Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Инфракрасные интерпретация

    В этой главе рассматривается не столько сам метод, сколько его применение к решению проблем химии нефти. Это относится к применению инфракрасной спектроскопии и спектров комбинационного рассеяния для изучения химического строения углеводородов и углеводородных смесей. Несмотря на то значение, которое имеет качественный и количественный анализы индивидуальных соединений, основное внимание уделяется характеристическим частотам, наблюдаемым в спектрах веществ с определенной молекулярной структурой. Оценивается возможность количественного определения содержания углеводородов данного типа или данных структурных групп. В главе обсуждаются лишь основные вопросы спектроскопии комбинационного рассеяния света и инфракрасной спектроскопии, а вопросы, относящиеся к рассмотрению природы колебательных спектров или интерпретации колебательных частот, рассматриваются лишь частично. [c.313]


    При изменении вращательной энергии возникают спектральные линии, расположенные в длинноволновой инфракрасной и в микроволновой областях (А,>50 000 нм). Изменение колебательной энергии обычно связано с одновременным изменением энергии вращения. При этом получают колебательно-вращательный спектр (X от 1000 до 50 000 нм). Изменения энергии электронов связаны с двумя другими составляющими энергии, поэтому полосатый электронный спектр особенно сложен. Он охватывает видимую и ультрафиолетовую области (Л от 50 до 1000 нм). Теоретическая интерпретация этих спектров дана в разд. 6.1. [c.353]

    Как уже говорилось, молекула хлористого водорода имеет в близкой инфракрасной области одну, интенсивную полосу поглощения при 2885,9 Согласно приведенной интерпретации, это будет также волновое число колебаний атомов в молекуле. Иначе говоря, частота такого колебания в НС1  [c.251]

    Выбор оптимальных комбинаций различных методов зависит, конечно, от самого объекта исследования (первичной информации о его природе) и реальных возможностей данной лаборатории. Если одинаково доступны все основные современные методы исследования, то наиболее универсальным следует считать сочетание масс-спектрометрии, инфракрасной спектроскопии и ЯМР. Последовательность их использования не имеет принципиального значения, но обычно оказывается целесообразным начинать с технически более простых и доступных методов (ИК- и УФ- спектры, рефрактометрия), а. затем переходить к более сложным (ЯМР, масс-спектрометрия) и, наконец, привлекать в случае необходимости более специальную технику (измерение моментов диполя и др.). Поскольку обязательных общих рецептов совместной интерпретации физических данных не существует, типичный ход рассуждений [c.214]

    Разность в энергиях возбуждения между колебательными энергетическими уровнями в молекуле находится в области — 1,2 эв. Это соответствует абсорбции при колебательном возбуждении — 1 10 —2,5-10 А или 1 —25 м.к (где 1 мк 10 А). Такую спектральную область часто называют ближней инфракрасной-, поглощение здесь возникает благодаря фундаментальным растягивающим колебаниям большинства связей, а также многим другим колебательным явлениям. Будучи одним из наиболее широко используемых методов спектроскопического анализа, метод инфракрасной спектроскопии и интерпретации инфракрасных спектров подробно обсуждаются во многих монографиях  [c.195]

    Поверхностные хемосорбированные образования не могут быть выделены в виде индивидуальных химических соединений. Поэтому интерпретация их спектров целиком основана на сопоставлении со спектрами соединений, структура которых хорошо известна. Особенно сложна интерпретация спектров, когда на поверхности одновременно образуется несколько различных форм хемосорбированных соединений, а поглощение света катализатором ограничивает доступную для изучения область спектра. Так, например, по инфракрасным спектрам хемосорбированной окнси углерода на металлах было показано образование двух главных типов связей мостиковой (I) и линейной (П)  [c.179]


    Исследованы инфракрасные спектры эпоксидов различных классов —алифатических, ароматических, алициклических, в том числе промышленных, и установлены спектрально-структурные корреляции. Осуществлен единый методологический подход к интерпретации ИК спектров исследование ИК спектров промежуточных и модельных соединений, сопоставление их с ИК спектрами исследуемых эпоксидов, сравнительное изучение ИК спектров эпоксидов различных классов, изомерных и родственных эпоксисоединений. [c.68]

    Определение структуры. Для химика-органика это является наиболее важным применением инфракрасной спектроскопии. Хотя невозможно дать стандартную методику интерпретации, существуют следующие общие принципы получения и обработки данных. [c.174]

    Инфракрасное (ИК) излучение вызывает переходы между колебательными и вращательными уровнями, поэтому инфракрасные спектры молекул являются результатом энергетических переходов внутри вращательных и колебательных уровней электронного состояния молекул. Каждый колебательный переход фиксируется в виде полосы с максимумом. Двухатомная молекула имеет определенное распределение электрического заряда вдоль связи между атомами. В результате валентного колебания изменяется распределение электрического заряда. Если при этом происходит изменение ее дипольного момента, то колебания молекул приводят к поглощению. Интенсивность И К полос поглощения прямо пропорциональна первой производной дипольного момента по междуядерному расстоянию. Сложная молекула имеет спектр колебания как результирующий всех связей, что затрудняет его интерпретацию. [c.83]

    Другой физический метод исследования лигнина и его производных — инфракрасная спектроскопия в ближней ИК-области (интервалы длин волн 2,5—15 мкм, волновых чисел 4000—600 см ). Для соединений с точно известным строением ИК-спектр является характерным свойством, а для лигнина интерпретация ИК-спектров становится несколько неопределенной. Это объясняется двумя причинами. Во-первых, в строении и свойствах лигнина существуют значительные различия в зависимости от происхождения и метода выделения. Во-вторых, измеряемое ИК-поглощение зависит от методики снятия спектра лигнина в растворителе — в виде пленок или, чаще всего, в таблетках с бромидом калия [115, 286]. [c.130]

    Среди перечисленных методов особенно следует отметить поляризационную ИК-спектроскопию (ИК-дихроизм), основанную на анизотропии поглощения инфракрасных лучей ориентированными полимерами. Предварительное дейтерирование при наличии подвижного водорода в макромолекуле облегчает идентификацию полос и интерпретацию спектра. [c.461]

    В дополнение к определениям температуры пара и показателя преломления, которые обычно применяются для того, чтобы следить за течением разгонки и как средство интерпретации результатов разгонки, применяются также исследования других физических свойств, которые позволяют получить более полную картину исследуемой смеси. Так, иногда определяются плотности, вязкости, вращение плоскости поляризации света и температуры плавления. Обычно эти методы применяются лишь тогда, когда показатель преломления или точки кипения или обе величины вместе не дают точного ответа. Исследование вращения поляризованного света применяется к таким природным продуктам, как терпены и их производные. Температуры плавления и застывания имеют более широкое применение, в частности как критерий чистоты. Применение температур плавления получило значительное распространение в недавних исследованиях углеводородов, плавящихся при низких температурах [157]. Методы таких физических измерений могут быть найдены в книгах, посвященных физико-химическим методам [130], или в оригинальной литературе. Более широко применяются анализы с помощью ультрафиолетовых, инфракрасных спектров, спектров комбинационного рассеяния и масс-спектрального метода как для качественных, так и для количественных определений. [c.264]

    Основные колебания, рассматриваемые в первом приближении как колебания простых гармонических осцилляторов, дают в этой области спектра характерные полосы поглощения, и тонкая структура этих полос, обусловленная положением вращательных состояний, обычно может быть разрешена. Тонкая структура полос чувствительна к типу группы, в которой находятся атомы, участвующие в колебании например, тонкая структура полос поглощения, обусловленных колебанием углерод-водородной связи, обнаруживает отчетливое различие между метильной и метиленовой группами. Интерпретация природы этих полос в случае адсорбированных молекул основана на сравнении частот и относительных интенсивностей максимумов поглощения полос тонкой структуры со спектром чистых соединений, в которых отнесение частот уже проведено. Сдвиги частоты поддающейся идентификации группы указывают на изменение в ее электронном окружении. В близкой инфракрасной области (0,8—2,0 мк) располагаются обертоны основных колебаний. Слабые взаимодействия группы с ее окружением могут оказывать сильное влияние на ангармоничность колебаний группы. Поскольку относительные эффекты сильнее проявляются для обертонов, чем для основных частот, эти полосы обычно весьма чувствительны к факторам, связанным с окружением группы. Кроме того, в тех случаях, когда на основные частоты могут накладываться другие сильные полосы поглощения, у обертонов такое наложение может отсутствовать. [c.8]


    Интерпретация спектров ЯМР поливинилхлорида затянулась и оказалась спорной, частично из-за того, что не удавалось отнести все линии в спектрах, частично- из-за противоречивых выводов, сделанных на основании данных других методов, в особенности колебательной спектроскопии (инфракрасной и спектроскопии комбинационного рассеяния). Эти неясности и расхождения, по-видимому, в значительной степени должны быть разрешены при регистрации спектров ЯМР в сильных магнитных полях. Изучение модельных соединений — 2,4-дихлорпентанов и 2,4,6-трихлор-гептанов (см. разд. 3.2 и 9.2) — оказалось очень полезным при определении конформации полимерной цепи, но в го же время вызвало некоторую путаницу при установлении ее стереохимической конфигурации. Это касается, главным образом, спектра р-метиленовых групп, для которых разница между химическими сдвигами протонов уменьшается с ростом числа соседних т-диад. Мы не будем обсуждать здесь все довольно многочисленные работы, посвященные этой проблеме [1—24], а остановимся подробнее на результатах наиболее ранних и наиболее поздних работ. [c.119]

    Однако применение методов инфракрасной спектроскопии сопряжено с рядом специфических трудностей. Использование спектра поглощения для аналитических целей невозможно без правильной его интерпретации, но сделать достоверное отнесение полос в спектре можно лишь, изучив особенности строения раствора, характер взаимодействия молекул воды с молекулами окружения, т. е. лишь изучив физико-химические процессы, которые определяют характер спектра. Вопросы об определении содержания воды и [c.185]

    Изучение вращательных и колебательно-вращательных спектров, а также результаты электронно-дифракционных исследований привели к выводу, что молекула О3 имеет структуру равнобедренного треугольника и принадлежит к точечной группе симметрии С2и. Однако трудности в интерпретации инфракрасных спектров долгое время не позволяли определить истинные значения структурных параметров и в литературе дискутировались две модели молекулы О3 остроугольная и тупоугольная , в зависимости от величины угла между связями. [c.173]

    Впервые правильная интерпретация инфракрасного спектра озона была дана в 1948 г. в работе Вильсона и Баджера [4295], которые исследовали спектр озона в области 6700— 670 см (1,5—15 мк) и нашли новую полосу в районе 1110 см , тесно примыкающую к полосе 9,57 мк. Вильсон и Баджер смогли частично разрешить вращательную структуру новой полосы, которая не имеет (>-ветви, так же как полоса 14,2 мк, и близка к последней по интенсивности. На основании полученных данных они пришли к заключению, что интенсивная полоса 9,57 мк, или 1043 см , соответствует антисимметричному колебанию з, а две остальные частоты, VI и V2, равны 1110 и 705 см . [c.173]

    Инфракрасные спектры гидрированного полибутадиена вполне подобны спектрам промышленного полиэтилена [IV]. Некоторое различие можно вполне логично объяснить наличием более высокой непредельности и иным ее характером в гидрированных полимерах. Имеется также определенная полоса поглощения при 12,9 /г, на которой только у полиэтилена обнаруживается широкое плечо. Это, вероятно, обусловлено наличием этильных групп, образовавшихся в результате насыщения боковыми винильными группами. Наконец, дуплет, обусловленный деформационными колебаниями водорода в метиленной группе, показывает более слабую полосу поглощения при 13,7 1, чем при 13,9 1. У полиэтилена обе эти полосы имеют обычно сравнимую интенсивность. Этот тип отклонения принят как показатель сравнительно низкой кристалличности полиэтилена. Однако такая интерпретация до некоторой степени спорная. [c.170]

    Инфракрасный спектр СН4 при низкой разрешающей способности приведен на рис. 9 и 9 а. Частоты всех наблюдаемых полос метана и дейтеромета-нов даны в табл. 5. Интерпретация полос соответствует приводимой Герцбергом [7] и в более поздннх оригинальных работах для высших обертонов и составных полос СН4 она довольно неопределенна (см. [7]). Фундаментальные частоты СН4 и С64 (табл. 6) надежно установлены, Определены постоянные потенциальной энергии и рассчитаны в хорошем согласии с экспериментом фундаментальные частоты всех дейтерометанов [5]. [c.501]

    Электронным переходам соответствуют линии, лежащие в ультрафиолетовой и видимой областях спектра, а излучению, вызванному колебательными и вращательными переходами, — линии инфракрасной области (рис. 31). Электронные переходы часто сопровождаются одновременным изменением колебательных уровней. В результате спектры испускания молекулы не представляют собой совокупности отдельных линий, отвечающих электронным переходам, а обнаруживают более сложную структуру и имеют вид полос. Практически удобно изучать электронные спектры поглощения, используя жидкости или растворяя исследуемое вещество в малополярном растворителе. При этом электронный спектр не осложняется вращательно-колебательными переходами и лучше поддается интерпретации. Если свет с интенсивностью I проходит в веществе путь дЛиной х, причем концентрация поглощенного вещества равна С, то доля поглощенного света dill равна [c.63]

    Сложная молекула представляет собой набор взаимодействующих осцилляторов. Чем больше атомов в молекуле, тем сложнее перераспределение энергий по связям, вовлеченным в колебания. Результирующий спектр молекулы может дать точный ответ о структуре лишь для простых случаев. Точная интерпретация спектров сложных молекул требует трудоемкого анализа колебаний, и чаще всего инфракрасные спектры сложных молекул интерпретируются путем эмпирического сравнения их спектров со спектрами простых соединений. Но в настоящее время в распоряжении исследователей имеются очень существенные полуко-личественные соотношения. [c.37]

    Схема К. Эдельмана и У. Фаведжи удобна для интерпретации поведения монтмориллонита. Об этом свидетельствуют также исследования органических замещений, приведенные в главе ПГ. Однако по рентгенометрическим данным, для перевернутых, тетраэдрических групп в структуре не хватает места. Об отсутствии экспонированных гидроксилов На базальных поверхностях свидетельствуют также исследованные А. Н. Терениным инфракрасные спектры. [c.21]

    Инфракрасный спектр СО состоит из серии полос поглощения, каждая ии которых имеет два максимума, разделенных интервалом приблизительно в 30 сж Эти пары максимумов соответствуют Р- и Л-ветвям, рассмотренным в гл. X. Пары максимумов часто встречаются в виде дублетов, разделенных интервалом около 105 см , как это показано на рис. 4 [10]. В табл. 4 приведены положения полос поглощения, выраженные в микронах (первый столбец) и волновых числах (второй столбец). В третьем столбце указаны относительные интенсивности полос, а в следующем — средние значения волновых чисел для максимумов, лежащих близко друг к другу. В двух носледних столб цах приведены результаты интерпретации полос, согласно Шеферу [11] и Эйкену [12]. Шефер, приняв изогнутую модель молекулы, пришел к выводу, что максимумы поглощения наиболее интенсивных полос А, В ж С) с относительными интенсивностями соответственно 6, 10 и 10 непосредственно дают три основные частоты колебаний, которые в этом случае должны быть равны 3670, 2352 и 672 jn К подобным же выводам пришел и Деннисон [13]. Эйкен обратил внимание на несовместимость изогнутой модели молекулы двуокиси углерода с теплоемкостью газа. При низких температурах колебательная теплоемкость пренебрежимо мала, а опытные значения вращательной теплоемкости ясно указывают на вращение молекулы, подобное вращению жесткой гантели. Поэтому молекула должна быть линейной. Далее, в случае симметричной линейной трехатомной молекулы оптически активны только две из трех частот. Колебание, совершающееся с частотой (см. рис. 3), не изменяет дипольного момента молекулы (равного нулю) и поэтому не обнаруживается в спектре поглощения, за исключением комбинаций с двумя активными частотами. В связи с этим Эйкен принимает, что две из частот колебаний легко можно найти непосредственно иа положений интенсивных максимумов иогло1цения, а третья встречается только в комбинации. Для наиболее интенсивных полос в областях 15,05 — [c.412]

    Имеется полная свобода выбора применяемого монохроматического света, так как молекулы среды способны рассеивать свет почти любой длины волны. В этом отношении спектр комбинационного рассеяния более удобен для экспериментальной работы, чем инфракрасный спектр поглощения, ограниченный отдельными областями спектра, для которых поглощающие молекулы оптически активны. Спектры комбинационного рассеяния и инфракрасные спектры позволяют получать взаимно дополняющие данные, так как линии, отсутствующие в одном спектре, часто встречаются в другом. Три факта упрощают интерпретацию спектров комбинационного рассеяния 1) смещение линий спектра комбинационного рассеяния, т. е. разность волновых чисел падающего и рассеянного света, не зависит от частоты падающего света, 2) смещение линий спектра комбинационного рассеяния в первом приближении не зависит от состояния рассеивающей среды и 3) согласно уравнениям (33) и (34), квант равен разности энергий двух стационарных состояний рассеиваюш,ей молекулы, относительно которых имеются точные данные на основании спектров поглощения и испускания  [c.430]

    Отсюда вытекает, что нахождение силовых постоянных, харак-. теризующих водородный мостик, оказывается несколько более сложной задачей, чем решение ОСЗ для изолированной молекулы -воды. При этом возникающие трудности обусловлены отнюдь не усложнением расчетов, а причинами совершенно иного характера. Во-первых, даже небольшое усложнение системы приводит к рез-. кому увеличению числа искомых параметров, что в свою очередь требует введения в расчет гораздо большего числа частот собственных колебаний такой системы, чем для свободной молекулы.. Во-вторых, в связи с малой распространенностью автоматических длинноволновых (ниже 400 см ) инфракрасных спектрометров и лазерных установок для регистрации слабосмещенных линий ком- бинационного рассеяния спектры молекул и их комплексов в области колебаний собственно водородной связи практически совсем не изучены. В-третьих, даже в том случае, когда спектр низкочастотных колебаний исследуемой системы измерить удается, полосы собственных колебаний водородных мостиков оказываются перекрыты большим числом более сильных полос поглощения среды (кристалла или растворителя), лежащих в этой же частотной-области. При этом"обычно используемый для интерпретации полос Уон- и Уа-колебаний метод дейтерирования здесь оказывается совсем непригодным, так как в этом случае приведенная мас-( а меняется не вдвое, а менее чем на 10%. Последнее приведет к [c.41]

    Многие химики-аналитики считают, что из числа всех спектров поглощения наиболее полезными являются инфракрасные спектры. Это связано с тем, что с помощью обычно используемых спектрометров для многих веществ нельзя наблюдать характеристического поглощения в ультрафиолетовой области спектра, тогда как в инфракрасной области все вещества дают характеристическое поглощение. Подробное рассмотрение теории и интерпретации инфракрасных спектров и спектров комбинационного рассеяния дано в монографии Герцберга [864]. Можно рекомендовать также КНИГУ Рэндала, Фаулера, Фьюзона и Дэнгла [1521], пользование которой не требует математической подготовки. Различные вопросы, связанные с применением инфракрасных спектров в качественном и количественном анализах, описаны в работах Бернса, Гоура и др. [173, 174]. [c.47]

    Интерпретация результатов. Потенциал разбаланса моста при измерении теплопроводности пропорционален парциональному давлению какой-либо компоненты в газе-носителе Е = кр. Константа пропорциональности к зависит от разности величин теплопроводности газа-носителя и данной компоненты смеси, геометрической формы и других свойств детектора. Обычно представляют Е как функцию времени при постоянной скорости потока. Пример такого графика приведен на рис. 18.12. Количественное содержание какой-либо компоненты пропорционально площади, ограниченной соответствующим максимумом кривой [18]. В некоторых приборах площадь определяется автоматически специальным интегратором например, нижняя кривая на рис. 18.12. Идентификацию пиков такой записи проводят либо на основе предварительной калибровки по времени появления известных веществ, либо путем сбора эфлюирующих компонент и их анализа каким-либо другим способом. Вследствие этого метод газовой хроматографии представляет собой наилучшее дополнение к методу инфракрасного поглощения или масс-спектрометрии. [c.265]

    Теоретическая интерпретация в данном случае сильно осложнена из-за неопределенности структуры пленок. Вообще говоря, понятно, что растекшиеся белковые пленки состоят из полимерных молекул, в значительной мере развернутых и вытянутых, т. е. имеющих р-форму [169], причем поляр ые группы соединены водородными связями с молекулами воды в подложке, а боковые цепи в зависимости от их природы ориентированы либо вверх, либо вниз (рис. И1-38). При определенных условиях растекания на поверхности может сохраниться также некоторая часть исходной спиральной а-структуры (рис. 111-39). Присутствие а-спиралей проявляется в определенных особенностях инфракрасных спектров поглощения коллапсировапных пленок [170]. Не исключено, однако, что спиральная конфигурация белковых молекул может восстанавливаться в процессе коллапса. Важным дополнительным свидетельством действительного присутствия а-спиралей в монослоях является то, что скорость дейтериевого обмена пленки с подложкой слишком низка для пленки с развернутыми молекулами [167]. Эти наблюдения и обнаруженная с помощью методов дифракции электронов [c.138]

    В данном обзоре рассмотрено применение спектроскопии — как в экспериментальном отношении, так и с точки зрения интерпретации данных — при исследовании проблем, связанных с гетерогенным катализом. Поскольку за последнее время появились два превосходных обзора [1, 2] исследований в инфракрасной области спектра, эта часть исследований будет рассмотрена выборочно. Основной уиор будет сделан на применение спектрофотометрии в видимой и ультрафиолетовой областях, так как, по-видимому, это первый обзор по данному вопросу. Хотя спектроскопический метод часто не способен дать полное описание сложных каталитических систем, оп часто поставляет много новых сведений, расширяя наши возможности вскрывать основные закономерности катализа. [c.7]

    Коэффициенты экстинкции молекул часто сильно изменяются в результате адсорбции. Этот эффект, не говоря о любых других наблюдениях спектральных сдвигов, представляется весьма важным для интерпретации спектральных данных с каталитической точки зрения, так как появление таких изменений делает опасными и ненадежными попытки каким-либо путем оценить степень заполнения поверхности катализатора на основании наблюдаемых оптических плотностей полос поглощения адсорбированных молекул. Эти изменения не могут быть просто связаны с различиями в полярности, поскольку неизвестны соответствующие изменения в системах с растворителем. Изменение коэффициента экстинкции, пожалуй, может быть результатом специфических ориентаций молекул и их электронных векторов по отношению к электронному вектору полярной поверхности. Этот тип оптической анизотропии может приводить или к усилению, или к ослаблению интенсивности поглощения в зависимости от того, адсорбирована ли молекула так, что ее электронный вектор параллелен или перпендикулярен электростатическому полю поверхности. Хотя имеется очень мало количественных данных относительно влияния поля поверхности на интенсивность полос поглощения в ультрафиолетовой и видимой областях спектра, некоторые авторы обсуждали такие эффекты для инфракрасной области [3—5]. Как симбатные, так и антибат-ные изменения коэффициента экстинкции в зависимости от степени заполнения поверхности (0) наблюдались в инфракрасной и ультрафиолетовой областях. Коэффициент экстинкции для хемосорбированного на окиси меди этилена увеличивается с заполнением, тогда как на окиси никеля он падает, показывая, что направление изменения зависит не только от адсорбата, но и от природы адсорбента [6]. Когда с адсорбированными молекулами связано несколько полос поглощения, эти полосы могут по-разному изменяться с заполнением поверхности. Для ароматического соединения, адсорбированного так, что его плоскость параллельна плоскости поверхности, силовое поле, нормальное к поверхности, может увеличивать интенсивность плоских колебаний, в то время как интенсивность неплоских колебаний будет уменьшаться [7] в результате нелинейного изменения относительных интенсивностей с заполнением. Нелинейное изменение относительных интенсивностей полос поглощения связей С—О и С—Н кетонов, адсорбированных на монтмориллоните [5], и связей N—И и С—И аминов, адсорбированных на пористом стекле [8], было интерпретировано на [c.11]

    Величины энергий активации, рассчитанные из данных по скоростям при 75—150°, изменялись от 22,7 до 24,4 ккал моль с минимумом при 90°. Это хорошо согласуется с величиной 22,8 к/сал/лоль для разложения муравьиной кислоты на порошке никеля при 125—150°. Интерпретация данных, полученных из инфракрасных спектров, в дальнейшем была подтверждена калориметрическими измерениями. Так, например, теплота адсорбции муравьиной кислоты при монослойном заполнении составляла 18 ккал моль, что вполне удовлетворительно согласуется с теплотой образования /2 моля Н1(00СН)2, равной 13 ккал. [c.51]

    ООО и ряд слабых пиков около v aк 20 ООО см" . Двойная полоса отнесена к переходу в слабом поле T g -> Eg, расщепление объясняется эффектом Яна— Теллера [63,65]. Тетраэдрические комплексы [РеС14] в различных растворителях исследованы Фурлани с сотр. [66]. Группа полос наблюдалась в ближней инфракрасной области 3 ООО—6 ООО см , наиболее интенсивная полоса Vмaк = 4 ООО см отнесена к переходу Е — при интерпретации спектра учитывалось спин-орбитальное взаимодействие [c.119]

    РгО. Молекула РаО имеет симметричную нелинейную структуру (точечная группа симметрии Сго. Спектр поглощения РаО впервые был получен Хеттнером, Польманом и Шумахером [2059], однако часть наблюдавшихся в этой работе полос принадлежала, как это было показано в дальнейшем, загрязнениям. В монографии Герцберга [152] значения основных частот РаО приняты в соответствии с предложенной Сезерлендом и Пенни [39061 интерпретацией инфракрасного спектра РаО, полученного в работе [2059]. Однако в последующих исследованиях инфракрасного спектра РаО [763, 2294] было показано, что это отнесение ошибочно, поскольку часть полос, приписанных РаО, в действительности принадлежала СР4. [c.241]


Смотреть страницы где упоминается термин Инфракрасные интерпретация: [c.326]    [c.481]    [c.511]    [c.665]    [c.665]    [c.672]    [c.192]    [c.40]    [c.127]    [c.134]    [c.135]    [c.179]    [c.67]    [c.40]    [c.544]    [c.112]    [c.95]    [c.127]   
Органическая химия (1974) -- [ c.401 ]

Лабораторные работы по химии комплексных соединений (1964) -- [ c.37 , c.41 , c.42 ]

Лабораторные работы по химии комплексных соединений Издание 2 (1972) -- [ c.43 , c.46 , c.47 ]




ПОИСК







© 2025 chem21.info Реклама на сайте