Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оптическая координационных соединений

    Другим важнейшим положением теории Вернера была идея о том, что группировки, связанные с атомами металла, располагаются вокруг них в пространстве в вершинах определенных многогранников (атом металла, расположенный в центре многогранника, получил название центрального атома). Теория Вернера смогла объяснить и предсказать многочисленные случаи изомерии координационных соединений, в том числе и оптической изомерии.) [c.89]


    Измерение спектров дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) получило широкое распространение как метод конформационного анализа оптически активных соединений. Особенно методы ДОВ и КД используются в органической химии, биохимии, энзимологии и молекулярной биологии. Данными методами исследуются белки, аминокислоты, нуклеиновые кислоты, стероиды, углеводы и полисахариды, вирусы, митохондрии, рибосомы, фармакологические средства, синтетические полимеры, координационные соединения, неорганические и редкоземельные комплексы, кристаллы, суопензии и пленки и т. п. и решаются следующие задачи 1) определение по эмпирическим пра вилам конформации и ее изменений под действием различных физико-химических воздействий 2) изучение механизма и кинетики химических реакций (особенно ферментативных) 3) получение стереохимических характеристик 4) измерение концентраций оптически активных веществ 5) определение спиральности макромолекул 6) получение электронных характеристик молекул 7) исследование влияния низких температур на конформацию соединений 8) влияние фазовых переходов типа твердое тело — жидкость — газ на изменение структуры. [c.32]

    Хиральные соединения отличаются друг от друга но своему действию на плоскополяризованный свет. С примером такого явления мы столкнулись в разд. 23.4, где рассматривалась изомерия координационных соединений. Допустим, что пучок поляризованного света проходит через раствор, содержащий хиральное вещество, например аланин (схема установки изображена на рис. 23.14). Раствор одного энантиомера вызывает вращение плоскости поляризации в одном направлении, а раствор другого энантиомера - в противоположном направлении. В каждом случае угол вращения пропорционален концентрации раствора и длине кюветы с раствором. Раствор, содержащий равные концентрации двух энантиомеров, называется рацемической смесью и не вызывает вращения плоскости поляризации света. Энантиомеры хирального вещества часто называют оптическими изомерами, так как они оказывают действие на поляризованный свет. [c.445]

    Транс- и цис-изомерия комплексов. Простейшим примером использования спектрополяриметрии в стереохимии координационных соединений является определение цис- и гранс-изомеров в октаэдрических комплексах с двумя бидентатными лигандами типа этилендиамина (еп), например [КЬ(еп)2СЬ]+. Гранс-конфигура-ция имеет центр и плоскость симметрии и поэтому оптически не активна (рис. Х.4, а). В цис-изомере отсутствуют эти элементы симметрии, т. е. эта молекула диссимметрична и оптически активна (рис. Х.4, б). [c.208]


    Оптическая активность соединений 4-х координационного азота [c.583]

    Теория Вернера сыграла выдающуюся роль, поскольку в общих чертах дала правиль ное описание строения комплексных соединений и смогла объяснить ряд их свойств. Эта теория, однако, обладала одним очень существенным недостатком — она была создана как гипотеза с привлечением некоторых допущений, а не как следствие некоторых более общих закономерностей. Поэтому физический смысл ее основных положений, их сущность и причинная обусловленность оставались неясными. Теория не могла дать ответа на такие первостепенные вопросы какова причина существования главной и побочной валентности и в чем различие между ними чем обусловлена структура координационных соединений почему существует столько различных координационных чисел почему комплексы так сильно отличаются по своей устойчивости. Кроме того, теория Вернера была не в состоянии объяснить магнитные и оптические свойства комплексов. Эти недостатки координационной теории были позже в значительной степени преодолены благодаря использованию представлений о строении атома и природе химической связи. [c.69]

    Оптическое вращение — почти единственный метод, дающий возможность различать правые и левые структуры координационных соединений. [c.29]

    Для координационных соединений известно, кроме пространственной и оптической, еще несколько других типов изомерии. Часто они встречаются только в этом классе соединений. Чтобы иллюстрировать каждый тип изомерии, ниже приведены конкретные примеры. В основном природа изомерии достаточно очевидна из примеров и не требует подробного обсуждения. [c.89]

    В растительных и животных организмах содержится большое число оптически активных органических молекул, и их часто можно выделить в чистом виде. Получение в лаборатории оптически активных соединений почти всегда приводит к образованию рацемических смесей (50 — 50) двух оптических изомеров, т. е. к оптически неактивному веществу (разд. 4 гл. П1). Поэтому основной стадией лабораторного получения оптически активных координационных соединений является разделение их оптических изомеров. Например, рацемат [Со(еп)з] легко можно приготовить окислением воздухом соли кобальта(П) в среде, содержащей избыток этилендиамина и катализатор в виде активированного угля. Так как оптические изомеры очень близки по свойствам, то для их разделения необходимы специальные методы. [c.115]

    О механизмах реакций. Другими словами, считалось, что неорганическая реакция дает мало сведений (если вообще дает таковые ) о механизме. Поэтому несмотря на огромный и все возрастающий интерес к механизмам органических реакций, несмотря на изложенные в 1912 г. и намного опережавшие свое время взгляды Вернера на механизм реакций замещения в химии координационных соединений, опубликовано очень мало работ, посвященных изучению неорганических реакций в растворах. Большинство работ в области комплексов металлов предпринимались из соображений очень далеких от изучения механизмов реакции. В основном в этих работах рассматривались солевые эффекты, оптические свойства комплексов, стереохимические изменения, применение новых или необычных методов для измерения скоростей реакций. [c.12]

    Исследование оптической активности молекул, в том числе и молекул координационных соединений, имеет давнюю историю. Еще 70 лет назад у тартратных комплексов переходных металлов был обнаружен эффект Коттона, задолго до того, как впервые удалось разделить оптические изомеры комплексов переходных металлов. Термин эффект Коттона [1] относится ко всей совокупности явлений, которые наблюдаются при взаимодействии электромагнитного излучения с оптически активными молекулами в области длин волн, соответствующих полосе поглощения. [c.147]

    В данном обзоре поднимаются вопросы, которыми в предыдущих работах часто пренебрегали. Исследование оптической активности комплексных соединений в настоящее время находится на том этапе развития, когда совершенно необходимы строгие доказательства, а обсуждение любого вопроса, связанного с оптической активностью, требует рассмотрения более сложных и тонких особенностей химии координационных соединений. [c.148]

    Чаще всего для измерения вращения плоскости поляризации применяют желтый свет натриевого пламени или натриевой лампы (/. 589 нм для так называемой D-линии, фактически представляющей собой дублет) измеренный угол вращения обозначается в этом случае как [а]о. Оптически активные органические соединения обычно называются право- либо левовращающими, в зависимости от того, в какую сторону вращается плоскость поляризации желтого натриевого света. В случае координационных соединений при указании угла вращения следует также указывать или во всяком случае знать точно длину волны, при которой определялся этот угол, поскольку угол вращения зависит как по абсолютной величине, так и по знаку от длины волны, при которой его измеряют. Если знак (+) или (—) указан без обозначения длины волны, то это всегда относится к желтой линии натрия. Примером обозначения отдельных энантиомеров могут служить (+)-[Со епз] или (—) 5481-[Rh епд] " (где еп— этилендиамин). Следует также иметь в виду, что на величину (а в некоторых случаях и на знак) угла вращения может оказать влияние природа среды так, например, различные явления, связанные с образованием ионных пар [7—10], могут существенно изменить вращательную силу оптически активного катиона. Не исключено, что аналогичные эффекты возникают и в случае оптически активных анионов, хотя до сих пор известен лишь один пример подобного рода [7]. [c.149]


    Условия, определяющие асимметрию молекулы, известны. Требование, согласно которому молекула не должна совпадать со своим зеркальным отображением, формулируется в виде правила о том, что молекула не должна иметь ни одной несобственной оси (наличие центра или плоскости симметрии представляет особые случаи несобственных осей). На третий вопрос частично можно дать ответ на основании опытных данных активные исследования в этой области усиленно велись химиками-органиками в течение последних Шлет. В настоящее время конфигурацию координационных соединений устанавливают различными способами. Выполненные расчеты были, по-видимому, неудачны. Четвертый вопрос рассматривался на протяжении всей этой статьи. Обзор современного состояния этого вопроса показывает, что он еще очень мало разработан, и для нахождения правил, которые могли бы помочь всегда находить правильный ответ, необходимо накопить большое количество экспериментальных данных. В частности, в ближайшие годы предстоит многое сделать для того, чтобы решить сложный вопрос о том, какие спектральные уровни ответственны за оптическую активность. [c.197]

    Рассмотрим своеобразные явления, наблюдающиеся при попытках превращения одних оптически деятельных соединений в другие посредством реакций двойного обмена. Прежде всего укажем, что реакции взаимной замены кислотных остатков или металлов, находящихся во внешней координационной сфере, как правило, протекают без существенных изменений вращения комплекса. Однако замена радикалов, находящихся в пределах внутренней координационной сферы, часто отражается на вращательной способности. Так, иногда исходный левовращающий комплекс дает продукт реакции, характеризующийся правым вращением или оказывающийся вообще неактивным. [c.157]

    Примеры оптически активных координационных соединений металлов даны в гл. XVI. [c.261]

    Второй период развития теории, период ее бурного расцвета, начался сравнительно недавно, в 50-е годы. Работами Илзе и Хартмана, Оргела, Бальхаузена, Йоргенсена и др. (см. [1—11]) было показано, что теория кристаллического поля успешно объясняет происхождение спектров поглощения координационных соединений в видимой и прилегающих к ней областях (происхождение цветности), а также некоторые другие оптические, электрические, магнитные, термодинамические и радиоспектроскопические свойства этих систем. [c.67]

    В последние годы получил развитие интересный новый оптический метод исследования молекулярная фотоэлектронная спектроскопия (см. [198], стр. 79) , но, к сожалению, технические трудности не позволяют его применять для изучения координационных соединений. [c.144]

    Среди индуцированных светом изомеризаций координационных соединений известны геометрическая, оптическая и связевая (или структурная). Такие фотохимические изомеризации можно изучать лишь для кинетически инертных комплексных соединений. К ним относятся наряду с октаэдрическими комплексами платины(IV) и квадратно-плоскостными платины(II) преимущественно октаэдрические комплексы хрома(III) и кобальта(III) [21]. [c.288]

    Аналитическая химия — это наука о методах определения химического состава вещества и его структуры. Предметом аналитической химии является разработка методов анализа и практическое выполнение анализов, а также широкое исследование теоретических основ аналитических методов. Сюда относится изучение форм существования элементов и их соединений в различных средах и агрегатных состояниях, определение состава и устойчивости координационных соединений, оптических, электрохимических и других характеристик вещества, исследование скоростей химических реакций, определение метрологических характеристик методов и т. д. Существенная роль отводится поискам принципиально новых методов анализа и использованию в аналитических целях современных достижений науки и техники. [c.5]

    В начале века Вернер исследовал стереохимические аспекты координационных соединений. Эти исследования открыли новые перспективы в этой области. Было найдено много различных типов координационных соединений, которые разделяются на оптические изомеры, что выдвинуло проблему определения их абсолютной конфигурации. Лишь в последние годы с появлением сложных физических методов и легкодоступных приборов эта проблема удовлетворительно разрешена. [c.7]

    Номенклатура координационных соединений. Монодентатные и би-дентатные лиганды. Хелатообразующие агенты и хелаты. Структурные и геометрические изомеры. Оптические изомеры, или энан-тиомеры. Асимметрические, или хиральные, центры. [c.204]

    СКР имеет преимущество перед ИК спектрами поглощения, которое заключается в простоте устройства приборов. В данных приборах используются стеклянная оптика, более дешевые приемники и источники излучения. В качестве приемника излучения широко применяются фотоэлементы я фотоумножители. В качестве источника монохроматического излучения применяются оптические квантовые генераторы, дающие монохроматическое излучение высокой янтенсивиости, что значительно облегчает исследования СКР газообразных и твердых кристаллических соединений. При исследовании СКР растворов в качестве растворителя можно применять воду. Это открывает широкие возможности исследования структуры неорганических, координационных соединений, ионов в растворах. [c.29]

    Лигандообменная хроматография оптически активных соединений основана на образовании лабильных координационных соединений, в которых с центральным ионом металла-комлексообразователя одновременно координирована молекула расщепляющего асимметрического реагента и один из подлежащих разделению энантиомеров. Для осуществления лигандообменной хроматографии необходимо наличие в расщепляющих реагентах и в разделяемых лигандах донорных гетероатомов серы, кислорода, азота, способных координироваться с ионом металла. Наблюдается хорошая координация а-аминокислот и ионов меди, цинка и никеля. Донорные атомы образуют плотно упакованную координационную сферу вокруг центрального иона металла, при этом разделяемые лиганды вступают в тесный контакт с расщепляющим реагентом. Этим и объясняется высокая эффективность распознавания реагента, т.е. энантиоселективность. [c.82]

    Изомерия комплексных соединений мало отличается от изомерии органических. Здесь также встречаются цис- и транс-изомерия, оптическая зеркальная изомерия, изомерия лигандов. К специфическим изомерам, характерным только для координационных соединений, относятся ионные изомеры, в которых ионные лиганды перераспределяются между внутренней и внешней сферами, например [Со (ЫНз)бВг] SO4 и [Со(КНз)в804] Вг, и координационные изомеры, в которых комплексообра-зователи катиона и аниона меняются местами, например [Со (ЫНз)в] [Сг ( N)e] и [Сг (ЫНз)в] [Со ( N)e]. Свойства таких изомеров могут быть существенно различными. [c.266]

    Подобно тому как развитие химии было задержано флогистонной теорией, а развитие органической химии — представлениями о жизненной силе , прогрессу в координационной химии сильно мешали попытки приспособить ее к несовершенным валентным теориям, оказавшимся полезными в развитии органической химии, хотя они не различали понятий валентности и координационного числа. Только благодаря одаренности Альфреда Вернера координационная химия освободилась от своих цепей и был проложен путь для ее современного развития. В 1893 г. Вернер показал, что фактором, определяющим строение координационных соединений, является не валентность металла или другого центрального атома, а число групп любого характера, которые могут быть присоединены непосредственно к центральному атому, т. е. его координационное число. Любые группы сверх этих должны находиться вне сферы центрального атома и должны существовать в виде ионов, удерживаемых только электростатическими силами. Но работа Вернера не произвела на химиков сильного впечатления до тех пор, пока он в 1911 г. не разделил некоторые координационные соединения на оптические изомеры . Таким путем он показал, как это было принято в классической химии, что координационные соединения действительно имеют форму, которую им ир1шисывает его теория. [c.8]

    Одна из главных особенностей оптически активных координационных соединений заключается в большом разбросе скоростей их рацемизации. Даже оптически активные формы инертного иона [СоеПд] (обьгапо исключительно устойчивого) могут быть рацемизованы при каталитическом действии древесного угля [83] или большого избытка этилендиамина [99]. [c.205]

    Известно, что октаэдрическая модель позволила предсказать у ряда координационных соединений, построенных асимметрически, способность вращать плоскость поляризации света, т. е. наличие оптической активности. Изменение оптиче- [c.29]

    Инфракрасное изучение неорганических координационных соединений. II. Интерпретация инфракрасных и раман-спектров 1, 2-дитиоцианатоэтана в связи с новым типом оптической изомерии координационных соединений. [c.228]

    Моффит [49] применил квантовую теорию оптической вращающей способности к трисхелатным координационным соединениям точечной группы Dg. Прежде всего им было установлено, что в октаэдрических комплексах точечной группы 0 дозволенный по спину переход Tig (Тозначает прямое произведение неприводимых представлений основного и возбужденного состояний), которому соот- [c.178]

    Поляризованные электронные спектры монокристаллов (чаще всего спектры отражения) представляют существенный интерес, позволяя получить дополнительную информацию об электронном строении соединения (см., например, серию работ Фергусона [195] и больщой обзор по спектрам координационных соединений в кристаллическом состоянии [196]). Широкое распространение получило использование поляризованных спектров для исследования вращения плоскости поляризации веществом, дисперсии оптического вращения и циркулярного дихроизма [197—199]. Интерес представляют также исследования по магнитной циркулярной анизотропии в кристаллическом состоянии [200]. Комбинированное исследование структурных, спектроскопических и магнитных свойств некоторых систем, в том числе в кристаллическом состоянии, можно найти в серии работ Б. Ежовской-Тшебиатовской с сотрудниками (см. [201] и цитированные там работы). [c.128]

    Спектрополяриметрические измерения дают ценную информацию также о структуре и других свойствах органических и координационных соединений. Изменение стереохимического расположения отдельных групп и другие структурные особенности соединений находят отражение в основных характеристиках кривой эффекта Коттона. Как правило, спектрополяриметрические данные рассматриваются совместно со спектрофотометрическими, так как такое сопоставление показывает, какая полоса в спектре поглощения ответственна за эффект Коттона. Кроме того, теорема Крони-га — Крамера дает возможность по спектру поглощения предсказать кривую дисперсии оптического вращения и наоборот. При интерпретации спектрополяриметрических данных используют также и другие эмпирические обобщения, связывающие спектрополяриметрические, спектрофотометрические, структурные и другие физико-химические характеристики и свойства веществ. [c.158]

    Проблема установления абсолютной конфигурации координационных соединений возникла с 19П г., когда А. Вернер расщепил на антиподы некоторые комплексы металлов. Эта проблема всегда интересовала химиков-комплексников, поскольку зная абсолютную конфигурацию комплекса, можно объяснить целый ряд интересных явлений, например стереоспецифичность (корреляцию абсолютной конфигурации образующегося комплекса и входящего в его состав диссимметричного лиганда), различие в биологической активности антиподов и т. д. Однако до работы Саито и сотр., которые в 1954 г. первыми определили (специальным рентгеноструктурным методом) абсолютную конфигурацию иона ( +) - [СоеПз] , были известны с больщей или меньшей достоверностью только относительные конфигурации сравнительно небольшого ряда комплексов. Появление доступных чувствительных приборов для измерений в широком интервале дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД), а также увеличение числа ключевых соединений, абсолютная конфигурация которых установлена методом аномального рассеяния рентгеновских лучей (см. гл. 4 настоящей книги), способствовало в последние 10—15 лет интенсивнейшему развитию этой области координационной химии. [c.5]


Смотреть страницы где упоминается термин Оптическая координационных соединений: [c.340]    [c.663]    [c.423]    [c.158]    [c.189]    [c.276]    [c.421]    [c.6]    [c.9]    [c.150]    [c.155]    [c.176]   
Дисперсия оптического вращения и круговой дихроизм в органической химии (1970) -- [ c.10 ]




ПОИСК





Смотрите так же термины и статьи:

Координационные соединени

Соединения координационные



© 2025 chem21.info Реклама на сайте