Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакций кинетика, теория переходного состояния

    Теория переходного состояния в кинетике реакций, протекающих в растворах [c.593]

    Экспериментальные данные свидетельствуют о том, что кинетика реакций Арбузова, проведенных в различных растворителях, хорошо описывается уравнением для бимолекулярной реакции. Таким образом, с точки зрения теории переходного состояния можно ожидать ускорения реакций Арбузова при проведении их под высоким давлением. Изучение влияния давления на скорость изомеризации триэтилфосфита при 80 °С в растворе толуола в присутствии этилиодида привело к следующим результатам (табл. 23). [c.192]


    На основе положений формальной кинетики, метода переходного состояния и законов термодинамики были получены уравнения, описывающие закономерности кинетики простейших реакций. В кинетические уравнения входят константы гетерогенно-каталитических реакций, характеризующие процессы, которые протекают на поверхности, константа равновесия хемосорбционного процесса /Сад и предельное значение адсорбции (Г ), константа скорости химического акта (/гуд), а также константы, характеризующие процессы массопереноса (О, р и р). Теория каталитического процесса, протекающего на поверхности катализатора, должна раскрывать зависимость и куц от строения и свойств катализатора и реагирующих молекул. Проблема эта очень сложная и далеко еще не решенная. [c.654]

    В кинетике изотопный состав реагирующих частиц проявляется в различии скоростей реакций различных изотопов кинетический изотопный эффект). Согласно теории переходного состояния, константа скорости обменной реакции А Ц- ВС = АВ + С (А, В и С — атомы) выражается следующей формулой (см. 11)  [c.288]

    Представление о времени внедрялось в химию медленнее. Это объяснялось двумя причинами во-первых, тем, что статическое изучение вещества, как уже отмечалось, исторически предшествовало исследованиям механизмов реакций, динамики во-вторых, учения о ходе химических реакций во времени — кинетика, теория переходных состояний, промежуточных стадий — возникли и развивались позднее. В. Оствальд еще в конце XIX в. заметил по поводу медленного внедрения в химию фактора времени Кинетика разработана значительно менее, чем статика. Причину этого следует искать в том, что в кинетике приходится принимать во внимание элемент времени, и потому в ней сравнительно со статикой одной переменной больше этим обусловливается большая сложность задач кинетики . Однако он тут же подчеркивал мысль о преобладании в будущем развития кинетики, ибо, по его мнению, путь химического процесса представляет более широкое поле для исследований о свойстве химической системы 2. [c.45]

    Мы остановились лишь на некоторых следствиях теории переходного состояния. Эта теория получила широкое применение при рассмотрении таких важных для металлургии явлений, как диффузия в твердых и жидких металлах, вязкое течение металлов и шлаков, кинетика гетерогенных реакций, адсорбция газов и т. д. [c.245]


    Теория переходного состояния имеет важное значение не только для кинетики гомогенных реакций, но и для значительно более широкого круга физико-химических явлений. В частности, она применима для анализа процесса диффузии в твердых телах и жидкостях. [c.448]

    Основы теории переходного состояния (теории активированного комплекса) для простых реакций рассматриваются в 20.2. Теория переходного состояния строится на основе молекулярно-кинетической теории, а также использует элементы квантовой механики, поэтому для освоения этого раздела химической кинетики желательно знакомство с соответствующими разделами физики. [c.57]

    Вычисление абсолютных скоростей реакции , стерических факторов и т. и. по теории переходного состояния базируется на экспериментальных спектроскопических данных. На этом основании можно построить более или менее близкую к объективной реальности модель химической структуры исходных и промежуточных реагирующих веществ. Спектроскопия является весьма чувствительным методом, позволяющим изучать кинетику и механизм химической реакции, не нарушая и не прерывая ее. Особенно большое значение спектроскопический метод имеет при изучении сложных газовых реакций, сопровождающихся очень быстрым возникновением промежуточных реагирующих веществ. [c.91]

    Одним из главных успехов химической кинетики было создание в 30-х годах главным образом Эйрингом и его сотрудниками теории переходного состояния в химических реакциях [2]. Эта теория впервые дала прямую количественную связь независящей от температуры части константы скорости от строения атомов и молекул, участвующих в химическом превращении. К сожалению, хотя сейчас есть много методов количественного изучения нормальных или основных состояний молекул, мы почти безоружны, когда хотим исследовать структуру сильно возбужденных переходных состояний. [c.14]

    Теория активного комплекса, часто называемая еще теорией переходного состояния и теорией абсолютных скоростей реакций, как было сказано (стр. 296), является общей теорией кинетики и механизма химических реакций. Вместе с тем она теснейшим образом связана с катализом не столько потому, что ее положения распространяются на каталитические процессы, сколько потому, что она призвана всесторонне осветить вопросы [c.313]

    Вторая глава посвящена теории кинетики элементарных реакций. В ней анализируется метод активных соударений и теория переходного состояния (активированного комплекса), а также рассматривается правило Поляни — Семенова. [c.3]

    Третья глава дает основные сведения в области кинетики и термодинамики органических реакций кратко излагается теория переходного состояния, дается понятие об элементарном акте реакций, [c.6]

    Развитие кинетики органических реакций в последние 30—40 лет было в значительной степени обусловлено глубокой разработкой теории химической кинетики. Наибольшим достижением было создание теории переходного состояния, которая известна также под, названием теории абсолютных скоростей реакции. [c.151]

    Органическая химия в своем развитии стремится к тому, чтобы ее основные законы и теории позволяли без специально поставленных опытов избирать приемлемый метод синтеза любого органического вещества и предсказывать все его свойства. Однако строение молекул большей части органических веществ настолько сложно, что едва ли кот да-либо в полной мере будет достигнуто такое состояние науки. Поэтому химики-органики должны довольствоваться более скромной целью — извлечением из точных данных науки всего, что может содействовать проявлению их чудесного инстинкта (Гильберт Льюис). Роль, которую в этом может играть современная физическая химия, становится ясной, если руководствоваться ранее сказанным. Так, чтобы избрать хороший способ синтеза любого органического соединения, необходимо учитывать следующее 1) намеченная реакция должна быть термодинамически возможной, 2) реакция должна протекать с достаточно большой скоростью, чтобы ее можно было осуществить практически, и 3) она должна сопровождаться возможно меньшим числом побочных реакций, а те из них, которых нельзя избежать, должны протекать значительно медленнее главной реакции. Отсюда, естественно, вытекает, что если мы хотим иметь возможность учесть эти условия, необходимо знать, какое влияние оказывают изменения среды и строения молекулы как на свободную энергию, так и на энергию активации реакций органических веществ. Но для осуществления этого должно произойти слияние электронных теорий органической химии с такими современными ответвлениями физической химии, как квантовомеханическая концепция резонанса и теория переходного состояния в кинетике реакций. Главная цель данной книги состоит в том, чтобы показать, каким образом осуществилось такое слияние идей. Поиски решения родственной задачи предсказания физических свойств веществ на основе знания их молекулярной структуры заставили бы нас заглянуть во все самые отдаленные уголки физической химии. Вторая проблема будет лишь частично рассмотрена в этой книге, так как для решения этой проблемы пришлось бы охватить слишком обширную область. [c.13]


    Термодинамическое сочетание. Соображения, выраженные в уравнениях ЗЬб и 37, приводят нас ко второй особенности рассматриваемой проблемы. В самом начале нашего обсуждения мы попытались выяснить, не может ли энергия активации разрыва связи просто равняться энергии связи, претерпевающей разрыв, в случае реакций, где такой разрыв является первичной стадией, определяющей кинетику реакции. Однако при толковании уравнений 36 мы приходим к мысли, что если за первой эндотермической стадией следует экзотермическая, то эти две стадии должны каким-то образом сочетаться термодинамически, в результате чего произойдет снижение энергии активации. В духе представлений теории переходного состояния мы могли бы выразить эту мысль, сказав, что возникновение резонанса, изображенного в уравнении 366, начинает сказываться еще до того, как будет завершен первоначальный разрыв (36а), а следовательно, должно иметь место пересечение двух энергетических долин, в результате чего переходное состояние или энергетический перевал между долинами сделается более низким, чем плато полного распада. [c.330]

    Для практического приложения (П 29) необходимо, очевидно, обращаться к нашим весьма ненадежным сведениям о состоянии сольватации критического комплекса. Тем не менее вполне вероятно, что мы можем довольно правдоподобно оценить это состояние на основании нашего общего знания электронной теории. Так, в случае слегка полярных реагентов, которые рассматривал Белл (см. выше), можно, повидимому, вполне законно думать, что критический комплекс также будет малополярным, а следовательно, степень его сольватации должна будет лишь незначительно меняться при протекании стадии, определяющей кинетику реакции. В случае полярных реагентов будет, повидимому, несущественно, изображается ли стадия, определяющая скорость реакции, в виде переходного состояния, например  [c.400]

    В последней главе обсуждаются вопросы механизма химических реакций — полимеризации и т. п. Реакции рассматриваются в свете теории переходного состояния. В этой главе содержится ряд спорных утверждений. При современном состоянии химической кинетики вопрос о механизме сложных реакций в растворах (какими в основном являются органические реакции) в большинстве случаев недостаточно ясен. Иногда выбор структур, участвующих в переходном состоянии, не вполне однозначен. Поэтому теория на современном этапе может многое объяснить, но далеко не все люжет предсказать. [c.6]

    Вторая часть посвящена кинетике химических реакций при высоких давлениях — гомогенным газовым реакциям, гетерогенным газовым каталитическим реакциям, реакциям в жидкой и твердой фазах. Приведены конкретные примеры и дан их кинетический анализ. Критически подойдя к теории переходного состояния, автор показывает целесообразность применения метода активированного комплекса при кинетическом анализе реакций при высоких давлениях. [c.4]

    Согласно этой схеме реагирующие вещества находятся в равновесии с переходным или активным комплексом. Однако равновесие может быть настолько сильно сдвинуто в сторону исходных веществ, что концентрация переходного комплекса будет так мала, что реакция практически не идет. Эта основная идея теории химической кинетики рассматривается подробнее в разделе, посвященном теории переходного состояния. [c.253]

    В книге систематизируются имеющиеся в настоящее время данные по кинетике различных газофазных реакций (распада, ассоциации, замещения и др.) и даны простые правила, с помощью которых могут быть найдены параметры уравнения Аррениуса в рамках теории переходного состояния. Приводятся многочисленные конкретные примеры расчета энергии активации и предэкспонентов различными методами. Автор деталь- но анализирует отдельные элементарные акты газофазных реакций и кинетические теории столкновений и переходного состояния, дает анализ стерического фактора и роли химических переходных состояний в сложных реакциях, стерических затруднений резонансу в переходном комплексе. Большое внимание уделяется вопросу о роли процессов переноса энергии при газофазных реакциях и реакциям ионов. [c.6]

    Читателю нетрудно заметить, что использование теории переходного состояния, по сути дела, не связано со специальными опытами по определению активационных параметров реакции, т. е. энтропии и энтальпии активации. Характер экспериментальных исследований остает ся прежним — изучение кинетики реакции при разной температуре среды, вычисление температурного коэффициента и энергии активации, а затем — предэкспоненциального множителя /С(). Но поскольку предэкспонент уравнения Аррениуса непосредственно связан с энтропией активации соотношением (34), то имеется возможность количественно оценить эту новую характеристику системы. Зная ее, можно попытаться составить более детальное представление об элементарных химических актах и геометрии молекул, находящихся на вершине энергетического барьера. В общем случае реакция может идти от исходных веществ к конечным продуктам различными путями, т. е. через различные перевалы (величины энергии активации). Однако реакция, как правило, идет по одному (или небольшему числу) из путей, такому, где энергетические затраты будут наименьшими. Легкость пути и обусловливает правила движения реакции. Но об этом более подробно мы поговорим в разделе Что есть наименьшее . [c.38]

    Книга С. Глесстона, К, Дж. Лейдлера и Г. Эйринга сТеория абсолютных скоростей реакций посвящена изложению основ, развитию и различным применениям теории абсолютных скоростей реакций (или теории переходного состояния). Эта теория была предложена Эйрингом, одним из авторов книги, и одновременно Поляньи и Ивенсом [ ]. За 6 лет, прошедших со времени своего возникновения до выхода в свет книги на английском языке, теория усиленно разрабатывалась, постепенно охватив кинетику самых разнообразных процессов она вышла за пределы собственно химической кинетики и была применена к вязкости, диффузии, электропроводности и к другим явлениям. [c.5]

    Теория лсидкого состояния значительно сложнее и разработана в меньшей степени, чем газообразного. Соответственно и теория кинетики реакций в жидкой фазе разработана менее полно. Однако возможность применения аппарата теории бинарных соударений имеет место, хотя и требует известных уточнений и оговорок. То же относится и к теории переходного состояния (активированного комплекса). [c.266]

    Ниже излагаются две основные теории молекулярной кинетнки, а именно столкновений и переходного состояния. Описание кинетики реакции на основании свойств реагирующих частиц в этих теориях неодинаково. В частности, в теории столкновений больше внимания уделяют расчету чисел столкновений молекул. Напротив, в теории переходного состояния подробнее исследуется сам акт химического взаимодействия в комплексе столкнувшихся частиц. [c.725]

    Книга Гайнца Беккера Введение в электронную теорию органических реакций представляет собой четкое и ясное изложение электронных представлений о механизмах наиболее распространенных и важных реакций органических веществ, без изложения которых не обходится ни один курс органической химии, ни практика исследователя. В отличие от других книг теоретического направления, обычно ограничивающихся при изложении механизма реакций лишь графикой электронных смещений, книга Беккера, помимо очень удачной графики этого рода, вскрывает физико-химические, термодинамические и электронно-структурные факторы движущих сил реакций. Она вооружает читателя глубокими знаниями и возможностью предвидения. Первые три главы излагают общие теоретические основы проблемы химической связи, распределения электронной плотности в органических молекулах и основные положения кинетики и термодинамики органических реакций с освещением теории переходного состояния и элементарного акта реакции. Первая из этих глав, посвященная квантовомеханическим основам теории химической связи, написана в форме, доступной для химиков-органиков, обычно плохо владеющих высшей математикой. В этой главе некоторым сокращениям подверглось изложение представлений о модели атома Бора, имеющих лишь исторический интерес. В этой же главе излагаются основы квантовой механики, где Беккер подходит к уравнению Шредингера, используя аналогию с волновым уравнением. Эта аналогия имела определенное эвристическое значение при создании волновой механики. Однако она, естественно, не отражает важнейших особенностей уравнения Шредингера и вряд ли облегчает его -восприятие. Поэтому взамен этой аналогии мы изложили основы квантовой мех-лники в доступной форме, аналогично тому, как это Сделается в основных современных курсах квантовой химии. / [c.5]

    Теория переходного состояния. Результаты большинства органических реакций управляются кинетикой Многие реакции включают две или более отдельные стадии, разделяюш,иеся неустойчивыми промежуточными веществами, которые образуются на одной стадии реакции, и исчезают на второй. Реакции такого типа называются многостадийными. Как правило, одна стадия протекает медленнее, чем остальные она называется стадией, определяющей скорость реакции. Так, при управляемом кинетикой превращении 2-фе-нил-1-бутена в транс-2-фепил-2-бутен (см. выше) первой и в то же время определяющей скорость стадией является протонирование алкена, приводящее к образованию 2-фенр[л-2-бутил-катиона, представляющего собой неустойчивое промежуточное вещество. Вторая быстро протекающая стадия состоит в отщеплении протона от этого промежуточного вещества, что приводит к образованию транс-2-фенил-2-бутепа. [c.197]

    Для выяснения зависимости статистических закономерностей кинетики зародышеобразования от формы энергетического барьера, преодолеваемого системой, рассмотрим вначале простой случай двухбарьерного процесса, позволяющего получить решение в аналитической форме и точно проанализировать этот простейший вариант. Ясно, что кинетика однобарьерного процесса описывается простым экспоненциальным законом, характерным для стационарного процесса. Зависимость скорости стационарного процесса нуклеации от формы энергетического барьера изучалась ранее в работах Эйринга с соавторами на основе общей теории абсолютных скоростей реакций и метода переходного состояния [41, 1331. [c.38]

    В заключение мы обратим внимание на два момента. Создание методов изучения быстропротекающих реакций является необходимой предпосылкой, как пишет Эмануэль в предисловии к монографии Колдина, стратегического наступления химической кинетики в области органической химии и биохимии, а также неорганической химии и химической технологии. Но изучение быстропротекающих реакций подорвало в то же время и основу основ классической химической кинетики — то толкование энергии активации, которое дает теория переходного состояния, а именно положение о том, что энергия активации представляет высоту потенциального барьера, в структурном отношенйи обусловленного растяжением химических связей. Оказывается, в энергию активации быстрых реакций существенный вклад могут вносить и другие факторы [59, с. 290]. [c.317]

    Недавно Ри и Эйринг[48] показали, что можно с довольно большой точностью вычислять скорость нитрования однозамещенных бензолов, сочетав теорию английской школы с теорией переходного состояния и произведя некоторые упрощения. Для вычислений служат экспериментальные данные по дипольным моментам и константа скорости нитрования незамещенного бензола. Так как эта попытка является первой успешной попыткой поставить теорию кинетики реакции английской школы на количественную основу, то она заслуживает подробного обсуждения. [c.247]

    Как и в кинетике химической, исследования зависимости скорости реакции от темп-ры в интервале, когда не наблюдается тепловой денатурации Ф., позволяют оценивать энергетич. характеристику процесса, важную для понимания механизма действия Ф. Трудность интерпретации экспериментальных данных зависимости стационарной скорости реакции от темп-ры связана с тем, что ферментативные реакции представляют сложные последовательные процессы. Если измеряемая скорость лимитируется к.-л. одной из последовательных реакций, нанр. если ею является максимальная скорость реакции, определяемая одноступенчатым распадом фермент-субстратного комплекса К=А+г[Е]о, то исследование зависимости V= Т) позволяет оценить энергию активации этой стадии реакции. При возможности измерения констант скорости отдельных стадий реакции при различных темп-рах могут быть оценены соответствующие величины энергии активации. Изучение зависимости константы субстрата (К ) от темп-ры позволяет оценивать термодинамич. константы образования ЕВ-комплекса (ДЯ, АР, А8). Применение теории абс. скоростей реакций (теории переходного состояния) при анализе кинетики нек-рых ферментативных реакций позволило оценить энтальпию, энтропию и свободную энергию активации. Общий вывод из относительно небольшого пока числа таких исследований состоит в том, что высокая каталитич. активность Ф. объясняется как существенным снижением энергии активации, так и значительным благоприятным изменехгнем энтропии системы в ходе реакции. [c.210]

    При обычных температурах /у величина порядка единицы, тогда как колеблется от 10 до 100, так что согласно уравнению (ХЬУШ) при реакции между двумя молекулами, содержащими больше двух атомов, вероятностный фактор в уравнении для кинетики должен иметь величину порядка 10- —10- °. Чем больше молекула, тем больше величина и тем меньше фактор Р. Таким образом описанная выше теория переходного состояния непосредственным образом объясняет расхождение между наблюдаемой и вычисленной скоростями реакции для большого числа реакций в газовой фазе и в растворе. Изучение примеров таких реакций показывает, что в каждом случае. медленной реакции реагирующие вещества представляют собой относительно сложные молекулы. Если одно из реагирующих веществ представляет собой простой ион, например ОН, С1, Л или Н", или какой-либо атом, например, атом иода, и если активный комплекс мало отличается от одного из реагирующих веществ, то, пользуясь этим приближенным методом, мы найдем, что в этом случае фактор Р не будет содержать такого большого числа функций в знаменателе и поэтому его величина будет близка к единице. Подобный же результат получается и для реакций между двумя двуатомными молекулами. Так как эти последние имеют только две вращательные степени свободы, то по описанному методу для величины Р получается В этом случае для относительно малых моле- [c.224]

    Теория переходного состояния. Кроме изложенной выше теории столкновений, существует другой подход к теории кинетики химических реакций, включающий понятие активного комплекса. Оба эти метода не являются взаимно исключающими, а каждый из них имеет свои преимущества и свои едостатки. Теория столкновений основана на идеях, знакомых большинству научных работников, и требует легко осуществимых вычислений. Теория переходного состояния, с другой стороны, содержит идеи, чуждые опыту большинства биохимиков. хотя общую картину, даваемую этим методом, нетрудно охватить. Преимущество теории переходного состояния состоит в том, что здесь все виды реакций трактуются одинаковым способом, тогда как на основе теории столкновений бимолекулярные и мономолекуляр-ные реакции рассматриваются различно. [c.64]

    Большое преимущество использования представлений о переходном состоянии при обсунедении такого рода вопросов заключается в том, что это существенно упрощает анализ, и правильный ответ молено найти без затруднений. В терминах теории переходного состояния кинетика реакции в значительной мере определяется стехиометрическим составом переходного состояния. Поэтому из кинетических данных молшо установить, какие атомы включены в переходное состояние и каков его общий заряд, но это не дает информации о том, как атомы или заряды организованы в переходном состоянии. Обычными кинетическими методами невозмол но определить, являются ли соединения, которые находятся в быстро устанавливающемся равновесии с исходными соединениями или продуктами реакции, действительно промежуточными соединениями нормального пути реакции. Можно сразу заметить, что переходные состояния для механизмов (25) и (26) имеют один и тот Лче стехиометрический состав и заряд, и, следовательно, эти механизмы кинетически неразличимы. Далее, если переходные состояния для реакций (25) или (26) имеют примерно ту лге полярность и одинаковое распределение зарядов, то молено сразу считать, что эти механизмы неразличимы по в [иянпю растворителя или добавленной соли. Любые такие влияния могут изменить разность в энергиях между исходным и переходным состояниями, но эти влияния будут сказываться на стабильности обоих переходных состояний в одинаковой степени и поэтому будут одинаково сказываться на скорости реакции по обоим механизмам. [c.155]


Смотреть страницы где упоминается термин Реакций кинетика, теория переходного состояния: [c.92]    [c.22]    [c.29]    [c.32]    [c.400]    [c.160]    [c.282]    [c.13]    [c.375]   
Физическая биохимия (1949) -- [ c.64 ]




ПОИСК





Смотрите так же термины и статьи:

Состояние переходное

Теория кинетики

Теория переходного состояния

Теория переходного состояния Теория

Теория переходного состояния в кинетике реакций, протекающих в растворах

Теория реакций



© 2025 chem21.info Реклама на сайте