Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электролиты строение растворов

    Еще один вопрос был связан с тем, каким образом электрический ток проходит через раствор. Чтобы ответить на этот вопрос, потребовалось изучить строение растворов. Работы в этом направлении привели к созданию теории строения растворов и электропроводности. Первый механизм прохождения тока через раствор — эстафетный механизм — был предложен Т. Гротгусом. В дальнейшем Фарадей высказал предположение о диссоциации веществ под действием тока на ионы и ввел понятия катод, анод, анион, катион, электролит. Затем были получены доказательства того, что распад на ионы происходит и без тока. [c.9]


    Еще один вопрос был связан с тем, каким образом электрический ток проходит через раствор. Механизмы прохождения тока через раствор и металлический проводник различны, так как прохождение тока через раствор сопровождается электрохимическими превращениями. Чтобы ответить на этот вопрос, потребовалось изучить строение растворов. Работы в этом направлении привели к созданию теории строения растворов и электропроводности. Первый механизм прохождения тока через раствор — эстафетный механизм — был предложен X. Гротгусом. В дальнейшем М. Фарадей высказал предположение о диссоциации веществ под действием тока на ионы и ввел понятия катод, анод, анион, катион, электролит. Затем были получены доказательства того, что распад на ионы происходит и без тока. [c.11]

    Существенный шаг к современному представлению о строении растворов электролитов был сделан М. Фарадеем в 30-х годах XIX в. Фарадей один из первых указал на возможность диссоциации электролита на ионы. Однако, по мнению Фарадея, это явление происходит только под влиянием электрического поля. Отсюда и буквальный смысл термина электролит , предложенного Фарадеем, который в переводе [c.7]

    Изучение электрической проводимости электролитов открывает возможность определять подвижность ионов в растворах и число ионов, на которое распадается электролит, строение комплексных соединений и др. На изучении электрической проводимости основан метод кон-дуктометрического анализа и т. д., что рассматривается в курсах электрохимии и физической химии. [c.195]

    Особое строение раствора, находящегося в контакте с металлом, которое возникает, как только металл помещают в жидкость, содержащую растворенный электролит, даже при отсутствии переноса электронов между растворенным веществом и металлом ( идеальный электрод при этих условиях). Естественно, структура раствора вблизи электрода и ее изменение в зависимости от потенциала электрода являются важными факторами, влияющими на перенос заряда (если 011 имеет место). Эти явления опираются на теорию двойного слоя. [c.63]

    Строение двойного электрического слоя в условиях специфической адсорбции. Адсорбция — концентрирование вещества из объема фаз на поверхности раздела между ними — может быть вызвана как электростатическими силами, так и силами межмолекулярного взаимодействия и химическими. Адсорбцию, вызванную силами неэлектростатического происхождения, принято называть специфической. Вещества, способные адсорбироваться на границе раздела фаз, называются поверхностно-активными (ПАВ). К ним относятся большинство анионов, некоторые катионы и многие молекулярные соединения. Специфическая адсорбция ПАВ, содержащегося в электролите, влияет на структуру двойного слоя и величину ф1 потенциала (рис. 172). Кривая 1 на рис. 172 соответствует распределению потенциала в двойном электрическом слое в отсутствие ПАВ в растворе. Если раствор содержит вещества, дающие при диссоциации поверхностно-активные катионы, то за счет специфической адсорбции поверхностью металла катионы будут входить в плотную часть двойного слоя, увеличивая ее положительный заряд (кривая 2). В условиях, способствующих усилению адсорбции (например, увеличение концентрации адсорбата), в плотной части может оказаться избыточное количество положительных зарядов по сравнению с отрицательным зарядом металла (кривая 3). По кривым распределения по- [c.474]


    Двойной слой на границе раствор —металл создается электрическими зарядами, находящимися на металле, и ионами противоположного знака противоионами), ориентированными у поверхности электрода. В формировании ионной обкладки двойного слоя принимают участие как электростатические силы, под влиянием которых противоионы подходят к поверхности электрода, так и силы теплового (молекулярного) движения, в результате действия которых двойной слой приобретает размытое, диффузное строение. Кроме того, в создании двойного электрического слоя на границе металл —раствор существенную роль играет эффект специфической адсорбции поверхностно-активных ионов и молекул, которые могут содержаться в электролите. Теория двойного электрического слоя сложилась на основе работ Гельмгольца, Штерна, А. И. Фрумкина и др. [c.473]

    Как видно из рис. 1, для, осуществления электрохимической реакции необходима некоторая система — электрохимическая цепь. Существенные элементы такой цепи — металлические (или полупроводниковые) электроды, проводник второго рода (раствор электролита, его расплав или твердый электролит) и границы раздела фаз между металлом и электролитом, между двумя различными металлами и между двумя различными электролитами. Закономерности протекания тока в электрохимической цепи, а также закономерности электрохимического равновесия определяются свойствами всех этих элементов. Строение металлов и полупроводников, а также их электропроводность служат объектом изучения физики, а не химии. Объекты изучения электрохимии — ионные системы (проводники второго рода) и границы раздела фаз с точки зрения их структуры и механизма переноса заряженных частиц. [c.5]

    Таким образом, представление о диффузионном строении жидкостной обкладки слоя учитывает взаимодействие ионов в растворе. Представление о диффузном слое помогло объяснить ряд электрокапиллярных явлений, например снижение и смещение максимума электрокапиллярной кривой в зависимости от концентрации и состава капиллярноактивных ионов в электролите. [c.203]

    Если процесс восстановления протекает на катоде с малым перенапряжением выделения водорода, первая стадия процесса не должна определять кинетику суммарного процесса, а потенциал катода можно считать близким к равновесному. В этом случае строение двойного электрического слоя и адсорбция поверхностноактивных веществ не будут сказываться на кинетике процесса, и определять закономерности последней будет замедленность химической стадии восстановления органического вещества атомарным водородом. Если же процесс протекает на катоде с высоким перенапряжением выделения водорода, определять кинетику восстановления будет замедленность первой электрохимической стадии, и кинетические закономерности восстановления не будут отличаться от наблюдаемых для перенапряжения выделения водорода на этом металле. Плотность тока в этом случае не будет существенно зависеть от концентрации органического вещества в электролите. Подобные кинетические закономерности наблюдаются также при использовании, так называемых, переносчиков водорода, каталитических добавок ионов металлов переменной валентности, таких как титан, ванадий, хром, церий и т. д. Подобные добавки применяют в тех случаях, когда электродный процесс восстановления органического соединения требует значительно большего перенапряжения, чем восстановление иона металла переменной валентности, например в то время как восстановление органического вещества происходит без затруднений в растворе под действием который окисляется до Естественно, что кинетика суммарного процесса восстановления органического соединения в этом случае будет определяться замедленностью процесса восстановления ионов металла переменной валентности. [c.445]

    Хотя теория строения двойного электрического слоя на границе электрод — электролит базируется главным образом на экспериментальных данных, полученных на ртути, все же эта теория не содержит положений, основанных на специфических свойствах ртутного электрода, поэтому нет причин для сомнений в возможности ее применения к твердым электродам. Для решения этого вопроса А. Н. Фрумкин с сотрудниками сравнил величины удельной емкости двойного слоя на ряде твердых металлов и на ртути в широкой области потенциалов в растворах различного состава. Наиболее прямым методом решения этого вопроса оказался метод измерения импеданса границы твердый электрод — электролит. Однако известны большие методические трудности при работе с твердыми электродами, поскольку на измерения влияют всевозможные электрохимические реакции, шероховатость и другие неоднородности поверхности, возрастают требования к чистоте реактивов. Каждый из этих факторов может привести к частотной зависимости комплексного сопротивления (импеданса) границы электрод — электролит, что затрудняет интерпретацию экспериментальных значений емкости. В связи с этим в настоящее время имеется мало надежных данных о емкости двойного слоя для твердых электродов. Обычно критерием надежности считается сопоставление дифференциальной емкости для исследуемых металлов и ртутного электрода, дифференциальная емкость которого хорошо согласуется с теорией двойного слоя. [c.244]


    Однако, по предпо-образование на катоде цветных металлического вида пленок, содержащих до 20 % титана, является вторичным химическим процессом в сульфоксидном электролите. В целом сведений о получении чистых, незагрязненных органикой катодных осадков титана, циркония и гафния в литературе нет. Удовлетворительного качества металлические осадки получены для данной подгруппы лишь в виде сплавов [302, 257, 175, 1152, 255, 256, 271]. Полученные сплавы с кадмием, медью, алюминием обладают повышенной микротвердостью и высокой коррозионной устойчивостью. Это, в первую очередь, относится к сплавам титана. В органических растворах соединения титана стабилизируются, и на основе изучения взаимосвязи строения комплексных соединений титана с их способностью к катодному разряду возможно целенаправленное регулирование состава сплава и скорости его осаждения. [c.158]

    Для того чтобы понять физический смысл фг-потенциала, рассмотрим вкратце строение двойного слоя [46]. Как уже указывалось, на границе раздела металл — электролит возникает электрический слой, образованный отрицательными или положительными зарядами, имеющимися на поверхности металла, и ионами противоположного знака, располагающимися вблизи электрода в растворе. Не следует, однако, думать, что все ионы обкладки двойного слоя одинаково сильно связаны с поверхностью электрода. Благодаря наличию кинетического движения ионов, с одной стороны, и электростатического взаимодействия между ионами и электродом, —с другой стороны, получается определенное распределение ионов вблизи поверхности электрода. Часть ионов прочно связана с поверхностью, мало подвижна и расположена на близком расстоянии от поверхности (радиус иона). Эта часть ионов образует так называемый плотный или гельмгольцевский слой. Другая часть ионов гораздо слабее связана с поверхностью электрода, более подвижна и простирается на расстояние, превышающее радиус иона. Она образует так называемый диффузный слой, в котором имеется определенное распределе- [c.28]

    Никель, как и железо, способен к пассивации. Его пассивность в отличие от железа более устойчива и может возникать на воздухе, в водных растворах щелочи и при анодной поляризации. Добавка никеля к стали или чугуну обычно оказывает облагораживающее действие а черные металлы, их сплавы с никелем более стойки к коррозии. Пассивность никеля обусловлена образованием стойких окисных пленок, закрывающих поверхность металла и затрудняющих переход его ионов в раствор. В зависимости от способа пассивации строение и состав окисных пленок могут быть различны. Пассивность никеля может вызываться хемосорбцией гидроксильных или кислородных ионов иа поверхности металла, образованием его окислов и гидроокисей или других нерастворимых в данном растворе соединений. Пассивирование никеля при анодной поляризации определяется свойствами анионов электролита и сильно зависит от величины pH раствора чем больше его pH, тем скорее и полнее пассивируется металл . Пассивации способствуют также повышение анодной плотности тока, снижение температуры и наличие в растворе ионов никеля. Противоположное влияние на пассивацию никеля оказывает присутствие в электролите хлор-иона, сульфатов, карбонатов и других кислотных анионов 5 З", а также наличие примесей в металле Агрессивное действие ионов хлора и кислородсодержащих анионов проявляется тем сильнее, чем меньше концентрация щелочи. В растворах карбонатов никелевый анод нестоек. [c.212]

    Трудно предположить, чтобы и в наших исследованиях большие органические ионы или молекулы при адсорбции растворялись в поверхностном слое электрода. Обнаруженную зависимость силы тока (скорости катодного процесса восстановления Н3О+) от времени можно было бы объяснить неравномерной адсорбцией ингибитора на участках с различным адсорбционным потенциалом [8]. Однако маловероятно, чтобы время адсорбции на различных участках поверхности значительно различалось, так как физическая адсорбция (а мы ее здесь предполагаем) — быстрый процесс. Поэтому, очевидно, причину наблюдающегося изменения силы тока при добавке в электролит органического ингибитора следует искать в иных явлениях. Было показано (стр. 130), что нри адсорбции молекул органических веществ или ионов строение двойного электрического слоя изменяется с образованием переходной зоны. Ее возникновение сопровождается вытеснением из двойного слоя ионов фона и молекул воды, изменением потенциала и pH в приэлектродном слое и затруднением диффузии ионов водорода к поверхности металла. Эти изменения, вызванные возникновением переходной зоны, про- [c.140]

    Электрохимические реакции протекают в поверхностном слое на границе раздела электрод—электролит. Естественно, что скорость электродных реакций должна зависеть от строения этого слоя. При погружении металла в раствор он обычно либо посылает свои ионы в раствор, либо адсорбирует их из раствора. Такой переход заряженных частиц (ионов) из металла в раствор (или наоборот) вызывается разностью химических потенциалов этих частиц в обеих фазах и изменяет скачок потенциала между фазами, существующий благодаря контактной разности потенциала, адсорбции дипольных молекул и т. п. [c.48]

    В предыдущих разделах был выяснен физический смысл электродного потенциала, показана его связь со скачками потенциала на границах раздела фаз, рассмотрены условия возникновения скачка потенциала на границе электрод — электролит (основной составной части электродного потенциала) и разобрана зависимость его величины от состава раствора. При обсуждении механизма возникновения скачка потенциала на границе электрод — электролит было отмечено, что главной причиной его появления является обмен ионами между металлом электрода и раствором. Этот процесс протекает вначале (т. е. в момент создания контакта между металлом и раствором) в неэквивалентных количествах, что приводит к появлению зарядов разного знака по обе стороны границы раздела фаз и к появлению двойного электрического слоя. Однако ни структура последнего, ни распределение зарядов по обе стороны межфазной границы там не рассматривались. Строение двойного электрического слоя не имеет принципиального значения для величины равновесного электродного потенциала, который определяется изменением свободной энергии соответствующей электрохимической реакции. В то же время строение двойного электрического слоя играет важную роль в кинетике электродных процессов, включая и кинетику обмена ионами в равновесных условиях, определяя интенсивность этого обмена (величину тока обмена Г). Теория строения двойного электрического слоя служит поэтому как бы переходным звеном между электродным равновесием и электродной кинетикой. [c.227]

    Опубликованные значения ДЯс относятся к растворам с ионной силой р. от О до 4. Во многих случаях теплота ДЯс была определена при высоких значениях л, поскольку при той же ионной силе была измерена и константа устойчивости. В обширных обзорах [5—8] обсуждаются способы определения концентрационных констант равновесия (т. е. констант равновесия в растворе, где л имеет постоянное значение, большее нуля) при высокой концентрации электролита, считающегося инертным (так называемый метод постоянной ионной среды). Многие исследователи пользовались этим методом при изучении равновесий в растворе с целью преодоления трудностей, связанных с определением коэффициентов активности и вычислением термодинамической константы равновесия (т. е. константы равновесия при л = 0). Значения концентрационных констант равновесия, которые можно определить в растворе с постоянной ионной силой, пригодны дтя сравнения с другими константами, найденными при той же ионной силе в присутствии того же самого электролита. Однако с помощью значений концентрационной константы равновесия, энтальпии или энтропии, найденных при высокой ионной силе, очень трудно определить значения, относящиеся к стандартному состоянию с х = 0. В то же время лишь такие стандартные значения можно сопоставлять с другими термодинамическими данными при изучении энергии химической связи и строения комплексов. Методу постоянной ионной среды, применяемому для определения ДЯс, присущи три основных недостатка 1) дополнительно вводимый электролит в какой-то мере препятствует сольватации ионов металла, лигандов и комплекса, за счет чего система [c.16]

    Различие во взглядах исследователей на состав и структуру преобладающих ионов характерно не только в случае цианистых растворов меди, но также и ряда других электролитов. Поэтому естественно, что для выяснения механизма электрохимических процессов, протекающих в таких растворах, необходимы также более глубокие исследования строения находящихся в электролите комплексных частиц. [c.24]

    Изложенные воззрения на строение мицеллы позволяют рассматривать золи как системы, схожие с растворами электролитов, Разница (и очень значительная) между этими двумя системами заключается в том, что электролит есть определен- [c.282]

    Природа реагентов. Здесь большую роль играет характер химических связей в соединениях, строение их молекул. Например, выделение водорода цинком из раствора хлоро-иодорода происходит значительно быстрее, чем из раствора уксусной кислоты, так как полярность связи Н—С1 больше, чем для связи О—И в молекуле СН3СООН, иначе говоря, из-за того, что НСГ сильный электролит, а СН3СООН слабый электролит в водном растворе. [c.27]

    Таким образом, при растворении некоторых веществ в воде они, благодаря гидратации, настолько преображаютс я (получаются новые соединения, имеющие иное строение), что получают новые свойства, какими не обладали до взаимодействия с водой. Например, хлорид алюминия AIGU— ковалентное соединение (т. мл. 193 0), тогда как раствор хлорида алюминия — сильный электролит. Причина такого превращении в том, что в растворе это соединение приобретает иной состав, а именно (. 1 (Н,0) I U. Это соединение, подобно хлориду ам, юния, имеет ионную связь. [c.73]

    Относительная высокая электропроводность спиртовых растворов объясняется именно эстафетным механизмом переноса как следствие сходного строения молекул воды и спирта, а также значительного сродства последних к протону. Как уже отмечалось, число переноса иона — это отношение количества электричества, перенесенного ионами данного типа, к общему количеству электричества, прошедшему через электролит. Растворы одной и той же соли в разных растворителях имеют различные числа переноса. Так, в растворах Na l число переноса катиона Na+ изменяется в зависимости от растворителя следующим образом  [c.309]

    Каждый из этих реагентов имеет свои преимущества и недостатки. В некоторых случаях бутиламин образует имины, которые восстанавливаются при потенциалах выше потенциала второй полярографической волны кислорода, так что может не потребоваться пропускать через раствор ток азота. Однако этот реагент имеет не слишком приятный запах, и исследователи часто предпочитают не пользоваться им без особой необходимости. С другой стороны, хлоргидрат семикарбазида обычно легко образует фоновый электролит, приготавливать и работать с ним гораздо приятнее, чем с бутиламином. Однако реакция образования семикарба-зона весьма чувствительна к типу реакционной среды и типу анализируемого карбонилсодержащего соединения. Кстати, различную чувствительность к карбонилсодержащим соединениям можно использовать для анализа. Скорости реакции даже для близких по строению соединений различны, и, используя это, можно анализировать смеси карбонилсодержащих соединений [67]. [c.104]

    Теория Гуи оправдывается лучше всего там, где теория Гельмгольца оказывается неприложимой, и, наоборот, последняя дает лучшую сходимость с опытом в тех случаях, когда первая дает неверные результаты. Следовательно, строению двойного электрического слоя должно отвечать некоторое сочетание моделей, предложенных Гельмгольцем и Гуи. Такое предположение было сделано Штерном (1924) в его адсорбционной теории двойного электрического слоя. Штерн полагал, что определенная часть ионов удерживается вблизи поверхности раздела металл — электролит, образуя гельмгольцевскую обкладку двойного слоя с толщиной, отвечающей среднему радиусу ионов электролита . Остальные ионы, входящие в состав двойного слоя, распределяются диффузно с постепенно убывающей плотностью заряда. Для диффузной части двойного слоя Штерн, так же как и Гуи, пренебрег собственными размерами ионов. Кроме того, Штерн высказал мысль, что в плотной части двойного слоя ионы удерживаются не только за счет электростатических сил, но и за счет сил специфической адсорбции, т. е. силами некулоновского происхождения. Поэтому в растворах, содержащих поверхностно-активные ионы, их число в гельмгольцевском двойном слое может быть не эквивалентным заряду поверхности металла, а превосходить его на некоторую величину, зависящую от свойств иэпов и заряда металла. Таким образом, по Штерну, следует различать две модели двойного электрического слоя, одна из которых относится к растворам поверхностно-инактивных электролитов, [c.271]

    В кинетике протекания стадия переноса заряда, замедленность которой представляет собой непосредственную причину возникнове-, ния электрохимического перенапряжения, особую роль должно играть строение двойного электрического слоя на границе раздела двух фаз. Действительно, если другие стадии электродного процесса— транспортировка частиц и гомогенное химическое превращение— протекают хотя и вблизи границы раздела электрод — электролит, но далеко за пределами двойного слоя, то собственно электрохимический акт разыгрывается внутри этого слоя. Распределение потенциала в двойном слое и положение реагирующих частиц в нем должны поэтому существенно влиять и на скорость электрохимического акта, и на величину электрохимического перенапряжения. Фрумкин, первым высказавший эту мысль, дал ее количественное оформление на основе некоторых предположений. Первое из них сводится к тому, что реально существующий двойной слой может быть удовлетворительно описан моделью Штерна. Согласно второму предположению, в электрохимическом акте участвуют лишь частицы, находящиеся в плотной части двойного электрического слоя, т. е. непосредственно у поверхности электрода. Как следствие этого, средняя энергия заряженных частиц и их концентрация у поверхности должны быть иными, чем в глубине раствора. Это различие обязано существованию скачка потенциала в диффузной части двойного слоя. [c.368]

    Тип границы и диффузионный потенциал. Если соприкасаются два раствора, содержащие различные электролиты, то строение границы между ними и, следовательно, концентрации ионов в различных точках зависят от того способа, каким эти растворы приведены в соприкосновение. Очевидно, что числа1 переноса каждого вида ионов и до некоторой степени активность этих ионов существенно зависят от типа границы. Следовательно, диффузионный потенциал может изменяться в зависимости от типа жидкостного соединения. Однако если оба раствора содержат один и тот же электролит, то потенциал не должен зависеть от характера жидкостного соединения. В этом случае раствор в любой точке пограничного слоя будет состоять только из одного электролита, находящегося там в определенной концентрации таким образом, каждому виду ионов должны соответствовать определенные число переноса и активность. Поэтому результат интегрирования уравнения (42) не зависит от характера градиента концентрации в промежуточном слое между двумя растворами это теоретическое предположение было подтверждено опытом [13]. Действительно, диффузионный потенциал не зависит от строения границы, если с обеих ее сторон находится один и тот же электролит, и это обстоятельство делает возможным точные измерения э. д. с. [c.293]

    Способность ионитов к ионному обмену объясняется их строением. Любой ионит состоит из твердой основы (матрицы), на которую тем или иным способом нанесены специальные функциональные группы, способные при помещении ионита в раствор к образованию на поверхности ионита потенциалообразующих ионов, т. е. к возникновению заряда. Вследствие этого вокруг твердой фазы создается диффузионный слой из противоположно заряженных ионов (противоионов). Появление потенциалообразующих ионов может происходить либо адсорбцией функциональными группами ионита из раствора ионов какого-либо знака заряда (например, —КНз- Н+- МН+4), либо диссоциацией функциональных групп под действием молекул воды (например, —ЗОзН- 50з +Н+). В последнем случае противоионами, образующими диффузный слой, являются ионы, переходящие в раствор в процессе диссоциации. Ионы диффузного слоя обладают повышенным запасом кинетической энергии и могут выходить из диффузного слоя в раствор, но при этом из раствора в диффузный слой должны переходить ионы того же знака заряда. Таким образом, испит можио представить как твердый электролит, неподвижная часть которого представляет одну его часть, а подвижные противоионы — другую (рис. 3.1). [c.59]


Смотреть страницы где упоминается термин Электролиты строение растворов: [c.353]    [c.116]    [c.273]    [c.399]    [c.72]    [c.399]    [c.448]    [c.103]    [c.69]    [c.237]    [c.6]   
Химическое оборудование в коррозийно-стойком исполнении (1970) -- [ c.6 , c.8 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция из растворов электролитов. Образование и строение двойного электрического слоя

Вязкость и строение растворов электролитов

Особенности строения растворов электролитов

Погодин, М. X. Карапетьянц. Теплопроводность водных растворов электролитов и некоторые вопросы их строения

Растворы электролитов

Растворы электролитов. pH растворов

Строение двойного электрического слоя на границе между электродом и раствором электролита



© 2025 chem21.info Реклама на сайте