Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление аммиака азота

    Оксид азота (И) N0 (окись азота) получают в больших количествах в производстве ННОз каталитическим окислением аммиака  [c.403]

    Газ, выходящий из реактора окисления аммиака, быстро охлаждают до температуры окружающего воздуха для конденсации из него основной части водяных паров. Газ содержит 9 мол.% окиси азота, 1 мол.% двуокиси азота и 8 мол.% кислорода. До поступления на абсорбционные колонны, где получается азотная кислота, газ окисляется до отношения N02 N0, равного 5 1. Требуется рассчитать объем реактора вытеснения, необходимый для достижения указанной цели, в предположении, что охлаждение является достаточно эффективным для поддержания постоянной температуры реакционной смеси на уровне 20°С. Расход газа на входе в реактор составляет 10 000 м /час (пр, температуре 0°С и 1 атм) и давление газа—1 атм. [c.74]


    Современные технологические схемы производства разбавленной азотной кислоты, основанные на контактном способе окисления аммиака кислородом воздуха в присутствии платинового катализатора и последующем поглощении оксидов азота водой, можно разделить на три группы [77]  [c.212]

    В общем случае, когда в исходном газе присутствует окись азота, кислород и аммиак, степень окисления аммиака до окиси азота может быть определена из равенства  [c.159]

    Конверсия аммиака проводится при 890—900 °С. При этом выход оксида азота составляет до 96%. Тепло, выделяющееся в ходе реакции, используется в котле-утилизаторе 5 для получения перегретого пара под давление.м 13-10 Па. Далее нит-розные газы поступают в окислитель 6, где оксид азота окисляется до диоксида. Температура газов после окисления повышается до 300—310 °С, что позволяет использовать их для подогрева воздуха в подогревателе 7. В холодильнике 1 с охлаждением нитрозных газов идет конденсация водяных паров (образовавшихся при окислении аммиака), а также взаимодействие диоксида азота с парами с образованием азотной кислоты. На выходе из холодильника кислота отделяется от газов и поступает в абсорбционную колонну 2 на тарелку с кислотой той же концентрации, а газы идут в нижнюю часть колонны для абсорбции смесью воды и азотной кислоты. Продукционная кислота, полученная в колонне, содержит до 1 % растворенных оксидов азота, которые удаляются при продувке в отдувочной колонне 3. [c.212]

    Активность катализатора определяет собой степень ускорения данной реакции по сравнению с протеканием ее без катализатора при тех же условиях. Так, например, скорость окисления сернистого газа на платиновом катализаторе при / = 500—600° С увеличивается в сотни тысяч раз ( 10 раз) по сравнению со с1<оростью этого процесса, протекающего без катализатора, на ванадиевых — несколько меньше, а на железных—еще меньше реа.кция окисления аммиака до окиси азота без катализаторов ничтожно мала, в присутствии же платино-радиевых катализаторов она ускоряется в миллионы раз и заканчивается в десятитысячные доли секунды если реакция синтеза аммиака при 450° С и давлении 300—500 атм достигает равновесного состояния без катализатора через несколько часов, то в присутствии одних катализаторов при тех же условиях равновесие наступает через несколько минут, в присутствии других — через несколько секунд, в присутствии третьих процесс синтеза заканчивается и доли секунды. [c.230]


    Проведение взрывоопасного процесса окисления аммиака кислородом или воздухом до окислов азота при получении гидро-ксиламина и хлористого нитрозила. [c.91]

    Окислы азота получают окислением аммиака в присутствии платины. [c.142]

    Принципиальная технологическая схема агрегата УКЛ-7 (7,3-10 Па) приведена на рис. УП1-4. Атмосферный воздух очищается на суконном фильтре воздухозаборника 15, затем очищенный воздух сжимается в первой ступени турбокомпрессора 14 до давления 3,5-10 Па. Воздух при этом нагревается до 175 °С. Затем он охлаждается водой в промежуточном холодильнике 12 до 40—45 °С и сжимается во второй ступени турбокомпрессора 14 до давления 7,3-10 Па. Далее сжатый воздух идет на окисление аммиака, в качестве добавки в процессе кислой абсорбции, а также на отдувку оксидов азота от азотной кислоты и на сжигание природного газа в топках 16. [c.212]

    Если сжигать смеси низших углеводородов, например природный газ, с воздухом в присутств-ии аммиака, над катализаторами, применяемыми для окисления аммиака в окислы азота (платина или металлы платиновой группы), то образуется синильная кислота по следующему суммарному уравнению  [c.508]

    П. Какой катализатор используется при окислении аммиака до оксида азота (II)  [c.168]

    Высота слоя катализатора в емкостном контактном аппарате определяется кинетическими параметрами процесса с учетом гидродинамики потока. Наиболее тонкий слой становится двумерным и может заменяться сеткой из каталитического материала. Это имеет место при проведении весьма быстрых реакций во внешнедиффузионной области, например при окислении аммиака до окислов азота. [c.265]

    Усовершенствование метода. Изложенный способ получения капролактама имеет два главных недостатка дорогостоящий синтез сульфата гидроксиламина и расходование большого количества серной кислоты и аммиака с получением 4—5 т малоценного отхода сульфата аммония на 1 т капролактама. Крупным усовершенствованием явилась разработка нового способа получения гидроксиламинсульфата — каталитическим гидрированием оксидов азота (нитрозные газы). Их производят окислением аммиака, а гидрирование ведут в разбавленной серной кислоте в присутствии платины, осажденной на активированном угле  [c.568]

Рис. 1-52. Реактор (конвертор) для окисления аммиака в окись азота. Рис. 1-52. Реактор (конвертор) для <a href="/info/6630">окисления аммиака</a> в окись азота.
    Окисление аммиака до элементарного азота, глубокое окисление метанола до СО2, наличие побочных реакций при окислении нафталина и в процессе окислительного аммонолиза пропилена предъявляют довольно жесткие требования к технологическому режиму процесса. Все перечисленные факторы и обусловливают температурный режим окислительных процессов. Очевидно, для экзотермических процессов, протекающих вблизи термодинамического равновесия (окисление SOg, H l и др.), надо добиваться понижения температуры с увеличением степени превращения. Для процессов во внешнедиффузионной области (нанример, окисление СНдОН) желателен режим, близкий к изотермическому, особенно для избирательного катализа, при котором отклонение температуры на 10—20 град от заданной (нанример, нри синтезе высших спиртов) приводит к резкому возрастанию скорости побочных реакций или к снижению скорости основной. Очень часто термостойкость продуктов реакции диктует условия температурного режима. [c.138]

    Катализатор из платинового сплава в настоящее время считается наилучшим для избирательного окисления аммиака до окиси азота. В промышленности на нем удается окислять до 99% аммиака до окиси азота. Основным недостатком платинового катализатора является его высокая стоимость и неизбежные потери платины. Поэтому в последнее время разрабатывается двухступенчатый метод окисления аммиака. На первой ступени используется платиновый катализатор, на второй — окисный. [c.155]

    Предложено много окисных катализаторов для окисления аммиака до окиси азота. Большинство этих катализаторов обладает недостаточной каталитической устойчивостью. Наиболее активными и каталитически устойчивыми оказались активированные окиси железа и кобальта, на которых в изотермических условия можно получать степень окисления аммиака до окиси азота 0,97—0,98. Однако и на этих катализаторах в неподвижном слое наблюдается закономерная неизотермичность по высоте и диаметру реактора. Скорость процесса снижается вследствие внутридиффузионного торможения. Резкие перепады температур в применяемых крупных зернах (но радиусу их) приводят к быстрому изменению структуры зерен и падению активности катализатора. [c.155]


    На рис. 79 отображено влияние линейной скорости газа на степень окисления аммиака до окиси азота на железохромовом катализаторе при наличии проскока аммиака через слой. Как видно из [c.158]

    Многоступенчат ый процесс окисления аммиака может быть использован с целью получения окиси азота повышенной концентрации. В этом случае, прореагировавшая в первом по ходу газа слое катализатора, смесь газов, содержащая 5—8 объемн. % окиси азота, смешивается с аммиаком и поступает во второй слой. Прореагировавшая во втором слое смесь газов может быть снова смешана с аммиаком и направлена в следующий слой и т. д. [c.159]

    По стехиометрическому уравиению для окисления аммиака необходимо иметь в составе воздушно-аммиачной смеси 1,25 моль О2 на 1 моль NH3. Для увеличения выхода оксида азота и повышения скорости реакции окисления аммиака практически берут соотношение 02.NH3 = 1,7ч-2,0. Это отвечает содержанию аммиака в воздушно-аммиачной смеси примерно 10—12%. Кислород необходим не только для окисления аммиака, но и для дальнейшего окисления оксида азота до диоксида. Зависимость выхода оксида азота от соотношения концентраций кислорода и аммиака в исходной аммиачно-воздушной смеси показана на рис. 35 для платинового катализатора под атмосферным давлением. [c.102]

    Так как температура в слое катализатора зависит от содержания аммиака в исходном газе и от температуры подогрева исходной смеси, в работе [481 изучено влияние температуры исходного газа на входе в кипящий слой железохромового катализатора на степень окисления аммиака. Как видно из рис. 80, повышение температуры подогрева исходного газа сначала приводит к увеличению степени окисления аммиака до максимального значения при дальнейшем повышении температуры степень окисления снижается. Увеличение степени окисления аммиака при повышении температуры исходного газа перед кипящим слоем катализатора происходит за счет снижения входного эффекта (см. главу П), который заключается в том, что температура исходного газа при проходе его через газораспределительную решетку изменяется от 4х (До решетки) до в основной части кипящего слоя. В то же время нагревание исходного газа выше 300° С приводит не только к уменьшению величины входного эффекта, но и к термическому окислению аммиака до азота на стенках реактора и при прохождении через газораспределительную решетку. Конкуренция этих двух факторов приводит к максимуму на кривой (рис. 80). Увеличение концентрации аммиака в исходном газе приводит к смещению этого максимума в сторону низких температур подогрева. Смещение максимума в сторону низких температур (на рис. 80 показано пунктирной линией) объясняется тем, что с увеличением концентрации аммиака в исходном газе тепловой эффект процесса (считая на единицу объема аммиачно-воздушной смеси) возрастает, количество выделившегося тепла в зоне входного эффекта увеличивается, величина же входного эффекта уменьшается, что приводит к увеличению степени окисления аммиака до окиси азота. [c.159]

    Изменение степени окисления аммиака в зависимости от температуры подогрева нитрозных газов приведено на рис. 81. В этом случае содержание окиси азота в нитрозном газе было 4,5 объемн. %, а аммиака — 5 объемн. %. Как видно из рис. 81, при повышении температуры подогрева нитрозных газов степень окисления аммиака возрастает. Увеличение степени окисления аммиака при повышении температуры нитрозных газов перед слоем катализатора также обязано снижению величины зоны входного температурного эффекта. [c.160]

    Контактное окисление аммиака до оксида азота  [c.100]

    Трифторид азота NF3 в обычных условиях — бесцветный газ (т. кип. —129°С, т. пл. —209°С). Получают его при окислении аммиака фтором. Молекула NF3 имеет пирамидальное строение ( nf = = 0,137 нм, - FNF = 102°). В отличие от H3N электрический момент диполя NF3 (с, 84) очень мал (всего 0,07 Кл м). Электроно-доно1)ных свойств NF3 практически не проявляет. По отношению к нагр( ванию и различным химическим воздействиям трифторид весьма усто11чив, вступает в реакции только выше 100°С. В воде он практически нерастворим, гидролиз начинает протекать лишь при пропускании элек рической искры через смесь его с водяным паром. [c.353]

    Реакции (а) — (г) практически необратимы и поэтому направление процесса определяется соотношением скоростей реакций. В отсутствие катализаторов прн высоких температурах (выше 900°С) окисление аммиака идет в основном с образованием азота по реакции (в). Для производства азотной кислоты необходимо наиболее полное окисление аммиака по реакции (а), поэтому применяют катализаторы, избирательно ускоряющие ее. На практике степень окисления аммиака кислородом воздуха до оксида азота, т. е. селективность процесса, достигает 98%. В качестве избирательных катализаторов, ускоряющих процесс окисления аммиака до оксида азота, могут служить платина и ее сплавы с металлами платиновой группы, оксиды железа, марганца, кобальта и др. До [c.100]

    Однако увеличение потерь катализатора и расхода энергии с повышением давления является серьезным тормозом в развитии этого способа. В связи с этим в последнее время получают распространение схемы, в которых контактное окисление аммиака проводят при более низком давлении (до 4-10 Па), чем окисление оксида азота (до 12-10 Па). Для современных схем характерны большая мощность одной технологической нитки (380— 400 тыс. т/год) и возможно более полное использование энергии отходящих газов и низкопотенциальной теплоты в технологических целях для создания автономных энерготехнологических схем. Комбинированная схема производства разбавленной азотной кислоты под давлением 0,4—1 МПа приведена на рис. 38. Сжатый центробежным компрессором и нагретый воздух (4,2-10 Па, 200°С) поступает в рубашку совмещенного с паровым котлом контактного аппарата. Далее воздух поступает в смеситель, где смешивается с очищенным и разогретым аммиаком. Пройдя тонкую очистку в фильтре, встроенном в контактный аппарат, воздушно-аммиачная смесь поступает на двухступенчатый контакт, состоящий из трех платиновых сеток и слоя неплатинового ката- [c.107]

    Решение. Окисление аммиака является первой стадией получения азотной кислоты из аммиака. По этому методу аммиак окисляется кислородом воздуха в присутствии платинового катализатора при 800—900 °С до оксидов азота, после чего диоксид азота поглощается водой с образованием азотной кислоты. Схематично процесс можно изобразить уравнениями  [c.11]

    При сжигании смесей низкомолекулярных углеводородов, например природного газа, с воздухом в ирисутствии аммиака, над онределонным катализатором, например применяемым для окисления аммиака в окислы азота, образуется синильная кислота согласно следующему уравпеиию  [c.147]

    Хотя для окисления парафиновых углеводородов, кроме воздуха, была использована также хромовая кислота, единственной альтернативой практически является азотная кислота или окислы азота. Этими соединениями фирма Рурхеми А. Г. окисляла твердый синтетический парафин в высшие кислоты. Если в смесь твердого парафина (число-атомов углерода в среднем 40, температура плавления 90—95°) и нит-розилсерной кислоты пропускать при 115—125° и хорошем перемешивании нитрозные газы, полученные окислением аммиака, то через 8— [c.476]

    Процесс фирмы Е. I. du Pont de Nemours. В данном случае пропилен вступает в реакцию с окисью азота, которую получают в результате частичного окисления аммиака воздухом. Получаемая при этом смесь, состоящая из 15% окиси азота и 83—84% азота, употребляется для реакции с пропиленом. В результате образуется акрилонитрил. Процесс можно рассматривать как двухступенчатый вариант метода аммонокисления. [c.121]

    Производство разбавленной азотной кпслок.г состоит из трех стадий каталитическое окисление аммиака в ОКСИД азота (И) окисление оксида азота (П) в оксид азота (IV) абсорбция оксида азота (IV) водой с образованием кислоты. [c.159]

    Задача 10.6. Составить материальный баланс (в килограммах) окисления аммиака (на 1 т N1 3), предполагая, что окисление полное. Следует отметить, что 2% ННз окисляется только до азота. Аммиачпо-воздушная смесь с объемной долей аммиака 0,11, [c.162]

    Реакторы для производства синильной кислоты. Синильную кислоту получают путем пропускания смеси метана, воздуха и аммиака через катализатор в форме платиновых сит при температуре 1020° С (способ Андрусова). Недавно было установлено, что механизм этой реакции идентичен механизму реакции окисления аммиака в окись азота. [c.309]

    Поэтому мы здесь не будем останавливаться на всем многообразии расчетов производственных процессов в химической промышленности. Рассмотрим лишь типовые и наиболее распространенные в промышленной практике материальные и тепловые расчеты производственных процессов, как то а) термическую обработку некоторых видов органического и минерального сырья (газификация и коксование угля, газификация торфа, обжиг железного колчедана, электротермическое получение карбида кальция, ферросилиция и окиси азота), б) каталитические процессы синтеза и окисления аммиака, конверсии окиси углерода и окисления сернистого газа, в) электрохимические производства, г) один из наиболее слолсных физико-химических методов промышленной переработки сырья —сжижение и ректификацию газовых смесей в( частности воздуха). Приведенные расчеты производственных процессов охватывают собой значительную и наиболее сложную и важную часть процессов химической технологии. Освоение этих расчетов дает возможность технологу методически правильно подойти к расчету материального и теплового баланса почти любого химического производства. [c.265]

    Колонна представляла собой вертикальный цилиндрический аппарат с насадкой из колец Рашига. В связи с остановкой циркуляционного насоса прекратилась подача раствора карбоната аммония в колонну. Этот факт оставался йезамеченным обслуживающим персоналом в течение 2 ч, т. е. до тех пор, пока из колонны не стали обильно выходить окислы азота. После этого включили аварийную подачу аммиачной воды в колонну через байпас и прекратили подачу газообразного аммиака в контактные аппараты окисления аммиака. Поскольку в течение 2 ч в верхнюю часть колонны не поступал раствор карбоната аммония, оставшийся на кольцах насадки нитрит аммония начал разлагаться. Разложение началось в нижней части колонны примерно через час после оста- [c.93]

    ЗОг), при синтезе аммиака (конвертор Фаузера — Монтекатини— рис. 1Х-55, в котором вода под давлением 300 ат движется в замкнутом цикле и отдает теплоту воде, кипящей в котле), при каталитическом окислении аммиака до окиси азота (рис. 1Х-56), при сжигании сероводорода по методу Клауса и т. д. Такой способ приводит не только к рациональному использованию тепловой энергии, но в некоторых случаях и к наиболее выгодному для повышения выхода реакции распределению температур (синтез МНз, сгорание [c.402]

    Промышленное получение азотной кислоты. Современные промышленные способы получения азотной кислоты основаны на каталитическом окнсле]]ии аммиака кислородом воздуха. При описании свойств аммиака (см. 137) было указано, что он горит Б кислороде, причем продуктами реакции являются вода и свободный азот. Но в присутствии катализаторов окисление аммиака кислородом может протекать иначе. Если пропускать смесь аммиака с воздухом над катализатором, то при 750 °С и определенном составе смеси происходит почти полное превращение N113 в N0  [c.415]

    Азот получают из воздуха путем низкотемпературной ректификации попутно получающийся кислород используют в производстве ацетилена для окисления аммиака в слабую азотнук> кислоту и для других технических целей. [c.334]

    Каталитические процессы широко распространены в природе и эффективно используются в различных отраслях промышленности, науки и техники. Так, в химической промышленности посредством гетерогенных каталитических процессов получают десятки миллионов тонн аммиака из азота воздуха и водорода, азотной кислоты путем окисления аммиака, триоксида серы окислением ЗОг воздухом и др. В нефтехимической промышленности более половины добываемой нефти посредством каталитических процессов крекинга, рифор-минга и т. п. перерабатывается в более ценные продукты — высококачественное моторное топливо, различного вида мономеры для получения полимерных волокон и пластмасс. К многотонкажным каталитическим процессам относятся процессы получения водорода путем конверсии диоксида углерода и метана, синтез спиртов, формальдегида и многие другие. Можно утверждать, что для любой реакции может быть создан катализатор. Теория катализа должна раскрывать закономерности элементарного каталитического акта, зависимость каталитической активности от строения и свойств катализатора и реагирующих молекул и тем самым создать необходимые предпосылки для предсказания строения и свойств катализатора для конкретной реакции, указать пути его получения. К описанию скорости каталитического процесса можно подходить, используя основные положения формальной кинетики и метод переходного состояния. При этом целесообразно сперва выделить общие закономерности катализа, присущие всем видам каталитических процессов, а затем рз смотреть некоторые специфические особенности отдельных групп каталитических процессов. [c.617]

    В некоторых производствах образование взрывоопасных концентраций вообще исключается. Однако в боль-шлнстве химических производств возможность образования взрывоопасных концентраций определяется е мим характером производства. В ряде производств крупно-тоннажного синтеза заданный продукт получают окис-лением веществ кислородом воздуха. Например, формальдегид получают окислением метанола нитрил акриловой кислоты — окислением пропилена в присутствии аммиака окись азота — окислением аммиака. В таких случаях неизбежно образование смесей взрывчатых веществ с кислородом, поэтому технологический процесс разрабатывается так, чтобы концентрации этих смесей были ниже нижнего или выше верхнего концентрационных пределов взрываемости. [c.143]

    Можно выделить процессы, протекающие в области внешне диффузии. Эти и некоторые другие быстрые процессы предпочтительнее проводить в реакторах с правильно расположенной насадкой хорошо обтекаемых тел небольших размеров. Примерами могут служить сетки в аппаратах окисления аммиака до окиси азота и метаг 32 499 [c.499]

    Термическое окисление аммиака кислородом (без применения специальных катализаторов) протекает с измеримой скоростью только при температурах выше 300° С. Температура начала окисления аммиака в основном зависит от материала стенок реактора, которые, вероятно, оказывают каталитическое действие. При термическом окислении аммиака образуется вода и азот со Следами окиси азота. В присутствии катализаторов это окисление можно регулировать соответствующим подбором температуры и объемной скорости таким образом, чтобы получать либо закись, либо окись азота. Так при окислении аммиака на окисном марганцевом катализаторе нри температурах до 250° С образуется только азот и закись азота NjO. Дальнейшее повышение темнерату ры приводит к образованию окиси азота N0. На смешанном катализаторе (45% СиО -Ь 45% MnOj -h -Ь 10% СаСОз) ДО 350° С также образуется только азот и закись азота. При повышении температуры появляется окись азота, а доля азота и закиси азота снижается. На других катализаторах и в области более высоких температур ( 600° С) закись азота не образуется, но получаются одновременно окись азота и азот в различных соотношениях. [c.155]


Смотреть страницы где упоминается термин Окисление аммиака азота: [c.252]    [c.379]    [c.212]    [c.212]    [c.154]    [c.156]    [c.159]    [c.101]    [c.104]   
Производство серной кислоты (1968) -- [ c.142 ]




ПОИСК





Смотрите так же термины и статьи:

Азот аммиак

Аммиак окисление

Окисление окисление аммиака



© 2025 chem21.info Реклама на сайте