Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Правила отбора в спектроскопии

    Условием для получения колебательных и вращательных спектров поглощения или испускания является изменение дипольного момента, тогда как переходы, наблюдаемые в спектрах Ki связаны с изменением поляризуемости молекул. Благодаря различию правил отбора ИК-спектроскопия и спектроскопия КР существен но дополняют друг друга. [c.267]

    Переходы, для которых О = О, называют запрещенными в дипольном приближении. Большая часть возможных переходов в атоме запрещена, в связи с чем в спектроскопии важное значение имеют правила отбора для разрешенных переходов. [c.44]


    Трудно разрешимы. В тех случаях, когда структура в спектре существует, определенные переходы могут быть разрешены или запрещены правилами отбора для вращательных и колебательных переходов. Эти правила также основаны на приближении Борна — Оппенгеймера, предполагающем разделение волновых функций отдельных мод. В асимметричной молекуле не существует ограничений на возможные колебательные переходы, так что ее спектр соответственно достаточно сложен. В симметричной молекуле только колебательные уровни той же колебательной симметрии для частиц на верхнем и нижнем электронных уровнях могут сочетаться друг с другом. Это значит, что, хотя все симметричные колебания сочетаются друг с другом, для антисимметричных колебаний возможны лишь переходы с До = 0, 2, 4 и т. д. Вращательная структура в электронной спектроскопии особенно сложна, поскольку вращательный момент молекулы может взаимодействовать с электронным моментом, причем известно несколько типов и случаев такого взаимодействия. Более того, возможные для молекулы вращения зависят от ее формы (линейная, симметричный волчок и т. д.), так что нет смысла приводить здесь отдельные правила отбора для вращения. Достаточно одного известного примера для перехода линейной молекулы правила отбора записываются в виде АЛ = 0, 1. [c.43]

    Теорию групп также используют до проведения расчетов, чтобы знать, будет ли интеграл типа V бр. Vj Л, встречающийся в квантовой механике, отличаться от нуля. Такая информация важна для исследования в следующих областях правила отбора для электронных переходов, химические реакции, ИК-спектры, спектры комбинационного рассеяния и другие разделы спектроскопии. [c.225]

    Методами нейтронной спектроскопии измеряют на поликристаллич. образцах спектр тепловых колебаний атомов (фононный спектр), а на монокристаллах с линейными размерами ок. 1см-т.наз. дисперсионные кривые, определяющие мн. физ. св-ва кристаллов. Нек-рые сведения можно получить также о диффузии атомов, об их подвижности и временах релаксации, влиянии примесей на матрицу и т. д., причем исследуют не только кристаллы, но и твердые аморфные в-ва и жидкости. Нейтронная спектроскопия, в отличие от оптической, позволяет проводить исследования при низких частотах (до 20 см ), причем в спектре проявляются все колебания (отсутствуют правила отбора). [c.206]


    Правила отбора в ЯМР спектроскопии таковы, что для одного и того же вида изотопов относительная интенсивность линий в спектре точно соответствует относительному содержанию ядер в том или ином химическом окружении. Это обстоятельство выгодно отличает ЯМР от других видов спектроскопии. Например, в правильно записанном спектре ЯМР С НТА интенсивность линий, отвечающих поглощению карбоксильных групп и метиленовых фрагментов, соответствует соотношению [c.418]

    Наблюдение запрещенных многоквантовых переходов с помощью непрерывных методов [1.97—1.99] затрудняется сложностью разделения переходов различных порядков и уширением линий. Применение двумерной импульсной спектроскопии вносит решающие преимущества в этой области [1.1(Ю, 1.101], поскольку она позволяет легко получить неискаженную форму линии и четко разделить переходы различных порядков. Вследствие того что в двумерном эксперименте определяется когерентность, которая прецессирует в период эволюции, обычные правила отбора можно обойти. Теперь мы можем безнаказанно вкусить запретные плоды спектроскопии. [c.28]

    Теперь мы можем воспользоваться теорией групп для вывода правила отбора А = 1,-используемого в микроволновой спектроскопии линейных молекул. Для того чтобы было возможно наблюдение прямого поглощения илн испускания электромагнитного излучения, переходный диполь между исходным и конечным энергетическими состояниями должен отличаться от нуля. Переходный диполь ц,/ (см. разд. 6.7) определяется следующим образом  [c.64]

    В спектроскопии правила отбора указывают, что некоторые переходы теоретически допустимы, тогда как другие переходы теоретически запрещены. Эти правила зависят от конкретного типа эксперимента. Например, инфракрасная спектроскопия основана на прямом поглощении электромагнитного излучения. Правило отбора для переходов в инфракрасном спектре точно [c.84]

    Это правило отбора утверждает, что для наблюдения перехода-между некоторыми двумя состояниями соответствующий переходный диполь должен иметь хотя бы одну ненулевую компоненту (либо координату, так как (1 = ег или, в других обозначениях, ед). В отличие от ситуации в микроволновой спектроскопии координаты атомов (а следовательно, и диполь молекулы) изменяются в процессе колебаний. Поскольку мы уже получили выражение для гейзенберговской матрицы О, нам известно, какие колебательные состояния имеют компоненты координат, связывающие их, и это сразу же позволяет вывести правила отбора для инфракрасных спектров в приближении гармонического осциллятора. Из уравнения (4.19) следует, что [c.85]

    Колебательная спектроскопия включает также метод комбинационного рассеяния. Спектроскопия комбинационного рассеяния основана на явлении неупругого рассеяния света. Энергия рассеиваемого света отличается от энергии падающего света на величину, соответствующую энергии колебательного возбуждения. Взаимодействие между светом и колеблющейся молекулой зависит от ее поляризуемости. Соответствующий оператор, по которому определяется правило отбора, представляет собой оператор квадрупольного момента, включающий квадраты координат. Уравнение (4.25) определяет гейзенберговскую матрицу для (Х . Эта матрица имеет ненулевые элементы на диагонали и на расстоянии двух элементов от нее. На первый взгляд может показаться, что Ап должно быть равно 2, однако исследование матричных элементов показывает, что они зависят только от ненулевых элементов матрицы О. Поэтому правило отбора в спектроскопии комбинационного рассеяния, выраженное через Ап, в приближении гармонического осциллятора должно было бы совпадать с правилом отбора в спектроскопии инфракрасного поглощения. Однако в дальнейшем мы убедимся, что существуют налагаемые симметрией правила отбора, которые неодинаковы для инфракрасной спектроскопии и спектроскопии комбинационного рассеяния. [c.86]

    Ранее мы уже обсуждали вывод правил отбора для жесткого ротатора и гармонического осциллятора. Теперь мы рассмотрим вывод правил отбора для атомной спектроскопии на основании учета симметрии. Интенсивность поглощения энергии при переходе из состояния i в состояние / можно определить как энергию, поглощаемую из падающего пучка с единичным поперечным сечением за единицу времени. Математически этому определению отвечает соотношение (см. разд. 6.7) [c.176]

    Полное описание состояния молекулы в газовой фазе требует указания ее вращательного колебательного и электронного состояний. Спектроскописты изучают разности энергий между состояниями. В приближениях Борна — Оппенгеймера и независимых частиц полная волновая функция молекулы является простым произведением электронной, колебательной и вращательной волновых функций. Симметрия конкретного состояния определяется произведением представлений для электронной, колебательной и вращательной функций. Спектральные правила отбора зависят от полной симметрии исходного и конечного состояний, а не от индивидуальных типов симметрии волновой функции того или иного вида. Вращательная спектроскопия занимается меньшими энергетическими интервалами, чем колебательная и тем более электронная спектроскопия. Обычно когда изучается вращательный спектр молекулы, она находится в основном электронном и колебательном состояниях. Поэтому в ней возникают лишь изменения вращательного состояния, и накладываемые симметрией правила отбора в этом случае определяются только представлениями вращательных состояний. Эти правила отбора обсуждались в гл. 3. [c.347]


    Рентгеновская спектроскопия края полосы поглощения. Явление краевого поглощения элемента возникает в том случае, когда энергия падающего фотона достаточна, чтобы выбить электрон с атомного уровня. Наблюдаемая тонкая структура краевого поглощения зависит от свойств возбужденного электрона. Например, для Ьз-края полосы поглощения платины — одного из трех Ь-краев полосы поглощения, которые связаны с возбуждением 2р-электрона — тонкая структура в длиноволновой области (поглощение Косселя) обусловлена переходом электрона на неполностью заполненные Ъй- и б5-уровни (правила отбора Д/= = 1), в то время как тонкая структура в коротковолновой области (поглощение Кронига) обусловлена взаимодействием электрона с соседними атомами. Поэтому характер тонкой структуры становится зависимым от химического окружения атома. [c.375]

    Одно из важнейших применений полученного результата связано с установлением правил отбора для спектроскопических переходов между двумя состояниями системы. Под правилами отбора понимают основанное на рассмотрении симметрии теоретическое предсказание интенсивности соответствующего перехода будет ли она равна нулю или отлична от нуля. Как показано в гл. 13, посвященной молекулярной спектроскопии, основной величиной при вычислении интенсивности перехода [c.136]

    Инфракрасная спектроскопия и спектроскопия комбинационного рассеяния. Оба эти метода дают возможность установить характеристические частоты колебаний молекулы. Для большинства молекул полная совокупность колебательных частот может быть получена только при совместном использовании и ИК-спектра, и спектра КР. Это связано с различием интенсивности полос в этих спектрах для разных типов колебаний. Такое различие особенно велико у молекул, обладающих высокой симметрией. В этих случаях некоторые полосы в ИК-спектрах могут иметь коэффициент поглощения, близкий к нулю, а другие — сравнительно низкую интенсивность в спектре КР. Говоря более строго, симметрия молекулы может привести к появлению правил отбора. Для переходов в ИК-спектре и спектре КР они различны, так как интенсивность полосы в обоих случаях зависит от различных электрических свойств молекулы. Для ИК-переходов необходимо изменение дипольного момента при колебании, для переходов в спектре КР—изменение поляризуемости. Отсюда следует, что в двух спектрах одновременно могут проявиться лишь немногие частоты, и потому нужны оба спектра. [c.68]

    Изучение природного лигнина затруднено рядом обстоятельств, основными из которых следует считать, в частности, высокую лабильность нативного лигнина и наличие химической связи его с другими компонентами древесины. Поэтому вполне понятен тот интерес, который проявляют химики к методам молекулярной спектроскопии, позволяющей исследовать растительные ткани, не прибегая к жестким физическим и химическим воздействиям на них. Целым рядом исследователей [1—4, 16] была применена в работе инфракрасная спектроскопия при изучении лигнина и получены интересные данные. Тем не менее, до сих пор отсутствует убедительная и общепринятая интерпретация полос поглощения в ИК-спектрах лигнина. Это обусловлено тем, что для столь сложного объекта, каким является лигнин, химическая структура которого однозначно не установлена, нельзя применить правила отбора. [c.137]

    И. полимеров в твердом состоянии можно также проводить на основании различий в колебательных спектрах изотактич. и синдиотактич. форм. Цепочки различных полимеров имеют различную симметрию и, следовательно, различные правила отбора в колебательном спектре. Практически, не относя все полосы поглощения в спектре полимера, можно легко рассчитать число и поляризацию полос поглощения, основываясь лишь на симметрии цепи, и таким путем идентифицировать конфигурацию полимеров (см. Колебательная спектроскопия). Достаточную информацию по этому вопросу можно получить при измерениях дихроизма нек-рых полос поглощения в спектре полимера. Определения темп-ры плавления и плотности пока имеют ограниченное применение. [c.397]

    Для атомной спектроскопии наибольший интерес помимо дипольных переходов представляют квадрупольные переходы. В этом случае х = 2, и правила отбора по J приобретают вид [c.394]

    При философском осмыслении молекулярного аспекта строения материи в равной степени приемлемы два подхода. Первый основан на концепции преобладающей электронной конфигурации, второй — на концепции химической формулы, обычно используемой химиками и физиками. Идея преобладающей электронной конфигурации базируется на успешном применении оболочечной модели в атомной спектроскопии и, вероятно, наиболее приемлема при рассмотрении взаимодействия материи и излучения [1]. Концепция электронной конфигурации ведет непосредственно к делокализованным молекулярным орбиталям. Это, в частности, следует из основанных на молекулярной симметрии правил отбора в спектроскопии. Согласно этим правилам, индивидуальные энергетические уровни заполнены электронами, пространственное распределение которых отражает элементы симметрии ядерного остова. Эти электроны оказываются делокализованными между эквивалентными атомами. С другой стороны, уверенное применение химических формул основано на экспериментальных данных, интерпретируемых с точки зрения локализованного описания электронного строения молекул [2], поскольку электроны находятся вблизи ядер, с которыми они участвуют в образовании химических связей. [c.74]

    Строгого правила отбора для До колебательных переходов, как и в оптической электронной спектроскопии, в фотоэлектронных спектрах нет, и часто наблюдается хорошо развитая колебательная структура полос. Она видна, например, на рис. 1.5, где приведен фотоэлектронный спектр бромоводорода. Соответствующий более низкому значению энергии I дублет интенсивных узких пиков без колебательной структуры относится к ионизации с несвязывающей орбитали Вг и обусловлен спин-орбитальной связью (см. гл. VI 2.2). Полоса при более высоких энергиях / относится к ионизации со связывающей орбитали и расстояния между пиками ее структуры соответствуют частоте валентного колебания v(H—Вг) ионизованной молекулы. В ФЭС также справедлив принцип Франка —Кон дон а, т. е. наиболее вероятны вертикальные переходы. [c.145]

    Переходы, для которых Dftj = 0, называются запрещенными в дипольном приближении, и соответствующие этим переходам спектральные линии отсутствуют в наблюдаемом спектре. Большая часть возможных переходов в атоме запрещена, в связи с чем в спектроскопии важное значение имеют правила отбора для разрешенных переходов. [c.40]

    Основная идея их работ состоит в том, что явления симметрии могут играть такую же важную роль в химических реакциях, как и в построении молекулярных орбиталей или в молекулярной спектроскопии. Становится даже возможным, как это делается для спектральных переходов, сформулировать некоторые основанные на симметрии правила отбора о разрешенности и занрещенности химических реакций. [c.313]

    Рамановская спектроскопия основана на исследовании спектров рассеяния света. При столкновении фотона с молекулой может иметь место упругое соударение, при котором фотон не теряет энергию, но изменяет направление своего движения. Такое рассеяние известно под названием рэлеевского и лежит в основе метода определения молекулярных весов соединений. Соударения могут быть также иеупругими они характеризуются тем, что энергия молекулы и фотона изменяется. Поскольку эти изменения носят квантовый характер и определяются колебательными и вращательными уровнями молекулы, анализ спектра рассеянного света (спектра Рамана) дает почти ту же информацию, что и обычный инфракрасный спектр. Необходимо, однако, помнить один момент правила отбора в этих двух случаях различаются. В инфракрасной спектроскопии разрешены одни переходы, в раман-спектро-скопии — другие. Таким образом, имеет смысл снять и тот и другой спектр исследуемого образца. До недавнего времени раман-спектроско-пия находила весьма ограниченное применение из-за малой интенсивности рассеянного света. Однако использование для возбуждения лазеров существенно повысило ценность указанного метода [16—20]. В качестве примера на рис. 13-4,5 приведен раман-спектр 1-метилурацила. Заметим, что интенсивность полосы амид II (относительно полосы амид I) в раман-спектре значительно меньше, чем в инфракрасном спектре поглощения. Особый интерес представляет резонансная раман-спектроскопия [19—21], где используется лазерный пучок с длиной волны, соответствующей длине волны электронного перехода. Рассеяние света при этом часто существенно усиливается на частотах, которые отличаются от частоты лазера на частоту рамановского рассеяния, происходящего на группах хромофора или на группах молекулы, соседствующей с хромофором. Несмотря на определенные экспериментальные трудности, указанный метод позволяет изучать структурные особенности какого-либо конкретного участка макромолекулы. [c.13]

    Рамановские спектры алмаза первого и второго порядков, полученные на ориентированных образцах при лазерном возбуждении, также описаны. Были уточнены однофононные дисперсионные кривые для алмаза, полученные ранее по данным нейтронной спектроскопии, приведены энергетические значения для фононов. На рис. 154, б показан спектр поглощения алмаза в области 1332 см . Вертикальными линиями обозначены значения волновых чисел, которые соответствуют по энергии двухфононным переходам, разрешенным правилами отбора для решетки типа алмаза. Значения энергий фононов в критических точках зоны Бриллюэна в сравнении с приведенными данными показывают, что на основании имеющихся в настоящее время сведений о динамике решетки алмаза детальное объяснение всех особенностей двухфононного участка спектра не представляется возможным. По-видимому, динамика решетки алмаза, возмущенной примесями и другими структурными дефектами, способными вызвать изменения в фононном спектре и привести к нарушению правил отбора, изучена недостаточно. физическая классификация алмазов, основанная на особенностях проявления реальной структуры кристаллов алмаза, при их исследовании различными методами непрерывно детализируется. В настоящее время известно более 50 различных дефектных центров в алмазной решетке, и лишь для некоторых из них удалось установить конкретную природу. [c.416]

    Характерной чертой одиночного смещивающего импульса является то, что кросс-пики находятся в противофазе. Однако применение протяженных периодов смещивания, включающих в себя несколько смешивающих импульсов, могут приводить к переносу когерентности, для которого не соблюдаются правила отбора, выполняемые в случае одиночного импульса. Типичными примерами подобного рода являются эстафетный перенос намагниченности (разд. 8.3.4) и полная корреляционная спектроскопия (разд. 8.3.5). [c.484]

    В спектроскопии комбинацноииого рассеяния правило отбора зависит от оператора электрического квадрупольного момента. Оператор квадру-польного момента преобразуется в группе 0(3) по представлению Покажите, что в спектроскопин вращательного комбинационного рассеяния для AJ должно выполняться правило отбора Д/ = 2. [c.76]

    Установление колебательных правил отбора осуществляется обычным способом. Произведение представлений исходного и конечного состояний должно содержать в своем разложении представление оператора перехода. В случае колебаний исходным состоянием является основное состояние, обладающее симметрией гамильтониана для основного состояния. Оно должно быгь полносимметричным. Вывод правила отбора основывается на том, что разрешенный колебательный переход должен происходить в возбужденное колебательное состояние, которое обладает трансформационными свойствами какой-либо компоненты оператора перехода. Для обычного поглощения или испускания излучения (инфракрасная спектроскопия) речь идет о компонентах дипольного оператора. В группе С20 компоненты дипольного оператора преобразуются по представлениям Ль В1 или В2. Все эти типы симметрии колебаний молекулы воды отвечают разрешенным в инфракрасном спектре переходам. В спектроскопии комбинационного рассеяния оператором перехода является оператор поляризуемости, который преобразуется как квадрат дипольного оператора. Его компоненгы зависят от декартовых координат как х , г/ г , ху, хг и уг. Представления, по которым преобразуются эти компоненты, обычно тоже указываются в таблицах характеров. Для группы С20 имеются компоненты поляризуемости, которые преобразуются по каждому из ее пред-сгавлений. Следовательно, любой тип колебаний молекулы с [c.335]

    Правила отбора для поглощения света требуют, чтобы для разрешенного перехода начальное и конечное состояния отличались типами трансляционной симметрии. Для группы Огл, приведенной в табл. 3, это означает,, что переходы, начальным состоянием для которых является состояние Ag,. могут совершаться только в состояния типов симметрии Вш, В и. и В и,-Значительный интерес для спектроскопии представляет возможность того, что эти типы симметрии, которые нельзя применить к электронной волновой функции состояния, годятся в случае внбронной волновой функции, представляющей собой сочетание электронной волновой функции и функции неполносимметричного колебания. Таким образом, комбинация электронного состояния тина симметрии Вщ с одноквантовым колебанием типа b g дает вибронное состояние симметрии Вы х sg = Bzu- Однако если принято приближение Борна — Оппенгеймера, то момент перехода из основного-состояния в это вибронное состояние равен нулю, что соответствует переходу без момента , даже если этот переход формально разрешен. Это объясняется тем, что в указанном приближении колебательные волновые функции в интеграле момента перехода могут быть вынесены в виде общего множителя за знак интеграла  [c.543]

    Инфракрасная спектроскопия широко применялась при исследовании других полимеров. Выводы таких работ основывались на эффектах ориентации (дихроизм), которые позволяют получать данные о структуре кристалла, и на изменениях в спектре при кристаллизации, обусловленных в большинстве случаев эффектами межмолекулярного взаимодействия. Наибольший вклад в изучение этой области внесли Лян, Кримм и Сезерленд. Среди работ этих авторов есть статьи по полиэтилену и политетрафторэтилену, а также статья [63], в которой излагаются основы теории колебаний полимеров и правила отбора, а также рассматриваются эффекты, возможные при использовании поляризованного излучения. Лян [61 ] провел дальнейшую теоретическую разработку правил отбора в спектрах полиме- [c.604]


Смотреть страницы где упоминается термин Правила отбора в спектроскопии: [c.153]    [c.153]    [c.32]    [c.371]    [c.109]    [c.9]    [c.350]    [c.371]    [c.400]    [c.575]    [c.285]    [c.533]   
Квантовая химия (1985) -- [ c.64 , c.66 ]




ПОИСК





Смотрите так же термины и статьи:

Инфракрасная спектроскопия, номенклатура правила отбора

Комбинационного рассеяния спектроскопия правила отбора

Перенос когерентности в 2М-спектроскопии амплитуды и правила отбора

Правила отбора

Правила отбора в спектроскопии для атома в магнитном поле

Правила отбора в спектроскопии для атома в электрическом поле

Правила отбора в спектроскопии для свободного атома

ЯМР-спектроскопия правило



© 2024 chem21.info Реклама на сайте