Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакторы получения серной кислот

    В настоящее время многие химические реакции проводят в потоке газа, проходящего через реактор, в котором поддерживаются постоянная температура и давление. Примером реакций в потоке могут служить процессы термического и каталитического крекинга нефтепродуктов, синтеза аммиака, контактного способа получения серной кислоты и многие другие. [c.329]


    Важным аспектом водородной энергетики является возможность использования ядерных реакторов для получения водорода. Если такие реакторы расположить на большом расстоянии от населенных пунктов (например, в океане), то проблема загрязнения уменьшилась бы, а передача энергии путем транспортировки водорода по газопроводу не сопровождалась бы значительными потерями. Прибывший к потребителю водород может быть использован как таковой или электрохимически преобразован в воду с получением эквивалентного количества электрической энергии. Например, водород может быть использован непосредственно в качестве топлива для самолетов и автомобилей. Но особенно перспективно его применение в металлургии и химической технологии. Уже сейчас работают заводы, на которых для восстановления оксидов железа до металла вместо углерода (кокса) применяется водород. Весьма перспективно применение водорода и в процессах переработки руд цветных металлов. Обычно сульфидные руды, содержащие медь, никель и другие металлы, вскрывают на воздухе. В результате образуются оксид серы (IV) и соответствую-ишй оксид металла. Если руду обрабатывать водородом, то побочными продуктами процесса являются сера и вода. Сера может расходоваться для получения серной кислоты. [c.82]

    Крупнотоннажные химические процессы обычно осуществляют в потоке, т. е. в струе газа, проходящей через реактор с заданной температурой. Последний может быть пустым или со слоем зерненого катализатора. Примерами реакций, осуществляемых в потоке в широких технических масштабах, являются крекинг нефтепродуктов, гидрокрекинг, каталитическое алкилирование, полимеризация, гидро- и дегидрогенизация углеводородов, дегидрогенизация спиртов, гидратация олефинов, галогенирование, нитрование окислами азота, синтез аммиака, контактный способ получения серной кислоты, каталитический риформинг и т. п. [c.54]

    Для чего при вышеописанном методе получения серной кислоты в реактор подается воздух  [c.119]

    Для разбавления концентрированной серной кислоты удобно пользоваться правилом креста . Для этого требуемую концентрацию раствора пишут в месте пересечения двух линий (в центре креста ), концентрацию исходной серной кислоты — у левого верхнего конца одной из этих линий, а концентрацию воды, равную нулю, — у левого нижнего конца другой линии пересечения. На каждой линии проводится вычитание чисел, и разность записывается у свободного конца той же линии. Полученные числа справа вверху и внизу указывают, сколько следует взять весовых частей серной кислоты и воды, чтобы получить требуемую концентрацию раствора в реакторе. Например, для 83%-ной серной кислоты правило креста строится следующим образом  [c.41]


    Включают в ра боту вертикальный элеватор 16, ковши которого поднимают гидроокись алюминия наверх, где она взвешивается и, во избежание выброса раствора кислоты, медленно ссыпается в реактор 15. Разваривают гидроокись алюминия путем ввода в реактор острого водяного пара. Полученный раствор сернокислого алюминия подкисляют серной кислотой в емкости 17. Растворы жидкого стекла и сернокислого алюминия фильтруют на фильтр-прессах 10 и 13 и разбавляют водой до концентрации рабочих растворов в аппаратах 11 и 18. [c.83]

    Углеводородный состав алкилата, полученного при алкилировании изобутана олефинами С4 на 96%-ной серной кислоте при температуре 7°С в промышленных условиях в трехсекционном каскадном реакторе, и алкилата, полученного при алкилировании изобутана смесью пропилена с бутиленом, приведен в табл. 31, а техниче- [c.142]

    Полученная после окисления изопропилбензола гидроперекись концентрации 90—93% подается в реактор с мешалкой для разложения в присутствии серной кислоты. [c.308]

    Гидролиз ведут концентрированной серной кислотой при охлаждении, причем мягкие условия реакции создают за счет применения непрерывного реактора полного смешения. Полученная масса идет на разделение вначале отделяют сульфат алюминия (квасцы), а затем ректифицируют спирты, получая фракции продуктов с разной длиной цепи. [c.316]

    Примером такого типа аппаратов является реактор для получения сульфата аммония по способу Фаузера (рис. 1У-32). Диаметр реактора 7,5 м, высота 4 м. Серная кислота распыляется через сопло, остальная часть камеры заполняется газообразным аммиаком. Кристаллы образовавшегося сульфата аммония выводятся спиральным транспортером. [c.179]

    Схема производства хладона-11 и хладона-12 с получением побочного хлори стого водорода представлена на рис. 12.24. Одностадийный процесс совместного хлорирования и фторирования метана безводным фтористым водородом и сум хлором ведут в реакторе 1 с псевдоожиженным слоем катализатора при 370- 450 °С и давлении 392—588 кПа. В колонне 2 выделяют непрореагировавшие про дукты и направляют на рецикл в реактор 1. Дистилляционная колонна 3 служи для извлечения хлористого водорода. Затем смесь хлорфторметанов в серии абсорбционных колонн 4—6 промывают, сушат каустиком и серной кислотой, [c.427]

    Получение серной кислоты. Окислы азота служат катализатором окисления двуокиси серы в нитрозном способе производства серной кислоты. Механизм реакции включает образование нитрозилсерной кислоты последняя гидролизуется с образованием серной кислоты и регенерацией окислов азота. Реакция протекает в камерах или башнях различных типов, в которых предусмотрены устройства для охлаждения и смешения газов, что повышает их производительность. Данные о производительности разных реакторов для получения 78%-ной серной кислоты нитрозным способом приведены ниже (в кг/м сутки)  [c.326]

    В промышленности широко используется проведение реакций в струе газа, проходящего через реактор, который может быть или пустым, играя роль только области, где поддерживается постоянная температура, или заполненным слоем зер-неного катализатора. Примерами реакций, осуществляемых в потоке в промышленных масштабах, могут служить реакции термического и каталитического крекинга нефтепродуктов, каталитического алкилирования, иолимеризации, гидро- и дегидрогенизации углеводородов, дегидратации и дегидрогенизации спиртов, гидратации олефинов, галоидирования, нитроваиия охислами азота, синтеза аммиака, получения серной кислоты контактным способом, синтеза моторного топлива н т. п. Поэтому и лабораторные опыты по изучению кинетики многих в.ажных широко применяемых в промышленности реакций проводятся также в потоке. Вследствие того, что реакции этого типа проводятся обычно при постоянном давлении и сопровождаются в большинстве случаев изменением объема участвующих в реакции веществ, уравнения кинетики этих процессов должны отличаться от уравнений, выведенных выше для условия ПОСТОЯННОГО) объема. Кроме того, и сам метод расчета кон-стаит скоростей реакций, протекающих в потоке, должен отличаться от методов расчета констант скоростей реакций,осуществляемых при постоянном объеме, так как очень трудно определить время пребывания реагирующих веществ в зоне реакции (так называемое время контакта). [c.48]

    Принципиальная схема испытанной установки сырье — бутан-бутиленовая фракция и изобутан — поочередно подавали в дозатор, представляющий собой металлическую градуированную емкость, заполняемую раствором поваренной соли. При помощи раствора поваренной соли под давлением инертного газа — азота— смесь сырья поступала в реактор. Предварительно в реактор заливали серную кислоту с таким расчетом, чтобы соотношение сырья и кислоты по объему было 1 1. Рубашку, окружающую реактор, заполняли смесью льда и соли. Сырье с кислотой перемешивалось в реакторе механической мешалкой. Реактор снабжен регулятором давления. По мере повышения давления в реакторе газ поступал в щелочной бачок, конденсатор-холодильник и газосепаратор и через газовый счетчик выпускался в атмосферу. Полученная эмульсия отстаивалась в реакторе, затем кислоту дренировали, а продукт алкилирования самотеком перепускали в щелочной бачок, где его защелачивали при перемешивании со щелочью механической мешалкой. После отстоя готовый продукт сливали, замеряли его количество и анализировали. [c.47]


    Применение при проектировании укрупненных модулей рационально и для других производств. Так, при получении серной кислоты нитрозным методом типовой блок включает реактор (продукционную либо абсорбционную башню), замкнутый на себя , и связанный с ним холодильник, охваченный реин-клическим потоком. При этом расчет любого ТБ проводится по унифицированному алгоритму. [c.26]

    Получение сернокислого магния М 504 7НгО. Исходное сырье — природный минерал магнезит М СОз содержит в виде примеси растворимые в воде хлориды, поэтому в самом начале процесса следует от них освободиться. Для этого в аппарат загружают горячую воду и магнезит в соотношении 10 1, тщательно размешивают и промытый таким образом магнезит фильтруют и промывают на фильтр-прессе. Затем в реактор заливают серную кислоту плотностью 1,84 г/см , разбавляют ее водой или слабым возвратным щелоком до 64—66%-ной концентрации и при размешивании загружают отмытый магнезит. Магнезит добавляют до слабощелочной реакции по фенолфталеину, так как только в этих условиях осаждаются из раствора примеси солей железа. Затем раствор фильтруют на фильтр-прессе, отделяя нерастворившиеся и выпавшие в осадок примеси, а чистый фильтрат принимают в осадитель. В осадителе окончательно очищают сернокислый магний от железа добавлением небольшого количества магнезита и в основном от тяжелых металлов добавлением гидросульфида магния до исчезновения реакции с уксусносвинцовой бумажкой. Реакционную массу фильтруют на фильтр-прессе, упаривают до плотности 1,34—1,35 г/см , охлаждают до 60° С и вновь фильтруют, отделяя [c.91]

    Полученную серную кислоту возвращают в травильную ванну, а кристаллическое хлористое железо (РеС12 + 2Н20) поступает из реакторов в печь на обжиг. При отжиге идет реакция [c.132]

    Диизобутилев холодной сернокислотной полимеризации. Олефины Се, получаемые при сернокислотной полимеризации изобутилена, могут применяться для получения нонилового спирта. Фталевые эфиры этого спирта хотя и придают пластика-там из полихлорвинила низкую морозостойкость, но обеспечивают им высокие диэлектрические свойства. В качестве сырья для получения нонилового спирта используется фракция диизобутилена, выкипающая в пределах 95—115° С и получаемая при обработке 65%-ной серной кислотой сырой бутан-бутиленовой фракции нефтезаводских газов. При соответствующих температурах серная кислота абсорбирует практически исключительно изобутилен, не затрагивая к-бутиленов. Извлечение изобутилена может осу-ществляться двумя способами с использованием системы смесительный насос-отстойник или в реакторе с мешалкой, оборудованной электромагнитным приводом. [c.107]

    Конец растворения, т. е. полное взаимодействие гидроокиси алюминия с раствором серной кислоты, определяют по pH пробы из реактора, к которой приливают 2—3 канли индикатора метилоранжа. Полученный цвет сравнивают с цветом эталона если цвета совпадают, разварку заканчивают, если не совпадают — продолжают еще некоторое время и снова отбирают пробу. [c.40]

    Получению высоких показателей в этом процесс способствует возможность поддержания в реакционно зоне повышенной средней концентрации серной кислоты. Так, если в реакторах других типов при непрерывной подаче кислоты средняя концентрация ее равна околс 88%, то в горизонтальных, например в описанной выше четырехреакторной системе, средняя концентрация со-ставляет 91% (в первых двух реакторах 94 /о, во вторых—88%). Выносные отстойные зоны при горизонтальных реакторах позволяют регулировать время отстоя, что обеспечивает лучшее разделение фаз и воз- [c.122]

    Высокая прочность катализатора позволяет достигнуть наи-,меньшего расхода. В реактор подаются пропилен, аммиак и воздух при температуре 400—ЬОО С, выход акрилонитрила на разложенный пропилен составляет65—70%, напропуш,енный—50%. Реакция аммонолиза экзотермична, съем тепла осуществляется через стенку с помощью водяного пара. Отходящий контактный газ обрабатывается серной кислотой с получением сульфата аммония, после чего акрилонитрил поглощается водой и подвергается ректификации. Полученный продукт имеет 99%-нук). чистоту. [c.328]

    Технологическая схема установки приведена на рис. 1. Дизельное масло М-11 селективной очистки при 40—50 °С сульфируют серным ангидридом (контактным газом, содержащим 7—8 % серного ангидрида и полученным при производстве серной кислоты контактным способом) в сульфураторе 3 периодического действия. В процессе сульфирования температура в аппарате не превышает 50°С, что достигается циркуляцией сульфированного масла через выносной холодильник 5. Процесс сульфирования контролируют по кислотному числу сульфированного масла, которое должно быть в пределах 18—22 мг КОН/г. ПутеК отстаивания в аппарате 6 от сульфированного масла отделяют кислый гудрон. Нейтрализацию сульфированного масла осуществляют в реакторе 9 периодического действия с перемешивающим устройством, [c.223]

    До недавнего времени этот процесс осуществляли с 80—85%-ной серной кислотой, что приводило к излишнему расходу реагентов и образованию отходов сульфата аммония. Недавно было обнаружено, что эффективным катализатором является металлическая медь. Синтез осуществляют в водном растворе прн 70—120 °С из реакцноиион массы отфильтровывают медь п отгоняют иепревра-щенпый акрилонитрил, рецир (улируя их в реактор. Водный раствор акриламида упаривают до концентрации 30—50% или до получения кристаллического акриламида. [c.226]

    Реакция сильно экзотермична, поэтому ее проводят, постепенно приливая нитрил к нагретому раствору серной кислоты в охлаждаемом реакторе с мешалкой. Таким путем получают фенилуксус-ную кислоту, малоновую и др. Так, если адиподинитрил получен из бутадиена или акрилонитрила (стр. 225), его гидролизом можно синтезировать адипиновую кислоту  [c.226]

    В работах [9, 10] рассматривалась реакция получения этилового эфира уксусной кислоты из этилена и уксусной кислоты. Катализатором процесса служила серная кислота, нанесенная на внутреннюю поверхность частиц силикагеля. Эффективность работы катализатора изучалась в реакторе с неподвижным слоем в стационарных и нестационарных условиях. Нестационарность создавалась периодической степенчатой подачей уксусной кислоты на вход в реактор. Расход этилена при этом не изменялся. Величина оптимального периода изменения состава 30 мпн. [c.34]

    Реактор для получения сульфата аммония. Сульфат алмония можно получить взаимодействием газообразного аммиака с серной кислотой в реакторе с барботажем, изображенном на рпс. 1У-31. Диаметр цилиндрической части промышленного реактора этого тина 4 м. Высота барботажного приспособления (от перфорированного трубопровода для барботажа до поверхности кислоты в реак- [c.177]

    Реакторы типа теплообменнпка широко распространены п фактически представляют особый случай реактора-колонны. Внутреннее конструктивное устройство таких реакторов позволяет осуществлять теплообмен между реагентами и продуктами реакции. Реакторы этого типа в основном довольно сложны по конструкции. В них проводят реакции нри получении аммиака, серной кислоты, фталевого ангидрида и т. д. Часто применяют конструктивно простые [c.352]

    Существенный аспект топливно-энергетической проблемы — это повыщение эффективности использования топливных ресурсов, в частности возможно более полное использование всех видов энергии. Известно, что химическая промышленность и смежные с ней отрасли являются крупнейшими потребителями тепловой и электрической энергии. В последние годы особенно большое внимание уделялось снижению всех видов энергозатрат в химико-технологических процессах — прежде всего уменьшению теплопотерь и наиболее полному использованию реакционной теплоты. Одним из путей повышения энергетической эффективности химико-технологических процессов служит химическая энерготехнология, т. е. организация крупномасштабных химико-технологических процессов с максимальным использованием энергии (прежде всего теплоты) химических реакций. В энерготехнологических схемах энергетические установки — котлы-утилизаторы, газовые и паровые турбины составляют единую систему с химико-технологическими установками химические и энергетические стадии процесса взаимосвязаны и взаимообусловлены. Химические реакторы одновременно выполняют функции энергетических устройств, например вырабатывают пар заданных параметров. Энерготехнологические системы реализуются прежде всего на базе агрегатов большой мощности — крупнотоннажных установок синтеза аммиака, синтеза метанола, производства серной кислоты, азотной кислоты, получения карбамида, аммиачной селитры и т. д. [c.37]

    Получение этиленгликоля из формальдегида организовано в США фирмой Е. I. du Pont de Nemours and o. По этому способу смесь паров формальдегида и воды (объемное соотношение 1 1) абсорбируется водным раствором гликолевой кислоты (мольное соотношение 1 2) с примесью каталитических количеств серной кислоты и затем пропускается через реактор вместе с избытком окиси углерода при 200 "С и 70 МПа (время контакта 5 мин). В результате образуется гликолевая кислота (выход 90—95%), выделяемая перегонкой прн пониженном давлении. После этерификации гликолевой кислоты метиловым спиртом и очистки зфира перегонкой, проводится гидрирование метилового эфира гликолевой кислоты при 200 °С и 3 МПа в присутствии катализатора медь—хромат бария. На стадии восстановления получают этиленгликоль с выходом 90%. Данный метод не получил широкого распространения вследствие многостаднйности и высокой коррозионности среды, но может быть перспективным при снижении стоимости и расщирении производства синтез-газа. [c.274]

    Для проведения реакций с большим тепловым эффектом используют аппараты с внутренними теплообменными элементами большой поверхности. Примером может служить реактор с пучком двойных теплообменных труб для алкилирования углеводородов, в частности для получения изооктана из изобутана и бутилена. В реакторе циркулирует эмульсия смеси углеводородов с серной кислотой. Реактор (рис. 4.6) имеет вертикальный цилиндрический корпус 6, рассчитанный на давление 1 МПа, внутри которого для отвода теплоты реакции расположен пучок 8 двойных теплообменных труб (трубок Фильда), окруженный кожухом 7, играющим роль направляющего диффузора. В нижней суженной части кя куха помещено колесо 11 осевого насоса (винтовая мешалка), обеспечивающее циркуляцию жидкости, перемешивание и обтекание теплообменной поверхности. Вал колеса выведен наружу через двойное торцовое уплотнение, привод расположен внизу. Вращение жидкости предотвращается продольными ребрами. Для подвода хладагента в верхней части расположены две распределительные камеры с трубными решетками 2 и 4. Верхние концы наружных теплообменных труб, заглушенных снизу, ра.звальцо-ваны в трубной решетке 4, верхние концы внутренних труб закреплены в решетке 2. Нижняя решетка 9 служит для крепления шпильками нижних концов теплообменных труб, чтобы обеспечить жесткость трубного пучка. Концы внутренних труб снабж ны продольными ребрами. [c.250]

    Углеводородную фазу (углеводороды, не вступившие в реакцию) выводят из верхней части аппарата 3. Сульфомассу направляют из реактора-сепаратора 3 двумя потоками заданное количество подают в контактор первой стадии 1, а балансовый избыток идет на разбавление водой до концентрации кислоты 70%. В отпарной колонне 4 при 105 °С отпаривают углеводороды, увлеченные из реактора-сепаратора 3 сульфомассой. Сульфомассу после разбавления водой до концентрации серной кислоты 28% десульфируют в гидро-лизере I ступени 6 при 150 °С образующийся концентрат л-ксилола поступает на ректификацию для отделения от полимеров. Чистота получаемого л-ксилола 95%. Неразложившиеся сульфокислоты в ги-дролизере И ступени 7 полностью гидролизуются с образованием углеводородов м 53%-ной серной кислоты. Ароматические углеводороды Се, выделенные в колонне 4 и гидролизере II ступени 7, также поступают на ректификацию в колонну 8 для очистки от полимеров. л-Ксилол 95%-ной чистоты и ароматические углеводороды Се после промывки щелочью (нейтрализация) и водой (на схеме не показано) являются товарными продуктами установки. Чистоту л-ксилола, полученного сульфированием, можно повысить до 98—99% ректификацией с целью отделения о-ксилола. [c.144]

    Процесс алкилирования применяют для получения высокооктановых компонентов бензина. Реакция алкилирования протекает при умеренных температуре и давлении. Катализатором обычно служит свежая 96—100%-ная серная кислота. Для протекания процесса алкилирования требуется интенсивное перемешивание углеводородной фазы с катализатором в зоне реакции. Выделяемое в результате реакции избыточное тепло должно непрерь1вно отводиться с тем, чтобы температура среды стабильно поддерживалась в пределах 7—10°С. Этими основными требованиями предопределяется конструкция контакторов или реакторов. [c.301]

    Процесс получения нефтеполимера АСМОЛ включает загрузку в реактор тяжелых и легких нефтепродуктов (АЦЦ, легкая и тяжелая смола от производства изопрена), а также серной кислоты осуществляется подогрев реакционной массы и постоянное ее перемешивание. [c.66]

    При алкилировании изопарафиновых углеводородов олефинами в присутствии серной кислоты кроме основной протекают побочные реакции, которые приводят к получению углеводородов различной разветвленности, что положительно сказывается на качестве конечного продукта - авиаалкилата. Среди побочных реакций наибольшее значение имеет автоалкилирование, обусловленное способностью серной кислоты катализировать реакцию дегидрирования парафиновых углеводородов. При взаимодействии с кислотой часть молекул изопарафина, например изобутана, дегидрируется в изобутилен, который взаимодействует с новой порцией изобутана. Автоалкилирование всегда сопровождает основную реакцию алкилирования, но особенно интенсифицируется при резком недостатке олефинов в отдельных участках реактора. В общем виде реакцию автоалкилиро- [c.5]


Смотреть страницы где упоминается термин Реакторы получения серной кислот: [c.174]    [c.174]    [c.305]    [c.219]    [c.132]    [c.126]    [c.644]   
Химическая кинетика и расчеты промышленных реакторов Издание 2 (1967) -- [ c.311 , c.312 ]

Химическая кинетика и расчеты промышленных реакторов Издание 2 (1967) -- [ c.311 , c.312 ]

Химическая кинетика м расчеты промышленных реакторов Издание 2 (1967) -- [ c.311 , c.312 ]




ПОИСК





Смотрите так же термины и статьи:

Реакторы серной кислоты

Серная кислота получение



© 2025 chem21.info Реклама на сайте