходящих -комплексообразующих реагентов. [c.215]


    Количественный расчет кулонометрического метода основан на уравнении  [c.219]

    Лингейн [864] разработал кулонометрический метод, основанный на точном измерении количества электричества, которое требуется пропустить через электролизер для того, чтобы на одном из электродов количественно прошла реакция с определяемым веществом. Катод представляет хорошо перемешиваемую ртуть, анод — серебряную проволоку с поверхностью около 80 см , покрытую хлоридом серебра. Электролиз ведут при тщательно контролируемом катодном потенциале. Оптимальная величина катодного потенциала примерно на 0,1 в отрицательнее, чем потенциал полуволны определяемого вещества. Количество прошедшего через электролизер электричества определяют при помощи водородно-кислород-ного кулонометра. [c.305]

    Кулонометрический анализ основан на измерении коли- чества электричества, израсходованного на электролиз. [c.261]

    Кулонометрический метод, основанный на измерении количес ва электричества, израсходованного на электролиз определенно количества вещества. В основе метода лежит закон Фарадея [c.328]

    Учитывая недостаточную точность описанного метода, обусловленную неконтролируемыми изменениями веса образцов при их загрузке, была поставлена задача по созданию методики определения содержания углерода непосредственно в металле. В этом случае был использован достаточно прецизионный кулонометрический метод, лежащий в основе анализатора АН-29. Принцип действия прибора основан на количественном определении образо-358 [c.358]

    На чем основано потенциометрическое титрование 2. Как устрое каломельный электрод 3. Как определяют потенциометрическн марганец в цветных сплавах 4. На чем основан кулонометрический анализ 5. На чем основано кондуктометрическое титрование 6. На чем основа полярографический анализ 7. Какие вещества анализируют полярогра " фическим анализом 8. Что такое амперометрическое титрование  [c.267]

    Источником ошибки при микрокулонометрических измерениях может служить и близость потенциалов восстановления двух волн, когда при недостаточной разнице потенциалов можно сделать ошибочные выводы. Так, в работе [16] предложен несколько необычный механизм восстановления теллурита первая волна, по мнению авторов, соответствует одноэлектронному восстановлению теллурита до трехвалентного теллура, а вторая — трехэлектронному восстановлению до элементарного теллура. Разница потенциалов этих волн —0,16 в. Вероятнее всего, авторы наблюдали предвол-ну, появление которой отмечено и в других работах [9]. На основании кулонометрических измерений они ошибочно ее интерпретировали как одноэлектронную волну восстановления теллурита. [c.168]

    Наблюдаемая экспериментально линейная зависимость логарифма анодного тока от электродного потенциала (рис. 9) позволяет предположить, что в исследуемой области потенциалов напряженность поля в пленке линейно зависит от электродного потенциала, — аналогично экспериментально установленному для пассивного титана в щелочном растворе [70]. Учитывая это обстоятельство, а также работы [71—74], и нринимая, в соответствии с общепринятыми взглядами [75], что большая часть падения потенциала на пассивном титановом аноде приходится на пленку, для потенциалов 0,7 1,0 1,4 и 1,8 В получены такие значения толщины барьерных пленок 1,41 1,50 1,85 2,32 нм [50, 68]. Таким образом, толщина барьерного слоя возрастает с увеличением потенциала и оказывается значительно меньше усредненной общей толщины пассивной пленки, рассчитанной на основании кулонометрических н гравиметрических определений. Однаг<о, чем более положителен потенциал образования пленки, тем меньше разница между толщинами всей пленки и барьерного слоя. [c.28]

    Электрогенерируя на Р1-аноде Н+-ионы, можно кулонометрически титровать таким же способом основания в анодной камере. [c.206]

    Кулонометрические кулонометры. Принцип действия этих кулонометров основан иа катодном выделении (в процессе электролиза подходящего вещества) металла из концентрированного раствора его соли на электроде из благородного металла со 1007о-иым выходом по току. После завершения основной реакции реверсированием тока анодно растворяют отложенный металл при постоянной силе тока и определяют с помощью электрохронометра или секундомера продолжительность этого процесса окончание его обнаруживается резким скачком потей- [c.213]

    Принцип действия кулонометрических кулономст-ров основан иа катодном осаждении металла из концентрированных растворов его соли на электроде из благородного металла нрп 100%-ном выходе по току. После завершения основной реакции осажденйый металл растворяют анодно в гальваностатическом режиме. Продолжительность процесса определяют с помощью электрохронометра или секундомера. Окончание процесса обнаруживают по резкому скачку потенциала анода, измеряемого относительно электрода сравнения. В этом случае обычно применяют медный кулонометр, который позволяет измерять количество электричества в широких пределах от 0,01 до 100 /с, с достаточной точностью. [c.80]

    При определении железа этим способом двухвалентные ионы окисляются током до трехвалентных. Кулонометрическое определение мышьяка основано нз реакции окисления нонов АзО до ионов ЛзОГ Разработаны также методы определения урана, ванадия, церия, хрома, сурьмы, селена и других элементов, основанные на электрохимическом окислении — восстановлении ионов этих элементов в растворе. Метод применим и для определения органических веществ, например аскорбиновой и пикриновой кислот, новокаина, оксихинолина и др. Так, определение пикриновой кислоты основано на ее восстановлении Н 1 ртутном катоде в соответствии с уравнением  [c.513]

    Предложен ряд способов определения индивидуальных антиоксидантов, а также оценки антиоксидантной емкости (АОЕ) фитопрепаратов, пищевых, растительных материалов, алкалоидов и витаминов, основанных на кулонометрическом титровании электрогенерированными галогенами. Способ применен для оценки АОЕ крови человека. [c.152]

    Поскольку уксусная кислота достаточно неудобна в работе, использование ее в качестве растворителя имеет смысл лишь тогда, когда это дает существенные преимущества по сравнению с другими, менее ядовитыми соединениями. В электрохимии ее применяли в трех различных областях кислотноосновном титровании, полярографии на КРЭ и как растворитель для реакции анодного ацето ксил про вания. К важнейшим свойствам растворителя, используемого при титровании, особенно при кулонометрической генерации титрованного раствора и потенциометрическом определении конца титрования, относятся диэлектрическая постоянная, кислотность и основность и константа ионного произведения. Уксусная кислота интересна в первую очередь своей кислотностью. По сравнению с другими кислотами, применение которых возможно для этих целей, например серной и муравьиной, уксусная кислота характеризуется лучшим сочетанием свойств. Ее диэлектрическая постоянная ниже, чем у этих двух кислот, но она не настолько мала, чтобы затруднить проведение электрохимических измерений. Хотя по кислотности уксусная кислота уступает указанным кислотам, все же она достаточно сильная кислота и способна титровать многие слабые основания. Уксусная кислота имеет намного меньшую константу автопротолиза (2,5 10 ) [2], благодаря чему она гораздо более удобная среда для титрования. [c.32]

    Электрохимические (кулоно-, кондукто-, потенциометрические, полярографические) методы могут быть успешно применены для определения содержания воды. Наиболее распространены кулонометрические и меньше кондуктометрические. Кулонометрические методы основаны на способности чувствительного к воде реагента образовываться на электроде ячейки, а также на измерении продуктов реакции при электролизе. В этом случае массу воды определяют по количеству тока, пошедшего на электрохимические процессы в соответствии с законом Фарадея. Реально применяют метод кулонометрии, основанный на взаимодействии воды с тонкой пленкой пятиокиси фосфора. Механизм процесса заключается в электрохимическом разложении образовавшейся метафосфорной кислоты. При электролизе опять образуется исходная пятиокись фосфора, поэтому химический и электрохимический процессы протекают совместно и воду можно определять непрерывно с высокой разрешающей способностью и чувствительностью (до 0,001 %). Основным недостатком метода является необходимость применения для экстракции воды предварительно осущенного инертного газа. [c.305]

    Электрофорез (от электро и греч. phoresus — перемещение) — передвижение заряженных частиц (коллоидных) в жидкой нли газообразной среде под действие.м внешнего электрического поля. Э. применяют для обезвоживания торфа, красок, очистки глины и каолина для химической промышленности, для осаждения кау= чука и латекса, дымов и туманов, для изучения состава растворов и т. д. Электрохимические методы анализа — большинство их основано на электролизе. Сюда относят электрогравиметрический ана.тиз (электроанализ), внутренний электролиз, контактный обмен металлов (цементация), полярографический анализ, кулопометрию и др. Кроме того, к Э, м. а. относят методы, основанные на измерении электропроводности (кондуктометр и я) или потенциала электрода (потенциометрия). Некоторые электрохимические методы применяются для нахождения конечной точки титрования (амперометрическое титрование, коидуктометрическое титрование, потенциометрическое титрование, кулонометрическое титрование), Электрохимический ряд активности (напряжения) металлов фяд активности металлов) показывает их сравнительную активность в реакциях окисления-восста новления (слева направо восстановительная активность уменьшается)  [c.157]

    Определение влажности газообразных сред, содержания воды в минералах, кремнийорганических соединениях, органических растворителях, адсорбированной воды и другие подобные проблемы являются актуальными в технологии получения различных материалов, полупродуктов, оценки их качества. Классический способ определения следов воды, основанный на применении реактива Фишера, представляющего собой смесь иода и диоксида серы в среде метанола и пиридина, может бьхть реализован и в условиях кулонометрического титрования. Титрантом здесь является иод, генерируемый на платиновом электроде. Преимущество кулонометрического титрования перед классическим вариантом в том, что этот метод позволяет определять воду на уровне 10 - 10 %, исключив необходимость стандартизации растворов. Кроме того, при кулонометрическом титровании можно анализировать малые количества образца за счет снижения генераторного тока и времени его пропускания. [c.537]

    Кислотно-основные взаимодействия. Электрогенерация ионов водорода с помощью палладиевого электрода, насыщенного водородом, позволяет проводить кулонометрические определения органических оснований в неводных средах. Объектами анализа в основном являются фармацевтические препараты - амидопирин, норсульфазол, папаверин и др. Диапазон определяемых концентраций достаточно широк - от г/л до мг/л. В табл. 15.3 приведены примеры кулонометрического определения некоторых органических соединений. [c.540]

    Расчетный метод —это метод, в котором конечный результат находят из результатов измерений (таких величин, как масса образца, объем раствора тит-ранта, масса осадка), полученных в процессе анализа, путем вычислений, основанных на фундаментальных физических или химических законах [3.2-6). При использовании расчетных методов от аналитика требуется лишь измерить все величины, необходимые для получега1я конечного результата, провести необходимые расчеты и оценить погрешности данных. Примерами расчетных методов химичес10)го анализа являются титриметрический, гравиметрический и кулонометрический методы (см. разд. 7.1, 7.2 и 7.3). [c.86]

    Для определения марганца используют методы кулонометрического титрования, основанные на реакции нейтрализации. Так, методом косвенной кулонометрической ацидиметрии определяют 1—3 мг Мп с относительной ошибкой 2—3% [427, 428]. В этом случае Мп(П) окисляют на платиновом аноде в растворе сульфата натрия до Мп02. Выделившиеся при этом ионы водорода титруют электрогенерированными ионами ОН . Конечную точку титрования находят с помош ью метилового красного. [c.53]

    В варианте кулонометрии с контролируемым потенциалом для определения Sb используют два способа, основанных на восстановлении Sb на ртутном электроде [1041]. По первому способу Sb(V) предварительно восстанавливают гидразином до Sb(III), которую кулонометрически восстанавливают до металлической Sb на фоне 1М НС1 + О,Л/винпой кислоты при потенциале —0,28 в. Метод предусматривает предварительную очистку фона электролизом при 0,0 в. При выполнении определения по второму способу электролитом служит смесь 6 М НС1 + Oi i М винной кислоты, предварительно очищенная электролизом при 0,35 в. Далее определение проводят последовательно, восстанавливая Sb(V) и Sb(III) при —0,21 и —0,35 в соответственно. Количество Sb(Ill) находят по разности между найденным содержанием Sb(III) при восстановлении ее при —0,35 в и содержанием Sb(V). Определению Sb не мешают As(III) и РЬ(П) мешает Си. [c.69]

    Буманом с сотрудниками [383] разработано кулонометрическое определение урана, основанное на электролитическом восстановлении U(VI) до и (IV) на ртутном катоде при контролируемом потенциале. Точный контроль потенциала ртутного катода осуществлялся применением специальной аппаратуры, включающей электронные приборы. Количество электричества, израсходованное на восстановление и (VI), определялось прецизионным интегратором тока. Подробное описание аппаратуры для выполнения электролиза при контролируемом потенциале и устройства интегратора тока приведено в статье Бумана [381]. [c.225]

    Феррар, Томсон и Келли [497] применили метод кулонометрии при контролируемом потенциале для определения урана в этом же. объекте. Метод основан на восстановлении урана (VI) на ртутном катоде при потенциале —0,30 в в 1 М растворе Н25 04, Применяемая авторами аппаратура для кулонометрического определения рана очень мало отличается от аппаратуры, использованной Буманом [381]. Количество электричества, израсходованное на восстановление урана (VI), определяется также с помощью специального прецизионного интегратора тока. Электролиз заканчивают, когда ток в ячейке достигает определенного значения (0,05 ма — ток фона). [c.226]

    Описаны кулонометрические методы определения ртути, основанные на титровании миллиграммовых количеств ионов Hg(II) электролитически генерироваЕтым иодом [465] и тиогликолевой кислотой [971]. Конечная точка титрования определяется потен-циометрически. [c.103]

    Кулонометрический анализ основан на использовании явления электролиза, при котором измеряют количество электричества,затрачиваемого на электрохимическое воостановление (окисление) определяемых ионов. Б основе определений лежит закон Фарадея (см.У1.1).При выполнении кулонометрических измерений необходимо,чтобы затраченное яа определение количество электричества расходовалось только на основную электрохимическую реакцию (так яазываешй 100 -ный выход по току), г.в.,чтобы побочные (параллельные или последовательные) электрохимические реакции не проходили. В отличие от гравиметрии в кулономет-рии необходимо строго фиксировать время конпа электрохимической ре- -акции. [c.46]

    Кулонометрический метод основан на определении количества электричества, расходуемого на электрохимическую реакцию. Вариант кулонометрического титрования можно сравнить с визуальным титрованием концентрации раствора соответствует величина тока, а объему титранта — время его пропускания. Для обнаружения ТЭ применяют как индикаторные, так и электрохимические методы. Преимущества метода исключение стандартных растворов за счет электрогенерирования титрантов, возможность ксиользования неустойчивых реагентов, высокая чувствительность [c.137]

    Для быстрого определения малых количеств воды предложен кулонометрический метод анализа [283], основанный на измерении количества электричества, пошедшего на электролиз при ее поглощении чувствительным элементом. Теоретические основы метода изложены в работе [204]. Основной частью аппаратуры является выпускаемый промышленностью влагомер Корунд , предназначенный для непрерывного измерения влажности. Чтобы вводить в газовый поток прибора определенную на-йеску брома, авторы подключили кран-дозатор. Поступивший бром количественно переносится через чувствительный элемент током азота, предварительно высушенного ангидроном и фосфорным ангидридом. С целью повышения точности результатов самопишущий прибор установки Корунд пришлось заменить потенциометром ЭПП-09 с соответствующей характеристикой. Пик, фиксируемый самописцем после введения брома, пропорционален расходу электричества на электролиз воды, содержавшейся в пробе. Метод использован для определения 2-10 — 3,6-10 % воды в броме, причем максимальная погрешность определения с учетом приборной ошибки и дисперсии измерений составляла 24%. [c.213]

    Сундарезан и Каркханавала использовали перхлорат железа (П1) как индикатор при амперометрическом определении тория фторидом натрия. Стрейли применял тригидрат перхлората лития при кулонометрическом определении некоторых оснований, растворенных в ацетонитриле в качестве источника воды (вода окислялась на аноде до иона водорода). [c.127]


Смотреть страницы где упоминается термин Основания кулонометрическое: [c.42]    [c.531]    [c.301]    [c.116]    [c.433]    [c.127]   
Основы аналитической химии Часть 2 (1979) -- [ c.2 , c.49 ]




ПОИСК







© 2024 chem21.info Реклама на сайте