Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каучук степень полимеризации

    Реакции полимеризации и поликонденсации. Общие понятия химии высокомолекулярных соединений (ВМС) мономер, полимер, элементарное звено, степень полимеризации (поликонденсации). Примеры различных типов ВМС полиэтилен, полипропилен, полистирол, поливинилхлорид, политетрафторэтилен, каучуки, фенол-формальдегидные смолы, полипептиды, искусственные и синтетические волокна. [c.505]


    При сшивании линейных полимеров химическими поперечными связями образуется пространственная сетка из химических узлов, в окрестности которых малые отрезки сшитых макромолекул теряют молекулярную подвижность. Поэтому Гст будет зависеть от числа поперечных связей в единице объема полимера. Например, натуральный каучук, сшитый сульфидными связями, при увеличении содержания серы, вводимой в резиновую смесь, от О до 30 % (масс.) характеризуется изменением Т от 203 до 353 К (эбонит). В этом интервале температур по мере увеличения степени поперечного сшивания материал может перейти из высокоэластического состояния в стеклообразное. Происходит это тогда, когда цепи между химическими узлами становятся столь короткими, что полностью теряют гибкость, т. е. степень полимеризации участка между узлами сетки имеет порядок одного сегмента. [c.201]

    Молекулы каучука состоят из многократно повторяющихся звеньев. Число отдельных звеньев, образующих молекулу, называется степенью полимеризации и определяется по формуле  [c.55]

    Каучуки состоят из молекул с различной длиной цепи и степенью полимеризации, т. е. представляют собой смесь полимергомологов. Натуральный каучук, например, представляет смесь полимергомологов изопрена. Поэтому, когда говорят о молекулярном весе и о степени полимеризации, то имеют в виду средний молекулярный вес и среднюю степень полимеризации. [c.55]

    В сыром каучуке п равно в среднем 2Г)00, а в техническом каучуке степень полимеризации приблизите гьпо 400. [c.53]

    Лучшие технологические свойства имеют мягкие каучуки и каучуки низкотемпературной полимеризации. Мягкие каучуки подвергают пластикации в значительно меньшей степени и не во всех случаях. [c.361]

    Качество полистирола и ударопрочных сополимеров стирола зависит от степени чистоты мономера. Получаемый на действующих заводах стирол со степенью чистоты 97—98,5%, пригодный для производства дивинилстирольного каучука эмульсионной полимеризацией, не удовлетворяет высоким требованиям промышленности полистирольных пластиков к чистоте мономера (бОлее 99,6%). [c.348]

    Для эмульсионной полимеризации применяют алкилсульфонаты щелочных металлов (эмульгатор), персульфат калия или окислительно-восстановительную систему железо-трилон-ронга-лит (инициатор). Полимеризацию и выделение полимера проводят, как при получении эмульсионных каучуков. Степень конверсии мономеров доводят до 95—97%, так как свойства каучуков не зависят от степени конверсии. [c.297]


    Производство современных стереорегулярных каучуков растворной полимеризацией потребовало углеводородного сырья высокой степени чистоты. Для промышленного синтеза бутадиена, изопрена и изобутилена каталитическим дегидрированием требуются соответственно бутановая, изопентановая и изобутановая фракции с содержанием основного продукта не менее 98 % (масс.). Для улучшения качества продуктов и условий эксплуатации оборудования углеводороды предварительно подвергают специальной подготовке, состояш,ей в очистке газа от механических примесей, осушке от влаги, удалении сероводорода и двуокиси углерода. [c.29]

    Два других слоя состоят из каучукового вещества, отличающегося степенью полимеризации. Эластичный каучук обладает более высокой степенью полимеризации по сравнению с вязкотекучим [c.24]

    Каучук СКВ желтого цвета с зеленым или коричневым оттенком по степени полимеризации и пластичности неоднороден, легко окисляется, содержит примеси летучих веществ, металлического натрия и его соединений. [c.35]

    Пирофосфат гераниола способен присоединять следующую молекулу 1.7 и этот процесс может повторяться многократно. Степень полимеризации изопреновых единиц регулируется ферментами. Образующиеся таким образом полимеры с большим числом звеньев входят в состав млечного сока или латекса, продуцируемого многими растениями. Латекс дерева гевеи используется как сырье для получения натурального каучука. [c.16]

    На рафинировочных вальцах каучук обрабатывается в зазоре между вращающимися валками и выходит из зазора в виде тонкого листа. Для удаления из общей массы каучука мелких жестких частиц каучука с высокой степенью полимеризации, называемых хрящами, рафинировочные вальцы имеют валки слегка [c.35]

    Аналогичные исследования были проведены для ряда бутадиеновых, бутадиен-стирольных и других каучуков, полученных в различных условиях. Для большей части исследованных полимеров наблюдается обычный характер зависимости прочности вулканизатов от молекулярной массы. Зависимость разрушающего напряжения от молекулярной массы для бутадиен-стирольных каучуков и для бутадиеновых каучуков, полученных полимеризацией в жидкой фазе при различных температурах, выражается кривыми, характерными для полимеров данного типа. Макромолекулы бутадиеновых каучуков, полученных при температурах 283—343 К, практически не различаются степенью разветвленности. Вероятно, поэтому для [c.174]

    Изменение физических свойств каучука и колебание физических констант, характеризующих эти свойства, являются следствием неоднородности каучуков по степени полимеризации, легкой подверженности окислению и различным структурным изменениям, а также способности некоторых каучуков кристаллизоваться. Таким образом, физические свойства каучука зависят от условий его получения и предшествующего хранения поэтому физические константы, приводимые разными авторами, часто значительно отличаются друг от друга. [c.88]

    Хорошими технологическими свойствами обладают мягкие каучуки, которые в меньшей степени подвергаются пластикации, а также каучуки низкотемпературной полимеризации. Отечественная промышленность С К выпускает следующие жесткие и мягкие каучуки  [c.259]

    Различают каучук натуральный (природный) и синтетический. Натуральный каучук имеет формулу (С5Нв)п, где п — степень полимеризации, достигающая 2—4 тысяч. Изучение его строения показало, что он является полимером изопрена  [c.315]

    Задача 33-3. Определите среднюю степень полимеризации в образце природного каучука, средняя молярная масса которого равна 200 ООО г/моль. Изобразите структуру мономерного звена. [c.415]

    Хотя деструкция часто является нежелательной побочной реакцией, ее нередко проводят сознательно для частичного снижения степени полимеризации, чем облегчаются переработка и практическое использование полимеров. Например, в производстве лаков на основе эфиров целлюлозы, когда непосредственное растворение этих веществ дает слишком вязкие растворы, неудобные для нанесения покрытий, исходную целлюлозу подвергают предварительной деструкции. Частичная деструкция (пластикация) натурального каучука на вальцах облегчает его переработку в резиновые изделия. Реакция деструкции используется для установления химического строения полимеров, для получения ценных низкомолекулярных веществ нз природных полимеров (гидролитическая деструкция целлюлозы или крахмала в глюкозу, белков в аминокислоты), при синтезе привитых и блок-сополимеров и т. д. Изучение деструкции дает возможность установить, в каких условиях могут перерабатываться и эксплуатироваться полимеры оно позволяет разработать эффективные методы защиты полимеров от различные воздействий, найти способы получения полимеров, которые мало чувствительны к деструкции, и т. д. Знание механизма и закономерностей деструкции дает возможность усилить или ослабить ее по желанию в зависимости от поставленной задачи. [c.621]


    Каучуки, полученные при более высокой температуре полимеризации, обладают значительно более низкой прочностью по сравнению с полимером этого типа, полученным при низких температурах. Для разветвленных каучуков иногда не обнаруживают заметной зависимости Ор от молекулярной массы в области значений молекулярной массы от 90 тыс. до 500 тыс. [477, с. 395]. При данном содержании поперечных связей чем более разветвлен полимер, тем больше обнаруживается дефектов структуры, обусловленных наличием значительного числа свободных концов молекулярных цепей, не ориентирующихся при растяжении. С увеличением степени полимеризации длина основной цепи макромолекул разветвленных полимеров растет сравнительно медленно, и повышение прочности вследствие большей способности длинных цепей к ориентации может не компенсировать ослабления сетки вулканизатов, обусловленного возникно-вением новых дефектов в ее структуре. [c.175]

    Особенно наглядно проявляется влияние степени полимеризации. Полимер обладает измеримой механической прочностью только тогда, когда достигнуто некоторое минимальное значение степени полимеризации. С увеличением степени полимеризации (или молекулярной массы) прочность сначала увеличивается быстро, затем медленнее и наконец мало изменяется с ростом размеров макромолекул. Значения степени полимеризации, соответствующие каждому участку кривой, выражающей эту зависимость, оказываются тем меньше, чем сильнее межмолекулярное взаимодействие. Для полимеров, обычно применяющихся на практике, влияние межмолекулярной массы на прочность не является существенным, так как значения молекулярных масс уже достаточно велики. В интервале молекулярных масс практически применяемых каучуков соблюдается линейная зависимость между значениями обратной молекулярной массы и разрушающего напряжения. [c.220]

    Каучуки поступают на заводы резиновой промышленности в сухом виде—безводные твердые или жидкие каучуки, либо в виде водных эмульсий—латексов, обычно содержащих около 30% сухого каучукового вещества. К жидким каучукам относятся олигомеры (стр. 376), имеющие тот же химический состав, что и твердые каучуки, но более низкую степень полимеризации. Олигомеры и другие низкомолекулярные каучуковые полимеры занимают весьма незначительную долю в потреблении каучуков. Наи- [c.479]

    Различия свойств продуктов полимеризации связывались Штаудингером со степенью полимеризации и концевыми группами в цепях молекул, которые определяют реакционную способность нитевидных молекул. Образование продуктов с различными степенями полимеризации можно объяснить тем, что завершение процесса наступает раньше при применении катализаторов или нагревания, чем при полимеризации на холоду [74]. С другой стороны, зависимость свойств продуктов полимеризации от степени полимеризации показана Катцем [41] и Во. Оствальдом [71] при объяснении причин, почему у латекса и сырого каучука внутренняя часть частиц менее твердая, чем наружная. Различия они приписали разным степеням полимеризации углеводородов. Чем выше степень полимеризации вещества, тем больше вещество твердеет и тем слабее проявляются свойства, характеризующие жидкое состояние. Наоборот, чем меньше вещество полимеризовано, тем слабее проявляются свойства, характерные для твердого состояния, и тем сильнее выражены свойства, характерные для жидкостей. [c.653]

    Кирхгофф [42] указывает, что степень полимеризации определяет также количество полимера. Он исследовал циклизацию углеводородов каучука в четыреххлористом углероде в присутствии хлористого алюминия, активированного хлористым Водородом, количество полученного полимера рассматривалось им как функция концентрации каучука и степени его полимеризации. [c.653]

    Из изложенного мы можем заключить, что кривая, дающая зависимость температуры плавления кристаллов гомологического ряда от степени полимеризации, должна обладать максимумом. Последнее обстоятельство позволяет ожидать, что ряд высокополимерных веществ должен уже при нормальной температуре обладать или жидкой, или жидкокристаллической структурой. Действительно, хорошо известно, что ряд исследователей обнаружили отсутствие кристаллической структуры у многих высокополимеров (каучук [6], целлюлоза [7]). Часто предполагают, что причиной отсутствия кристаллического состояния является медленная кинетика упорядочения длинных цепей вследствие их размеров и перепутанности. Следовательно, [c.221]

    В сыром каучуке п равно в среднем 2500, и, следовательно, молекулярная формула его (С5Н8)2зоо очищенный каучук уже имеет формулу, близкую (С5Н8)юоо. в техническом каучуке степень полимеризации уменьшается еще более, приблизительно до 400. [c.87]

    По блочному методу мономер в жидкой или газовой фазе вместе с катализатором или инициатЬром (в отсутствие растворителей) подается в форму (сосуд) и при строго регулируемой температуре основная масса мономера преврашается в полимер в виде блока, трубок, листов, стержней и гранул. Масса полимера затем подвергается механической обработке. Блочную полимеризацию можно проводить периодически и непрерывным методом. Если в первой стадии процесса при образовании активных центров необходимо мономер подогревать, то затем, когда идет рост цепи, протекающий с выделением теплоты, реакционную массу при надобности охлаждают. Так как полимер обладает малой теплопроводностью, в ходе процесса наблюдается неодинаковый отвод теплоты из различных точек аппарата, особенно из центра, что приводит к неравномерной полимеризации, т. е. к получению продуктов различной степени полимеризации. По этому методу получают полистирол, полимеры метакриловой кислоты, бутадиеновый каучук и другие полимеры из мономеров, почти не содержащих примесей. [c.195]

    Поэтому для каучука принимают суммарную формулу (СзНз)п. пренебрегая при этом концевыми звеньями макромолекулы, которые отличаются по химическому составу от средних звеньев. Элементарным звеном целлюлозы является ангидрид глюкозы, поэтому суммарную формулу целлюлозы с теми же допущениями изображают как (СвНюОз) . Индекс п в этих формулах, обозначающий число элементарных звеньев, входящих в состав макромолекулы, характеризует степень полимеризации Р высокомолекулярных соединений. [c.21]

    Составить уравнение дегидрирования бутана с образованием бутадиена и вычислить объем бутана при н. у.), необходимого для производства 1000 кг бутадие-иоБого каучука. Указать степень полимеризации бутадиена, если средняя молекулярная масса образца бутадиенового каучука 9,72- Ю".  [c.274]

    Впервые факт возрастания относительной степени разветвленности при увеличении М для бутадиен-стирольного каучука был установлен в серии работ Блэчфорда и Робертсона [30]. Аналогичное явление обнаружено по данным седиментационных и вискозиметрических измерений для бутадиен-нитрильных каучуков [22]. Например, в случае СКН-26 т1М = 0 при Л1 = 2,5-10 и т/Л1 = 3,5-10 при Л1 = 12,7-105, Такая же тенденция отмечена и для полихлоропрена. Совокупность этих фактов дает основание считать, что рост абсолютной т и относительной т/Л1 степени разветвленности цепей с ростом молекулярной массы является общей закономерностью для каучуков эмульсионной полимеризации. [c.65]

    Синтез полимеров с использованием металлического лития известен давно [36, с. 250—257], однако трудности в оформлении непрерывного процесса с использованием дисперсии лития и большие расходы металла явились препятствием для его промышленной реализации. Наряду с синтезом статистического бутадиен-стирольного каучука с применением алкиллития в СССР разработан непрерывный способ [37] получения полимеров и сополимеров в растворе с применением металлического лития в виде крупных гранул в сочетании с регулятором степени полимеризации (литий-алюминийорганические соединения). [c.275]

    Заметим, что поскольку растворимость связана с движением в растворе не всей макромолекулы, а ее сегментов, то она не должна зависеть от молекулярного веса полимера. Однако он весьма значительно сказывается на скорости растворения. Чем меньше молекулярный вес, тем больше растворение высокополи-мера похоже на растворение низкомолекулярного вещества. Известно, например, что деструктированный каучук растворяется без набухания. Наоборот, с увеличением молекулярного веса растворение полимеров замедляется. При весьма малых скоростях растворения, что наблюдается, когда молекулы полимера очень большие, может даже создаться неправильное представление о нерастворимости вещества. Из сказанного также понятно, что если молекулы полимера жесткие, т. е. если длина сегмента практически равна длине всей цепи, растворимость всегда должна зависеть от степени полимеризации. [c.443]

    НОМ полнмерной молекулы. Число звеньев называется степенью полимеризации (п). П. с молекулярной массой М = 10 —10 называются высокополи-мерами, а П. с низкой молекулярной массой — олигомерами. П., цепи которых построены из одинаковых звеньев, называются гомополимерами, а из разнородных — сополимерами. П. бывают линейными, разветвленными и пространственными. Если основная цепь состоит из двух мономеров, а боковые ответвления — из других, то такие разветвленные П. называются привитыми сополимерами. Наряду с карбоцепными П., содержащими в основной цепи только атомы углерода, встречаются сополимеры, основные цепи которых, кроме углерода, содержат атомы кислорода, азота, серы и др. Неорганические П. не содержат атомов углерода. Природные П.— белки, целлюлоза, крахмал, натуральный каучук и др. П.—пластические массы, синтетические каучули, волокна, лаки, пленки, клеи и др. П. широко используют для создания различных конструкционных полимерных материалов, волокон, резин, пластмасс, стеклопластиков, покрытий и др. Пластмассы применяют как заменители цветных металлов в электропромышленности, в машиностроении, а также в строительстве, сельском хозяйстве, химической и пищевой промышленности, в быту. [c.198]

    Создание промышленности синтетического каучука — большое достижение науки. Синтетический каучук представляет собой смесь молекул различной степени полимеризации, молеку 1ярная масса которых изменяется в широких пределах—от 10 000 до 90 000. Средняя молекулярная масса его 200 ООО. [c.316]

    К р-циям, приводящим к увеличению степени полимеризации, относятся р-ции между макромолекулами, а также р-цин получения привитых и блоксополимеров. Первые протекают непосредственно между двумя или неск. макромолекулами или при участии низкомол. реагента. К р-циям такого типа относятся вулканизация каучуков, отверждение пластмасс, образование интерполимерных комплексов (продуктов взаимод. противоположно заряженных полимеров, напр, поликислоты с полиоснованием) и т. п. В этих р-циях проявляется одна из существ, особенностей высокомол. в-в-высокая чувствительность нек-рых их св-в, в первую очередь р-римости и текучести, к воздействию относительно малых кол-в реагента, образующего хим. связи между макромолекулами. [c.105]

    Различают два способа пластикации (П.)-механический и термоокислительный (без мех. воздействия). Осн. значение в пром-сти имеет мех. способ. Подводимая к полимеру мех. энергия вызывает гл. обр. деструкцию макромолекул (см. Деструкция полимеров), скорость и глубина к-рой определяются хим. природой полимера, его мол. массой и структурой, т-рой и интенсивностью мех. воздействия и оценивается по уменьшению степени полимеризации (величины мол. массы) или по изменению пластоэластич. характеристик (см. Реология). При повышении т-ры скорость и глубина деструкции проходят через минимум. В зависимости от типа полимера существует определенный температурный диапазон, в к-ром П. полимера минимальна т-ра, соответствующая такой П, наз. т-рой макс. стабильности при сдвиге (Tj ) и составляет (°С) для натурального и изопренового (СКИ) каучуков 80-115, для 1/ с-бутадиено-вого (СКД) 20-120, стирольного (СКС) 60-120, этилен-пропиленового каучука (СКЭПТ) 85-155, полихлоропрена 100-110, полиизобутилена 110-140, поливинилхлорида 195, полистирола 180-260, полипропилена >215, полиметилметакрилата 140. [c.561]

    Получение водорастворимых полимеров из синтетических связано в основном с химическим изменением функциональных групп макромолекул при сохранении степени полимеризации исходного полимера. Такие реакции были названы Штау-дингером полимераналогичными превращениями [35]. Он показал, что такие реакции можно проводить с природными соединениями, например с целлюлозой, крахмалом, каучуком и с синтетическими — полистиролом, полиметилметакрнлатом, поливинилацетатом, а также с другими высокомолекулярными соединениями. [c.16]

    Очевидно, что при любом нз возможных типов присоединения литийалкила к диену возникает новое литийорганическое соединение, способное в свою очередь нрисоедпнять молекулу мономера, что приводит в конечном итоге к- полимерному соединению. Образующийся в результате такого процесса полимер называется живущим , поскольку в конце сго цепи находится реакционный центр, способный к дальнейшему присоединению мономера. По достижении требуемой степени полимеризации полимер убивают , например обработкой водой. Направление присоединения Диена на каждой ступени полимсризании определяется множеством факторов, умение контролировать которые имеет важное практическое значение. Так, наиример, регулярная яс-1,4-поли-мернзация изопрена приводит к полимеру с повторяющимся звеном (7), т. е. к сиитетическому каучуку, структурно подобному натуральному продукту. На практике полимеризацию этого типа осуществляют в растворах углеводородов с использованием н-бутиллития в качестве инициатора. [c.17]

    Промышленное производство синтетического каучука в капи-алистических странах началось значительно позднее. Пришлось феодолеть значительные трудности при разработке метода полу-гения бутадиена (из ацетилена) и других мономеров. После длительных опытов в 1930 г. в Германии было организовано в юлузаводском масштабе производство каучука БУНА (от на- альных слогов названий бутадиен и натрий ), выпускавшегося с различными показателями вязкости и степени полимеризации, что отразилось на названиях марок с прибавлением различных чисел (например, БУНА-85, БУНА-115 и т. д.). Химики концерна ИГ усиленно работали над повышением качества выпускавшегося каучука и ввели в процесс эмульсионную полимеризацию. В конце 1931 г. они выпустили каучук БУНА-С (продукт совместной полимеризации бутадиена с 30% стирола). В дальнейшем содержание стирола как сополимера было увеличено. Производство каучука БУНА-С получило особенно большой размах в годы второй мировой войны. [c.281]

    Полифосфонитрилхлорид [116, 117] (полидихлорфосфазен), который часто называется неорганическим каучуком, отличается высокой эластичностью, термостойкостью (деполимеризация начинается выше 350°С), устойчивостью к многим растворителям и огнестойкостью степень полимеризации его достигает 15 000. Получа- [c.349]

    В зависимости от того, насколько интенсивно взаимодействие между звеньями соседних цепных молекул или соседними звеньями одной цепи, макромолекулы будут или легко изменять свою форму или деформироваться только под воздействием больших внешних сил. В первом случае полимер будет эластичным. Такие полимеры, как, например, каучуки (полиизопрен, полихлоро-прен, полинзобутилен, полиуретановые и полисилоксановые каучуки), проявляющие при нормальных условиях высокую эластичность, объединяются общим названием эластомеры. Если же деформация цепных молекул при нормальных условиях затруднена, то такие полимеры находятся обычно в застеклованном или кристаллическом состоянии и проявляют высокоэластические свойства только при достаточно высоких температурах. Однако во всех случаях высокоэластические свойства проявляются лишь у полимеров с достаточно большой степенью полимеризации. [c.56]

    В связи с тем, что полимер обладает малой теплопроводностью, в ходе процесса наблюдается неодинаковый отвод тепла из различных точек аппарата, особенно из центра, что приводит к неравномерной полимеризации, т. е. к получению продуктов различной степени полимеризации. По этому методу получают полистирол, полимеры метакриловой кислоты, бутадиеновый каучук и другие. [c.543]

    Полагают, что каучук образуется соединением отдельных нитевидных молекул в трехмерные молекулы. Если соединение происходит лишь в некоторых местах, то продукты сильно набухают, как это бывает со слабо вулканизованным каучуком. У твердой резины имеется прочная связь и растворитель не может проникать в вещество, поэтому набухание прекращается [62]. Переход а-каучука в /3-каучук основан на образовании трехмерных молекул, и растворимый каучук при этом превращается в нерастворимую форму. Некоторые вещества пригодны для полимеризации и для поликонденсации, например формальдегид, оксистирол, виниловый спирт и ненасыщенные жирные кислоты. Установлены существенные различия между этими двумя видами реакций [47]. В процессах полимеризации и поликонденсации, кроме образования нитеобразных молекул различных степеней полимеризации (линейные коллоиды по Штау-дингеру), следует иметь в виду процессы, ведущие к образованию циклов и разветвленных открытых цепей или к частичному образованию сетки между отдельными нитевидными молекулами и приводящие в конечном итоге к сферическим лнакромолекулам (сфероколлоиды). [c.637]


Смотреть страницы где упоминается термин Каучук степень полимеризации: [c.75]    [c.96]    [c.69]    [c.423]    [c.369]    [c.249]   
Химия искусственных смол (1951) -- [ c.15 ]




ПОИСК





Смотрите так же термины и статьи:

Каучук полимеризация

Полимеризация степень полимеризации

Степень полимеризации



© 2024 chem21.info Реклама на сайте