Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Массопередача в адсорбционных

    Второй участок называется зоной массопередачи, адсорбционной зоной. [c.214]

    Участок слоя /о, на котором происходит изменение концентрации адсорбтива от начальной до проскоковой, называется работающим слоем (зона массопередачи, адсорбционная зона). [c.115]

    Второй участок называется работающим слоем (зоной массопередачи, адсорбционной зоной). [c.117]


    В настоящее время нет надежных способов определения коэффициентов массопередачи для адсорбции многокомпонентных смесей. Для расчета адсорбционных процессов используются приближенные методики. [c.95]

    На рис. 162, г — показано влияние размера гранул адсорбента на длину зоны массопередачи. Чем короче зона массопередачи, тем больше скорость адсорбции и лучше показатели адсорбционного процесса. Поэтому всегда нужно применять адсорбенты наименьшего размера. Размер гранул адсорбента должен лимитироваться величиной гидравлического сопротивления слоя. В большинстве промышленных установок переработки природных газов применяются адсорбенты с размером гранул не более 14 меш. [c.242]

    Динамическая влагоемкость адсорбентов-осушителей зависит от величины активной поверхности их, доступной для паров воды, длины зовы массопередачи, скорости перемещения адсорбционного фронта и необходимой глубины осушки газа. Теоретически осушенный газ не должен содержать влаги до момента проскока. На практике газ содержит некоторое количество влаги, хотя он намного суше, чем требуется по нормативам эксплуатации газопроводов. При осушке газа для сжижения цикл адсорбции должен заканчиваться несколько раньше момента проскока влаги, когда адсорбционный фронт зоны массопередачи еще находится в глубине слоя. Это связано с тем, что для диффузии остаточных малых количеств паров воды из газовой фазы в твердую (адсорбент) требуется определенное дополнительное время контакта. [c.246]

    Длина адсорбционной зоны зависит от состава и относительной влажности газа, скорости его потока и поглотительной способности адсорбента. Давление (и то только при 20 кгс/см ) очень мало влияет на длину адсорбционной зоны. Цифровой коэффициент 0,45 в уравнении (153) — средняя величина, определяемая экспериментально. Он является функцией длины зоны массопередачи и изменяется в пределах 0,4—0,52. [c.247]

    Длину адсорбционной зоны (зоны массопередачи) слоя силикагеля можно определить с помощью следующего уравнения  [c.247]

    Количество влаги, поглощаемое в цикле адсорбции, известно из проекта установки. Количество адсорбированных углеводородов определяется положением адсорбционного фронта в момент окончания цикла адсорбции. Если этот фронт находится в положении VI (см. рис. 162, а), то слой адсорбента справа от кривой содержит углеводороды. Кроме того, вытеснение углеводородов водой из слоя слева от кривой не закончилось. В слое адсорбента, расположенном до зоны массопередачи по воде, массовая доля углеводородов достигает 7—10%. За адсорбционным фронтом она значительно меньше и составляет 1—2%. Как известно, состояние адсорбционного фронта изменяется в зависи- [c.252]


    Общепринятой моделью динамики адсорбции в неподвижном слое является модель фронтальной отработки слоя адсорбента [3]. После насыщения лобового слоя адсорбция вещества из потока в нем прекращается, и поток проходит этот участок без изменения концентрации. Время работы слоя до насыщения лобового участка принято называть периодом формирования фронта адсорбции. После этого начинается второй период, для которого характерна неизменная форма выходной кривой. Концентрационный фронт перемещается с постоянной скоростью вдоль слоя, что указывает на стационарный режим процесса. При этом существует область, называемая работающим слоем или зоной массопередачи, в которой концентрация падает от начальной практически до нулевой. Наличие такой зоны свидетельствует о существовании внутри- и внешнедиффузионного сопротивлений массопереносу. Инженерные методы расчета, допускающие существование стационарного фронта, широко применяются на практике. Для расчета адсорбционного аппарата в этом случае используют уравнение, описывающее время защитного действия слоя в зависимости от его длины, и общий закон массопередачи в слое. [c.69]

    Обратим внимание на следующий факт в формуле (2.1.159) коэффициент р изменяется в широких пределах, причем Р - оо при 7 >0. Это позволяет в любом адсорбционном процессе выделить область внешнего и внутреннего массопереноса, согласно чему и меняется вклад каждого слагаемого правой части равенства (2.1.159). В области малых относительных концентраций в потоке скорость адсорбции лимитируется сопротивлением внешней массоотдачи, а распределение вещества по радиусу близко к равномерному. Коэффициент внутренней массопередачи Р очень велик, и основной вклад в сумму (2.1.159) дает первое слагаемое, в котором (согласно приведенным соображениям) можно положить уз = у = и точность этого равенства повышается с ростом выпуклости изотермы при достаточно малых В1. [c.71]

    Динамика сорбционных процессов рассматривает пространственно-временные распределения компонентов между фазами гетерогенной системы, возникающие при перемещении этих фаз относительно друг друга. Одной из наиболее важных адсорбционных характеристик, используемой на стадиях моделирования и расчета процесса, является длина зоны массопередачи.  [c.229]

    В жидкостно-адсорбционной хроматографии вследствие медленности процессов доставки вещества из объема подвижной фазы (малое значение коэффициента диффузии в жидкости) к поверхности неподвижной фазы (адсорбента) вклад в размывание, обусловленный малой скоростью массопередачи, может быть значительным. Особенно ои возрастает вследствие медленности диффузии в адсорбенте, т. е. определяется внутренней массопередачей. [c.72]

    Динамика ионного обмена описывается системой уравнений статики, кинетики и материального баланса. Однако кинетические модели ионного обмена различны. Процесс может контролироваться внешней или внутренней диффузией, или химической реакцией между ионитом и компонентом раствора. Иногда он зависит от других факторов, например от изменения объема ионита, от диффузионного электрического потенциала, который может возникать, если ионы имеют разные заряды и разные подвижности, и проч. В связи с этим предложено множество кинетических уравнений для разных вариантов механизма процесса. Априорный выбор той или иной кинетической модели, а следовательно, и кинетического уравнения для конкретного ионообменного процесса обычно затруднителен — требуется предварительное экспериментальное исследование. Чаще всего закономерности кинетики ионного обмена в основном тождественны таковым для диффузионных адсорбционных процессов, где массопередача в значительной мере зависит от гидродинамических условий. Вопросы кинетики ионного обмена рассмотрены в монографиях [52, 83а, 107, 145, 180, 181]. [c.309]

    В проточных системах требующееся для разделения количество адсорбента зависит не только от таких факторов, как количество и состав газового сырья, заданная степень извлечения, адсорбционная мощность и селективность действия поглотителя, определяющиеся природой и способом приготовления адсорбента, температура и давление адсорбции, но и от скорости массопередачи к поверхности и внутрь частиц адсорбента путем молекулярной диффузии, конвективного и турбулентного переноса и степени использования внешней и внутренней поверхностей поглотителя. [c.178]

    В тот момент, когда граница зоны массопередачи достигает выхода из слоя и появляется проскок растворенного вещества в фильтрат, весь слой адсорбента состоит нз участка насыщенного до равновесия, и зоны массопередачи. Время работы адсорбционной колонны до проскока адсорбируемого вещества в фильтрат называют временем защитного действия слоя. [c.129]


    Разработаны методы расчета адсорбционной стадии процесса, базирующиеся, в основном, на концепции длины зоны массопередачи. Анализ генезиса динамики адсорбции позволил выделить восемь характерных классов выходных кривых динамики, для которых был обоснован вид лимитирующего диффузионного сопротивления. Разработано уравнение для расчета длины зоны массопередачи Ьо, которое по сравнению с уравнениями, приведенными в научной литературе, дает расчетные значения Ьд более близкие к экспериментальным величинам Получены уравнения, учитывающие влияние на длину зоны массопередачи скорости потока и концентрации в нем адсорбируемой примеси, а на их базе - модели, позволяющие выполнить расчет основных параметров адсорбера по результатам одного эксперимента (рис. 4). На базе метода [c.25]

    Кинетика массопередачи в неподвижной фазе. Слагаемые размывания, определяемые конечной скоростью процессов сорбции, несколько отличаются в зависимости от того, имеет ли сорбирующий слой бесконечно малую толщину, как при адсорбционной хроматографии, или толщина его существенна, как это имеет место при хроматографии распределительной. [c.23]

    Работу такой адсорбционной установки можно сравнить с работой наса-дочного абсорбера, в котором абсорбентом служит неподвижная жидкость, образующая пленку на поверхности насадки. В любой момент времени между точками входа п выхода н такой аппарат существует градиент концентраций адсорбированного компонента в газовой и твердой фазах. Как и для обычных абсорберов, наклон кривой, изображающей градиент концентраций, характеризует коэффициент массопередачи и, как и следовало ожидать, этот коэффициент зависит от таких факторов, как скорость газа и размер насадки насадкой в этом случае служит сам адсорбент. В отличие от противоточного процесса жидкостной абсорбции, при котором в колонне вследствие непрерывного введения регенерированного раствора с верха колонны и отбора насыщенного раствора с низа поддерживается постоянный градиент концентраций, градиент концентрации в слое адсорбента смещается к выходному отверстию для газового потока, так как адсорбируемый компонент поглощается и удерживается в слое адсорбента. Неустановившийся характер процесса значительно усложняет математический анализ и расчет адсорберов с неподвижным слоем адсорбента. [c.17]

    Из анализа полученных уравнений следует, что адсорбционное накопление должно приводить к замедлению массопередачи в первые моменты времени непосредственно после осуществления контакта фаз, которое воспринимается как сопротивление межфазной границы. Максимальное значение кажущегося ПС не превышает 10—20 с/см при времени контакта фаз 10 с. Эта величина быстро уменьшается O временем. Однако адсорбционное накопление не должно приводить к отклонениям ог положения равновесия на границе раздела фаз. Равновесие существует в каждый момент времени сразу же после осуществления контакта фаз, причем граничные концентрации со стороны каждой фазы изменяются во времени так, что их отношение остается постоянным и равным коэффициенту распределения. Таким образом, можно говорить лишь о дополнительном изменении потока во времени, вызванном изменением граничных концентраций. Физически этот эффект проявляется в возникновении поверхностного сопротивления, хотя сама граница раздела фаз в действительности не оказывает никакого сопротивления массопередаче. Математически эффект выражается в изменении уравнения распределения концентраций в фазах. Например, уравнение профиля концентраций в извлекающей фазе имеет вид [c.387]

    Массопередача в пограничном слое подвижной фазы связана с тем, что отдельные молекулы движущейся хроматографической полосы могут на некоторое время задерживаться в порах частиц неподвижной фазы, заполняющей колонку. В результате движение этих молекул по колонке замедляется, что также приводит к расширению хроматографической полосы. Эти затруднения можно уменьшить, применяя в качестве неподвижной фазы либо частицы с непроницаемой центральной частью и тонким адсорбционным слоем на поверхности, либо частицы очень малого диаметра. Это приводит к уменьшению числа закрытых пор и каналов, которые могут приводить к задержке подвижной фазы. [c.463]

    Двойственный характер влияния ПАВ обусловлен тем, что они оказывают влияние на величину межфазной поверхности, на величину дополнительного сопротивления массопередаче вследствие образования адсорбционного слоя молекул ПАВ на поверхности раздела фаз и, наконец, на характер движения жидкости на поверхности и вблизи нее. [c.123]

    Для процессов массопередачи, протекающих в подвижных средах, стадии массоотдачи 1 и 3 определяются физическими свойствами фаз, условиями их движения и описываются уравнениями конвективного переноса вещества (1.147). Условия перехода молекул переносимого компонента через границу раздела между фазами определяются особым состоянием молекул компонентов на границе раздела фаз. Под действием силовых полей молекулы принимают здесь ориентированное положение, т. е. возникает явление, называемое адсорбцией. В результате этого со стороны каждой фазы вблизи поверхности раздела образуются слои ориентированных молекул (адсорбционные слои), чрезвычайно малой толщины (порядка нескольких десятков размеров молекул). Так, в системе, состоящей из двух жидких фаз, имеются, строго говоря, не две, а четыре фазы — две объемные (занимающие макроскопические объемы) и две поверхностные (занимающие микроскопические объемы вблизи границы раздела фаз). Можно считать, что в системах типа жидкость (газ) — твердое тело имеется одна поверхностная фаза, поскольку из-за фиксированного положения молекул в твердых телах адсорбционные слои в них не образуются. Обычно считают, что наиболее медленной стадией процесса массопередачи (массообмена) является перенос в объеме фазы. [c.403]

    Величина общего коэффициента массопередачи Ро определяется экспериментально в опытах со слоем толщиной в одно зерно. Кроме этого непосредственного метода в адсорбционной технике разработаны способы определения величин Ро по результатам обработки экспериментальной кривой концентрации целевого компонента на выходе газа-носителя из неподвижного слоя адсорбента реальной высоты [1,22]. Некоторая сложность вычислительной процедуры в методе слоя конечной высоты по сравнению с методом дифференциального слоя компенсируется более надежной, непрерывной регистрацией адсорбтива в газовом потоке по сравнению с менее удобным периодическим определением содержания адсорбтива в малом количестве частиц адсорбента. [c.209]

    Малоизученным остается вопрос о связи кинетики адсорбции в одиночном зерне с макрокинетикой в слое адсорбента, необходимой для определения высоты зоны массопередачи и времени защитного действия его. В монографии приведена аналитическая зависимость коэффициента внутреннего массопереноса от заполнения адсорбционного пространства, сформулирована математическая модель адсорбции в слое адсорбента и получено аналитическое решение указанной задачи. Для ряда моделей изотерм получен аналитический аналог зависимости Жуховиц-кого — Забежинского — Тихонова для времени защитного действия макрослоя адсорбента с учетом внутридиффузионных эффектов. [c.5]

    РАСЧЕТ АДСОРБЦИОННЫХ ПРОЦЕССОВ НА ОСНОВЕ Д ПЩНЫ ЗОНЫ МАССОПЕРЕДАЧИ [c.30]

    Адсорбционные процессы относятся к наиболее сложно описываемым и моделируемым объектам химической технологии в силу того, что требуют в значительной мере более детального подхода к формированию модели в связи с. многообразием кинетических факторов, сопровождающих диффузию сорбата в макро-, мезо- и микропорах сорбента и необходимостью учета как специфических характеристик самого сорбента (например, состав и свойства активных центров, условия регенерации), так и особенностей взаимодействия в конкретной системе адсорбент - адсорбат и на стадии адсорбции, и на стадии регенерации. В связи с этим представляет интерес феноменологическая модель адсорбционного процесса в виде длины зоны массопередачи Lo. Зона массопередачи участок длины (высоты) слоя сорбента, в котором и протекает собственно сорбционный процесс с интегральным учетом всех его реалий, перемещающийся по длине слоя от начала к концу процесса в неподвижном слое сорбента и равный необходи юй высоте слоя в процессах в движущемся или псевдо-ожиженном слоях сорбента. [c.30]

    Приведены примеры расчета длины зоны массопередачи по различным уравнениям и сопоставление результатов расчетов с опытными данными по экспериментальному фиксированию длины зоны массопередачи в процессе разделения смеси бензол - и. гептан в жидкой фазе цеолетами ЫаХ, а также масштабирования адсорбционных процессов. [c.31]

    Характер кривых зависимости Н а) различен в области разных скоростей потока газа-носителя. В области высоких скоростей, при которых предпочтительно работать для ускорения анализа, когда, согласно уравнению (1У.61), определяющее значение для размывания хроматографической полосы имеет внутридиф-фузионная массопередача, при постоянных значениях 2. Г, 1)внутр главную роль в размывании играет величина а. Очевидно, при этих условиях функция Я(о) или аналогичная ей зависимость величины Я от количества жидкой фазы должна графически изображаться параболой (рис. У.З). Однако параболическая зависимость нарушается в области малых содержаний жидкой фазы, так как в этой области значительное влияние может оказывать адсорбционный эффект со стороны гранулированного носителя. [c.132]

    В процессе хроматографирования в ГАХ анализируемое вещество распределяется между подвижной газообразной фазой (газ-носитель) и неподвижной твердой фазой (адсорбентом). Между количествами анализируемого вещества, находящимися в газе-иоси-теле и адсорбенте, устанавливается равновесие. Значение этого равновесия определяется изотермой адсорбции. Изотерма адсорбции часто бывает нелинейна, что приводит к асимметричному размыванию зоны компонента на адсорбенте и образованию несимметричных пиков на хроматограмме. Размывание хроматографических полос в газо-адсорбционной хроматографии происходит также и за счет замедленной внешнедиффузионной массопередачи. [c.163]

    Ион-парная хроматография давно находила применение в жидкостной хроматографии и экстракции для извлечения лекарств и их метаболитов из биологических жидкостей в органическую фазу. Как самостоятельный раздел ВЭЖХ ион-парная хроматография, называвшаяся также экстракционной, парно-ионной, хроматографией с использованием ПАВ, хроматографией с жидким ионообменником, стала развиваться с середины 70-х годов. Метод занимает промежуточное положение между ионообменной хроматографией и адсорбционной, распределительной или обращенно-фазной. Недостатки ионообменных материалов, а именно невоспроизводимость от партии к партии, меньшая активность и стабильность по сравнению с другими сорбентами и небольшой выбор наполнительного материала, исключающий изменение селективности за счет сорбента, привел к некоторому ограничению применения ионообменной хроматографии. В ион-парной хроматографии большинство этих недостатков можно преодолеть. Метод ион-парной хроматографии характеризуется универсальностью и обладает преимуществом по сравнению с классической ионообменной хроматографией, в котором активные центры фиксированы. Вследствие более быстрой массопередачи в ион-парной системе хроматографическое разделение более эффективно, чем на ионообменнике с фиксированными и активными зонами. [c.74]

    В фаницах задачи получения глубскоочищенных жидких парафинов с содержанием примеси ароматических углеводородов не более 0.01 % масс, бьши детально изучены особенности кинетики жидкофазной адсорбции углеводородов н-гексана и н-гептана из растворов в бензоле цеолитами СаА, сорбция бензола, толуола, параксилола и изопропил-бензола цеолитами NaX и сорбция бензола из растворов в н-гептане, н-гептене, циклогексане, изооктане и тридекане цеолитами NaX в диапазоне концентраций адсорбируемого компонента в растворе 2-70 % об. при температурах 5-60 С. Расчетный анализ кинетики сорбции свидетельствует, что для рассмотренных систем адсорбционный процесс характеризуется близкими значениями диффузионного сопротивления в кристаллах сорбента и транспортных порах. Зависимость эффективных коэффициентов диффузии адсорбируемых компонентов в цеолитах от времени контакта раствора t с сорбентом при сорбции из растворов носит специфический экстремальный характер (рис. 1) на начальной стадии процесса, не свойственный, например, сорбции из паров, и объясняемый фактической трехфазностью исследуемых систем. Выявлена аномальность сорбции из растворов при повыщенных температурах вместо падения активности цеолитов наблюдался ее рост с одновременным ростом общего объемного коэффициента массопередачи, который может быть рассчитан как величина, обратная первому статистическому моменту кинетической кривой, интерпретируемой как функция отклика адсорбента на ввод в систему навески разделяемого сырья. [c.22]

    Расчет адсорбционных колонн до настоящего времени требует предварительной экснериментальной проработки процесса с определением таких специфических характеристик, как полная и проскоковая динамическая активность адсорбента, длина зоны массопередачи, коэффициент массопередачи, поскольку информация о динамике адсорбции, приводимая в научной литературе, весьма ограничена и часто вообще отсутствует для разрабатываемых систем адсорбент-адсорбтив. Проведение экспериментов по исследованию динамики сорбции весьма трудоемко, дорогостояще и требует поддерживания технологического режима (расход сырья и концентрация в нем адсорбируемой примеси) на постоянном уровне в течение всего многочасового опыта, кроме того, многочисленные измерения объемов отобранных проб и их состава вносят существенную погрепгаость в величины интегральньгх характеристик. Этих недостатков можно избежать при переходе от динамического эксперимента к статическому. При исследовании статики адсорбции в десятки раз уменьщается расход сырья и адсорбента, резко сокращаются трудоемкость и число ограничений, накладываемых на эксперимент. [c.128]

    В отличие от адсорбционной хроматографии, в газо-жндкостной имеет место распределение компонентов разделяемой смеси между газообразной и жидкой фазами, причем последняя является неподвижной. Жидкая фаза наносится на твердый инертный носитель, задача которого состоит в локализации жидкости в пространстве и в таком состоянии, при котором обеспечивается наилучшая массопередача. Успех газо-жидкостной хроматографии в основном определяется выбором и правильным нанесением жидкой фазы. При этом должна бьггь обеспечена максимальная селективность жидкой фазы. [c.210]


Библиография для Массопередача в адсорбционных: [c.398]    [c.358]    [c.232]   
Смотреть страницы где упоминается термин Массопередача в адсорбционных: [c.126]    [c.71]    [c.72]    [c.73]    [c.108]    [c.99]   
Активные угли и их промышленное применение (1984) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Массопередача

Массопередача массопередачи



© 2025 chem21.info Реклама на сайте