Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ван-дер-Ваальса взаимодействия в кристалле

    Кристаллы низкомолекулярных веществ, молекулы которых образованы при участии ковалентных связей, например кристаллы нафталина, углекислоты (сухой лед), серы, несмотря на асимметрию молекул, тоже построены по принципу наиболее плотной упаковки. Такие кристаллы называют молекулярными, так как в них молекулы сохраняют свою индивидуальность. Межмолекулярное взаимодействие определяется слабыми силами Ван-дер-Ваальса, поэтому кристаллы хрупки, непрочны, плавятся при низкой температуре, имеют высокое давление паров. [c.39]


    Рассмотрим агрегацию крупных частиц с учетом фазовых переходов (роста кристаллов). Пусть существуют силы отталкивания в системе и расстояние к, при сближении, на котором начинают существенно действовать силы отталкивания, пусть система находится в агрегативно устойчивом состоянии. В случае кристаллизации частицы растут и под действием сил роста преодолевают этот порог /г., расстояние между частицами уменьшается на более малом расстоянии, чем /г., действуют в большой степени силы Ван-дер-Ваальса, чем силы отталкивания, и, следовательно, возможна агрегация частиц. Запишем уравнение изменения расстояния между частицами вследствие роста частиц и их взаимного сближения за счет сил взаимодействия  [c.97]

    Особенностью дисперсионного взаимодействия является его всеобщность, так как во всех молекулах есть движущиеся электроны. Дисперсионное взаимодействие для неполярных молекул —главный и практически единственный источник сил Ван-дер-Ваальса. Дисперсионное взаимодействие вносит известный вклад также в энергию ионной связи в молекулах и кристаллах. [c.134]

    В молекулярных кристаллах (рис. 1.9, г) присутствуют молекулы, связь между которыми осуществляется силами межмолекулярного взаимодействия, называемыми силами Ван-дер-Ваальса (см. разд. 1.10). Силы эти гораздо слабее сил, рассмотренных ранее, и энергия связи в решетке молекулярного типа составляет всего лишь 8—12 кДж/моль. Тела с такой структурой обычно очень мягкие, обладают низкой температурой плавления, высокой летучестью, низкими тепло- и электропроводностями, а также хорошей растворимостью, особенно в родственных растворителях. В качестве представителей веществ, образующих кристаллы молекулярного типа, можно назвать диоксид углерода, аргон и большинство органических соединений. [c.37]

    Процесс растворения веществ обусловлен взаимодействием частиц растворенного вещества с молекулами растворителя. Механизм растворения твердых тел в жидкости состоит в основном из трех стадий. В качестве примера рассмотрим растворение кристалла хлорида натрия, который состоит из электростатически связанных ионов натрия и хлора. Как известно, между ионами N3+ и С1 имеет место ионная связь, между молекулами воды действуют силы Ван-дер-Ваальса и водородная связь, а между ионами на- [c.84]


    Кристаллы со смешанными связями. Существует большая группа твердых веществ, в кристаллах которых одновременно реализуются разные по типу связи. При оценке свойств такого кристаллического тела необходимо вводить поправку на дополнительное специфическое взаимодействие. Так, в молекулярных кристаллах типа NH3, Н2О, НС1, на ряду с силами Ван-дер-Ваальса действуют и силы водородной связи, следствием чего служит относительное повышение прочности таких твердых веществ, а также температур их плавления. [c.80]

    Адсорбция неполярных молекул на ионных кристаллах определяется, в основном, силами Лондона — Ван-дер-Ваальса. Расчет взаимодействия молекулы адсорбата со всеми атомами адсорбента может быть проведен путем интегрирования по объему твердой фазы. [c.126]

    Самые слабые силы взаимодействия между частицами существуют в молекулярных кристаллах, к числу которых относятся, например, кристаллы диоксида углерода, серы, бензола, иода и азота. Эти вещества состоят из молекул, слабо взаимодействующих друг с другом. Взаимодействие между их молекулами относится к такому же типу, который описывается поправочным членом в уравнении Ваи-дер-Ваальса. В кристаллических веществах рассматриваемого типа расположение молекул определяется в основном их формой, дипольным моментом и поляризуемостью. Поскольку силы межмолекулярного взаимодействия невелики, для молекулярных кристаллов характерны низкие температуры плавления или сублимации, мягкость или хрупкость, а также необычайно высокое давление паров над их поверхностью. Наличие запаха у таких твердых веществ, как камфора, нафталин или иод, свидетельствует о том, что их молекулы легко испаряются с поверхности твердого вещества. Электропроводность молекулярных кристаллов очень мала, потому что в их молекулах существует ковалентная связь, и способность электронов перемещаться между молекулами оказывается чрезвычайно низкой. [c.176]

    Переход вещества из газообразного в конденсированное состояние объясняется наличием сил межмолекулярного взаимодействия. Эти силы иначе называются силами Ван-дер-Ваальса. Они зависят, прежде всего, от расстояния между центрами взаимодействующих молекул. На больших расстояниях эти силы ничтожно малы, что и наблюдается в газообразных веществах, молекулы которых находятся в непрерывном хаотическом движении. В жидкости расстояние между молекулами меньше, чем в газе, и, соответственно, межмолекулярные силы проявляются уже в большей степени. И, наконец, в твердых телах, где частицы совершают лишь колебательные движения около определенных центров равновесия, силы Ван-дер-Ваальса имеют наибольшее значение. Межмолекулярные силы носят электростатический характер и не обладают свойством насыщаемости. Они гораздо слабее внутримолекулярных химических связей. Именно следствием небольших значений энергии межмолекулярной связи является то, что молекулярные кристаллы плавятся при низких температурах и имеют высокую летучесть. [c.118]

    На металлических поверхностях контактных элементов с исходной структурой (зона 1 на рис. 4.7) в процессе обработки формируется подповерхностный слой металла с деформированными кристаллами 2, а сразу после обработки - пленки окислов 3, которые воспроизводят микрорельеф. При взаимодействии поверхности с воздухом и со смазочным материалом за счет физической адсорбции или химических реакций на пленках окислов образуется фаничный слой. Толщина этого слоя, состоящего из адсорбированных молекул влаги, газов и смазочного материала, соизмерима с высотой неровностей профиля, а структура может несколько различаться в зависимости от химического состава и свойств материалов. Вследствие сил Ван-дер-Ваальса полярные молекулы смазочного материала образуют упорядоченную структуру 4, так называемую "щетку". Близлежащие к поверхности молекулы также ориентируются в поле металла, образуя граничный смазочный слой 5. [c.470]

    В первой части настоящего обзора последовательно рассмотрены статистические данные о топологии органических кристаллических структур и их интерпретация на основе представлений о симметрии потенциальных функций, аппарат ван-дер-ваальсо-вых атомных радиусов и теория плотной упаковки молекул, описание межмолекулярных взаимодействий в атом-атомном приближении. Это дает возможность осветить три важных аспекта (три варианта) статической модели органического кристалла. Во второй части рассмотрены данные о динамике органических кристаллических структур (фононные спектры и тензоры среднеквадратичных смещений атомов и молекул), а также пути прямого расчета термодинамических функций органического кристаллического вещества. [c.136]


    По-видимому, наиболее простой пример — это твердое тело, атомы которого связаны силами Ван-дер-Ваальса, т. е. твердое тело, подобное инертному газу в твердом состоянии. Поверхностную энергию для него можно рассчитать простым суммированием взаимодействий между атомами вблизи поверхности, принимая, что взаимодействие двух атомов, находящихся на расстоянии г, складывается из сил отталкивания, пропорциональных и сил притяжения, пропорциональных V/- [см. уравнение (1.1)]. Величину поверхностной энергии можно определить из расчета энергии, необходимой для разделения твердого тела плоскостью на две части. Смещение атомов на вновь образовавшихся поверхностях в новые положения, соответствующие минимуму энергии, лишь незначительно снижает поверхностную энергию. Так же просто можно определить поверхностную энергию ковалентного кристалла, подсчитывая число связей, которые необходимо разорвать на данной кристаллической плоскости для образования 1 см новой поверхности и энергии которых можно определить по теплоте образования твердого тела. [c.180]

    Молекулярный кристалл состоит из агрегата дискретных молекул, удерживающихся силами Ван-дер-Ваальса. Особенность свойств и структуры этих кристаллов легко понять, имея в виду слабое взаимодействие между структурными единицами и тот факт, что действующие силы могут иметь, а могут и не иметь направленного характера. За исключением структур с водородной связью и структур, в которых проявляется диполь-дипольное взаимодействие при очень низких температурах, силы в молекулярных кристаллах, вообще говоря, можно считать ненаправленными. [c.260]

    Свойства молекулярных кристаллов во многом определяются природой межмолекулярных взаимодействий (сил Ван-дер-Ваальса). Если геометрическая форма допускает, молекулярный кристалл стремится образовать структуру, соответствующую плотнейшей упаковке или искаженной плотнейшей упаковке. Температура плавления таких кристаллов должна быть низкой и теплота плавления малой кристалл относительно пластичен, и оптический спектр мало отличается от спектра газовой фазы. Кроме того, такой кристалл не должен проводить электрический ток. [c.266]

    Минимальное значение Г достигается при д = 0 это соответствует нематикам. В противоположном случае у Р имеются два симметричных минимума при q = дг- При этом возникал бы аналог геликоидальной магнитной структуры, наблюдаемой в некоторых редкоземельных металлах [28]. Однако из случая магнитной структуры мы знаем, что такие побочные минимумы могут возникать, только если взаимодействие распространяется на соседей, следующих за ближайшими. Не похоже, чтобы это происходило с нашими молекулами, у которых взаимодействие (контактное отталкивание и притяжение Ван-дер-Ваальса) является короткодействующим. И действительно, в настоящее время в жидких кристаллах не найдено спиралей этого типа. [c.25]

    Кроме межатомного, внутримолекулярного взаимодействия, обусловленного действием рассмотренных химических (валентных) сил, существует взаимодействие между незаряженными молекулами вещества. Оно вызывается также действием сил притяжения и отталкивания. Межмолекулярное притяжение, обусловливаемое силами Ван-дер-Ваальса, представляет собой одно из всеобщих явлений природы. Оно свойственно всем веществам и проявляется в газо- и парообразных, жидком и твердом состояниях. Силы Ван-дер-Ваальса действуют как между однородными молекулами данного вещества, так и между разнообразными молекулами различных веществ. Хотя эти силы по сравнению с химическими и невелики, они все же способны обеспечивать довольно прочные связи. Это, в частности, наблюдается в молекулярных кристаллах и жидкостях, в целом ряде поверхностных явлений (адсорбция и т. д.). [c.168]

    МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ — взаимодействие двух элек-тронейтральных молекул, вызываемое силами притяжения или отталкивания. Межмолекулярные силы притяжения, называемые иногда силами Ван дер Ваальса, много слабее валентных сил, но именно М. в. обусловливает откло нения от законов идеальных газов, переходы от газообразного состояния к жидкому, существование молекулярных кристаллов, явления переноса (диффузия, вязкость, теплопроводность), тушение люминесценции, уширение спектральных линий, адсорбции и др. М. в. всегда представляет собой первую стадию элементарного акта химической бимолекулярной реакции. При больших расстояниях между молекулами, когда их электронные оболочки не перекрываются, преобладают силы притяжения при малых расстояниях преобладают силы отталкивания. Короткодействующие силы имеют ту же природу, что и силы химической (валентной) связи и возникают при условии, когда электронные оболочки молекул сильно перекрываются. Частным случаем М. в. является водородная связь. М. в. определяет агрегатное состояние вещества и некоторые физические свойства соединений. [c.157]

    Радиусы атомов благородных газов Не, Ке, Аг, Кг и Хе равны соответственно 122, 160, 191, 201 и 220 пм. Приведенные значения получены из межатомных расстояний в кристаллах данных веществ, которые существуют при низких температурах. Для атомов этих элементов также наблюдается рост г, с увеличением порядкового номера. Радиусы атомов благородных газов значительно больше радиусов атомов неметаллов соответствующих периодов, поскольку в кристаллах благородных газов межатомное взаимодействие очень слабое (силы Ван-дер-Ваальса), а для молекул других неметаллов характерна прочная ковалентная связь. Можно считать, что атомные радиусы благородных газов - это радиусы валентно не связанных атомов, т. е. ван-дер-ваальСовы радиусы (которые находят из межатомных расстояний в молекулярных кристаллах). [c.51]

    Особенностью дисперсионного взаимодействия является его всеобщность — во всех молекулах есть движущиеся электроны, поэтому дисперсионное взаимодействш существенно для всех без исключения молекул. Дисперсионное взаимодействие для неполярных молекул — главный и практически единственный источник сил Ван-дер-Ваальса. Дисперсионное взаимодействие вносит известный вклад также в энергию ионной связи в молекулах и кристаллах. [c.260]

    При образовании гомоатомных соединений (простых веществ) все эффекты, связанные с разностью электроотрицательностей взаимодействующих атомов, исключаются. Поэтому в простых веществах не реализуются полярные, а тем более преимущественно ионные связи. Следовательно, в простых веществах осуществляется лишь металлическая и ковалентная связь. Следует при этом учесть и возможность возникновения дополнительного ван-дер-ваальсов-ского взаимодействия. Преобладание вклада металлической связи приводит к металлическим свойствам простого вещества, а неметаллические свойства обусловлены преимущественно ковалентным взаимодействием. Для образования ковалентной связи взаимодействующие атомы должны обладать достаточным количеством валентных электронов. При дефиците валентных электронов осуществляется коллективное электронно-атомное взаимодействие, приводящее к возникновению металлической связи. На этой основе в периодической системе можно провести вертикальную границу между элементами П1А- и 1УА-групп, слева от которой располагаются элементы с дефицитом валентных электронов, а справа — с избытком. Эта вертикаль называется границей Цинтля Ее положение в периодической системе обусловлено тем, что в соответствии с современными представлениями о механизме образования ковалентной связи особой устойчивостью обладает полностью завершенная октетная электронная 5 /гр -конфигурация, свойственная благородным газам. Поэтому для реализации ковалентного взаимодействия при образовании простых веществ необходимо, чтобы каждый атом пмел не менее четырех электронов. В этом случае возможно возникгювение четырех ковалентных связей (5/) -гибридизация ), что и реализуется у элементов 1УА-группы (решетка типа алмаза у углерода, кремния, германия и а-олова с координационным числом 4). Если атом имеет 5 валентных электронов (УА-группа), то до завершения октета ему необходимо 3 электрона. Поэтому он может иметь лишь три ковалентные связи с партнерами (к. ч. 3). В этом случае кристалл образован гофрированными сетками, которые связаны между собой более слабыми силами. Получается слоистая структура, в которой расстояние между атомами, принадлежащими одному слою, намного меньше, чем между атомами различных слоев (черный фосфор, мышьяк, сурьма)  [c.29]

    Эти связи введены Ван-дер-Ваальсом для выражения различия в поведении реального и идеального газов. Так, например, предполагается, что в идеальном газе молекулы не взаимодействуют друг с другом, тогда как, согласно Ван-дер-Ваальсу, силы взаимодействия между молекулами уменьшаются с понижением давления реального газа. Эти силы, которые часто называют вандерваальсовыми силами, играют важную роль, в частности, в жидкостях и молекулярных кристаллах. Большинство органических соединений в жидком состоянии являются молекулярными жидкостями подобно некоторым неорганическим ковалентным соединениям. Молекулы в них обособ- [c.85]

    МЕЖМОЛЕКУЛЯРНЫЕ ВЗАИМОДЕЙСТВИЯ, взаимод. молекул между собой, не приводящее к разрыву или образованию новых хим. связей, М. в. определяет отличие реальных газов от идеальных, существование жидкостей и мол. кристаллов От М. в. зависят мн. структурные, спектральные, термодинамич., теплофиз. и др св-ва в-в. Появление понятия М. в. связано с именем Й. Д. Ван-дер-Ваальса, к-рый для объяснения св-в реальных газов и жидкостей предложил в 1873 ур-ние состояния, учитывающее М. в. (см. Ван-дер-Ваальса уравнение). Поэтому силы М. в. часто называют ван-дер-ваальсовыми. [c.12]

    Межмолекулярные взаимодействии — действие одной электрически нейтральной молекулы иа другую, вызываемое силами притяжения или отталкивания. М. в. (называются силами Ван-дер-Ваальса, по имени голландского ученого) — слабые взаимодействия. Ai. в. вызывают отступления отзаконов идеальных газов, проявляются в образовании молекулярных кристаллов и др. [c.81]

    Энергия решетки кристалла с Ван-дер-Ваальсовой связью. В теории реальных газов Ван-дер-Ваальса выражение для энергии взаимодействия содержит два члена. Один из них соответствует притяжению между молекулами, а другой отталкиванию. В случае кристаллов с Ван-дер-Ваальсовой связью вклад от энергии [c.206]

    В узлах решетки молекулярных кристаллов находятся молекулы. Связь между молекулами осуществляется за счет сравнительно слабых сил Ван-дер-Ваальса, и поэтому внутримолекулярные и межмолекулярные расстояния между атомами оказываются существенно разными. Например, в кристалле иода (рис. 6.5) внутримолекулярное расстояние I—I равно 0,267 нм, тогда как межмолекулярное расстояние примерно на 70 % больше и составляет по разным направлениям от 0,36 до 0,44 нм. Так как энергия вандерваальсова взаимодействия существенно меньше, чем энергия ковалентной связи в молекулах, молекулярные кристаллы легко распадаются на отдельные молекулы, и такие вещества плавятся и переходят в газообразное состояние при сравнительно низких температурах, как правило, не выше 300-400 °С. Молекулярные кристаллы образуют такие вещества, как, например, водород, азот, иод, сера, вода, большинство органических веществ. [c.84]

    Таким образом, теория адсорбционного ион-дипольного аимс действия в первом приближении подтверждается экспериментальнс Адсорбция неполярных молекул на ионных кристаллах опреде ляется, в основном, силами Лондона — Ван-дер-Ваальса. Расче взаимодействия молекулы адсорбата со всеми атомами адсор бента может быть проведен путем интегрирования по объему твер дой фазы, которое дает [c.134]

    Сондер [230, 231, 241] и др. провели обширные рентгенографические анализы молекулярных соединений 4,4 -динитродифенила с 4-оксидифенилом, которые показали, что все молекулы находятся примерно на равных расстояниях друг от друга. Это было одно из первых сообщений о тине молекулярных комплексных образований, которые зависят только от кристаллического состояния соединения и не требуют более или менее сложных взаимодействий, описанных для многих молекулярных соединений. Ни одно из меж-молекулярных расстояний не было короче расстояний, которые обычно обнаруживаются в кристаллах ароматических нитросоединений, где связям, как правило, приписывается характер сил Ван-дер-Ваальса. [c.71]

    Ни 180а, ни 180Ь нельзя получить в кристаллическом виде. Выпаривание, соответственно, фиолетового или синего растворов приводит только к коричневому продукту полимеризации. Бензольные растворы, однако, относительно устойчивы [296]. Это может быть обусловлено стабилизацией за счет сольватации и действительно, возможно даже выделить эти высоконенасыщенные соединения в твердом виде путем вращивания их в кристаллическую решетку бензофенона или дифенилметана. Допускают, что в бензольном растворе или в этих смешанных кристаллах силы ван-дер-Ваальса приводят к защите кумулена молекулами сольвента и таким образом предотвращается взаимодействие молекул кумулена друг с другом [296] [c.689]

    Энергия решетки кристалла с вандерваальсовыми связями. В 1912 г. ученик Ван-дер-Ваальса Кезом сделал первую попытку объяснить природу остаточных связей взаимодействием диполей. Вычисление энергии притяжения между диполями привело его к следующей формуле  [c.203]

    Рассмотрим, например, инертные газы. Тот факт, что их можно превратить в жидкость или твердое тело, доказывает вообще наличие некоторых сил притяжения между атомами в то же время исключительно низкие температуры, необходимые для их конденсации, доказывают, что эти силы чрезвычайно малы. Такие силы обычно называют силами Ван-дер-Ваальса, по имени датского физика, который впервые отметил их важность тем, что учел их в уравнении состояния газов иногда эти силы называют также силами Лондона, так как их природа была объяснена Фрицем Лондоном с использованием квантовой механики. О них упоминалось раньше как о второстепенной составляющей в полных силах притяжения в ионных кристаллах. В кристаллах инертных газов отсутствуют какие-либо электростатические взаимодействия, и вандерваальсовы силы являются единственными силами притяжения. Как в ионных кристаллах, равновесным расстоянием между атомами является то, при котором силы притяжения уравновешены силами отталкивания, обусловленными перекрыванием внешних частей электронных облаков. Поскольку эта сила отталкивания возрастает очень быстро с уменьшением расстояния и становится существенной лишь при очень малых расстояниях, то ионный радиус Вг и половина расстояния для наиболее тесного сближения двух атолюв криптона в твердом криптоне не должны очень сильно отличаться, вопреки различиям в характере сил притяжения. Эту последнюю величину — половину расстояния наиболее тесного сближения атомов Кг в твердом криптоне — называют вандерваальсовым радиусом криптона. Тем не менее вандерваальсовы радиусы значительно больи1е ковалентных радиусов. Так, ионный радиус Вг равен 1,95 А, ковалентный радиус Вг равен 1,15 А, а вандерваальсов радиус Кг равен 2,00 А. [c.138]

    Слои связаны слабыми силами Ван-дер-Ваальса. Расстояния между атомами (в A) 3,156 (In—In) 2,505 (In—Se) и 4,168 (Se—Se). При этом расстояние In—Se меньше суммы атомных (2,785 A) или ионных (2,855 A) радиусов элементов и близко сумме тетраэдрических ковалентных радиусов (2,306 A). Это указывает на сходство взаимодействия индия и селена в InSe и атомов в структуре типа структуры GaS, обладающей явно выраженной тетраэдрической координацией [65, 67]. Из-за слоистости структуры и слабых связей слоев кристаллы InSe необычайно легко расщепляются по плоскости спайности на очень тонкие слои, что также может указывать на наличие значительны доли ионной связи в соединениях этого типа. Кристаллы InSe обладают сильной анизотропией свойств. [c.105]


Смотреть страницы где упоминается термин Ван-дер-Ваальса взаимодействия в кристалле: [c.565]    [c.75]    [c.152]    [c.237]    [c.127]    [c.34]    [c.254]    [c.176]    [c.485]    [c.124]    [c.485]    [c.51]    [c.14]    [c.14]   
Как квантовая механика объясняет химическую связь (1973) -- [ c.257 ]




ПОИСК





Смотрите так же термины и статьи:

Ван-дер-Ваальса

Ван-дер-Ваальса в кристаллах



© 2025 chem21.info Реклама на сайте