Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стирол роста цепи

    Напишите схему реакции полимеризации стирола по радикальному механизму, расчленив ее на отдельные стадии инициирование, рост цепи, обрыв цепи. [c.241]

    При анионной полимеризации реакции ограничения роста цепей возможны как за счет реакций передачи цепи (путем отрыва активным центром протона от растворителя или мономера либо путем переноса гидрид-иона с конца растущей цепи на противоион или мономер), так и за счет спонтанной изомеризации активного центра, сопровождающейся уменьщением его активности. Передача цепи через растворитель протекает, например, при анионной полимеризации стирола, катализируемой раствором калия в жидком аммиаке  [c.22]


    Для получения полимеров, несущих молекулу фуллерена в основной цепи, также применяют методы анионной сополимеризации. Так, сополимеризация стирола и Сбо под действием Ма-нафта-лина приводит к образованию сополимера, содержащего фуллерен в основной цепи, однако параллельно образуется заметная доля полимера с разветвленной структурой [12]. При анионной полимеризации акрилонитрила в присутствии фуллерена последний выступает в роли ограничителя роста цепи [13]. Благодаря высокой скорости полимеризации цепи успевают вырасти до значительных размеров. Полимеры содержат на конце Сбо-группу и имеют линейное строение [13]. [c.197]

    При полимеризации стирола рост полимерной цепи происходит по правилу голова к хвосту  [c.141]

    Второй порядок ПО стиролу означает, что стадия роста цепи является бимолекулярной. Это видно из приведенной выше химической реакции. 06- [c.239]

    Относительно невысокая скорость роста при полимеризации под влиянием металлического лития приводит к чрезвычайно интересной особенности, отличающей литий от других щелочных металлов. Как установили Тобольский и сотрудники [93, 94], сополимер стирола с метилметакрилатом, полученный под влиянием лития, занимает по своему составу промежуточное положение между сополимерами, образующимися при радикальном и анионном инициировании. Следовательно, происходит одновременный рост цепи по обоим механизмам — на радикальном конце цепи идет обычная для данной пары мономеров радикальная сополимеризация, а на анионном — нолимеризуется только гораздо более активный в анионных процессах метилметакрилат (М1)  [c.354]

    Торможение полимеризации вызывается тем, что нормальная реакция роста цепи задерживается Оа- Строение полимерных перекисей следует из легкости их распада так, из полимерной перекиси стирола образуются бензальдегид и формальдегид. [c.943]

    Вычислите начальные скорость роста цепи, длину кинетической цепи, если в условиях реакции /с = 1,4-10 л моль с к ,-.ка = 11, а передачей цепи можно пренебречь. Какова доля стирола а, принимающего участие в реакции роста цепи, в общем расходе этого мономера Определите зависимость а от соотношения констант кр и к . [c.133]

    Далее, на стадии роста цепи анионный заряд поляризует я-связь молекулы стирола таким образом, что положительный конец диполя присоединяет инициированный мономер. При этом на конце вновь присоединенной молекулы возникает карбанион  [c.239]


    Ограничимся рассмотрением обычного положения, когда рост цепи происходит без замедления и когда полимеризация оканчивается присоединением. Примером такого случая является взаимодействие стирола с активным донором водорода. Для схемы простой полимеризации [c.238]

    Прежде всего следует отметить чрезвычайно высокую скорость полимеризации хлоропрена по сравнению с другими обычными диеновыми мономерами и даже со стиролом. Так, константа роста цепи составляет 0,423 м /(моль-с) цри 35°С [1]. [c.225]

    Поскольку в системах стирол — акрилат состав сополимера можно точно выразить при помощи уравнения (5.8) через две константы сополимеризации, не прибегая к уравнению (5.13), желательно выяснить, почему влияние предпоследних акрилатных групп сказывается на реакции обрыва, но не роста цепи. Следует напомнить, что мономерный акрилат реагирует так, что в образующемся радикале эфирная группа оказывается связанной с концевым углеродным атомом главной цепи. Это объясняется резонансной стабилизацией такого радикала. Таким образом, в реакции обрыва цепи [c.208]

    Радикальная полимеризация всегда протекает по цепному механизму. Функции активных промежуточных продуктов при радикальной полимеризации выполняют свободные радикалы. К числу распространенных мономеров, вступающих в радикальную полимеризацию, относятся этилен, винилхлорид, винилацетат, винил-иденхлорид, тетрафторэтилен, акрилонитрил, метакрилонитрил, метилакрилат, метилметакрилат, стирол, бутадиен, хлоропрен й другие мономеры. Радикальная полимеризация обычно включает несколько элементарных химических стадий инициирование, рост цепи, обрыв цепи и передачу цепи. Обязательными стадиями являются инициирование и рост цепи. [c.7]

    Если инициирование протекает гораздо медленнее, чем рост (система стирол—бутиллитий), получаются упоминавшиеся выше S-образные кривые кинетики. Их ход передается уравнением (V-55), с его помощью можно вычислить обе кинетические константы и к . В принципе можно учесть и ассоциацию металл-огранических соединений. Метод нестационарной кинетики применим также к системам, в которых существуют акты обрыва и ограничения роста цепей. Кинетический анализ подобных процессов сложен, и в его рассмотрении нет необходимости, так как в этих случаях нужен слишком большой объем экспериментальных данных, чтобы провести надежное сопоставление теории с опытом. [c.353]

    Раствор передавливают в промежуточную емкость 5, охлаждают до 40 °С и загружают инициатор — перекись грег-бутила, регулятор роста цепи — меркаптан, стабилизатор и пластификатор. Предварительную полимеризацию стирола проводят в форполимеризаторах первой и второй ступени. В форнолимеризатор первой ступени 6 насосом подают раствор каучука с добавками и при температуре 130 С проводят полимеризацию в течение 5— [c.20]

    Полимеризация стирола при 60 °С проводится в присутствии 0,26 моль-л четыреххлористого углерода С = = 1,1-10 ) в качестве регулятора роста цепи. Сколько этил-трихлорацетата (Сз = 0,65 10 ) следует взять вместо СС14, чтобы степень полимеризации не изменилась  [c.52]

    В соответствии с принятым принципом оценки активности мономеров в реакциях радикальной полимеризации активность радикалов, образующихся из этих мономеров, расположится в антибат-ной (строго обратной) последовательности. Иными словами, время жизни радикала тем меньше, чем он активнее, т. е. чем меньше эффект сопряжения неспаренного электрона радикала с электронной структурой заместителя в молекуле мономера. Эта активность может быть определена по значению отношения констант скоростей обрыва и роста цепи чем больше значение /(оВр/ Ср, тем меньше стационарная концентрация радикалов растущих цепей и выше ак-дивность радикалов, т. е. ниже активность соответствующих мономеров. Количественно, например, активности радикалов винилацетата, метилметакрилата и стирола в реакции роста цепи соотносятся как 20 2 1. [c.30]

    Установлено, что спиновые ловушки, С-фснил-Н-трет.бутилнитрон, 2-метил-2-нитрозопропан, I -трет.бутил-З-фенил-1 -окситриазен являются эффективными регуляторами роста цепи радикальной полимеризации метилметакрилата бутил метакрилата, бутилакрилага, стирола, при этом наблюдаются основные признаки полимеризации в режиме живых цепей подавляется гель-эффект значения молекулярной массы полимеров равномерно нарастают с увеличением конверсии мономера и величины коэффициента полидисперсности значительно меньше таковых для полимеров, синтезированных без добавок, В присутствии С-фенил-N-трет.бутилнитрона впервые осуществлен контролируемый рост молекулярной массы в процессе полимеризации винилхлорида. На основании полученных экспериментальных данных, результатов исследований методом ЭПР и квантово-химических расчетов предложены оригинальные схемы контроля роста полимерной цепи, связанные с образованием лабильной связи растущего и нитроксильного радикалов. [c.128]


    Полимеризация свободными щелочными металлами относится к этой категории, так как в данном случае свободно-радикальный рост цепи, по-видимому, не имеет места, о чем свидетельствует полимеризация а-метил-стирола металлическим калием. Инициатором, по-види-мому, является [c.240]

    Скорость A.n., особенно при умеренных т-рах, в большинстве случаев значительно выше скорости радикальной полимеризации. Это обычно связано с более высокой действующей концентрацией активных частиц (в пределе она м. б. равиа исходной концентрации инициатора). Собственная же реакц. способность разл. форм активных центров варьирует в очень широких пределах даже для одного и того же мономера. Напр., для А. п. стирола при 30 °С порядок величины абс. константы скорости роста цепи (в л/моль-с) при переходе вдоль равновесий (2) изменяется от 10 " (литиевые ассоциаты, II) до 10 (своб. анионы, V). [c.167]

    Полярность среды и температура полимеризации оказывают влияние на скорость роста цеРн и на природу получаемого полимера. Так, при полимеризации стирола прн одинаков ,1х температуре и природе противоиона константа скорости роста цепи возрастает с ростом полярности среды прн снижении температуры скорость полимеризации уменьшается Однако эта корреляция распространяется только на данную конкретную систему и не может быть перенесена на все процессы, и ицнируемые анионными катализаторами. [c.135]

    Обсуждение реакций карбениевых ионов с я-электронными парами будет ограничено здесь рассмотрением реакций с олефинами и бензоидными ароматическими соединениями. В обоих случаях первоначальным продуктом является другой карбениевый ион, который далее реагирует с образованием устойчивых продуктов. Среди реакций циклогексадиенил-катионов, генерируемых электрофильной атакой на бензоидиые соединения, преобладает реакция, ведущая к восстановлению ароматического секстета обычно за счет потери протона. Карбениевые ионы, образующиеся при взаимодействии карбениевых ионов с олефинами, могут претерпевать дальнейшие превращения по нескольким конкурирующим направлениям, одним из которых является атака на другую молекулу олефина, что приводит к образованию полимерных продуктов. Из простых а-олефинов при катионной полимеризации образуются продукты с низкой молекулярной массой, поскольку в таких системах процессы переноса преобладают над процессами роста цепи. Полимеры с высокой молекулярной массой образуются обычно из таких олефинов как виниловые эфиры и стиролы. Типичные величины относительной реакционной способности виниловых мономеров, определенные при изучении сополимеризации в нитробензоле, следующие [46] бутадиен 0,02, изопрен 0,12, винилацетат 0,4, стирол (1,0), изобутен 4 виниловые эфиры реагируют очень быстро. Иногда катионная полимеризация протекает стереорегу-лярно. [c.541]

    Важную роль в реакциях карбанионов играет ассоциация ионов, она была подробно изучена в связи с анионной полимеризацией [66]. В табл. 2.7.30 приведены данные о реакционной способности свободных карбанионов ( ) и ионных пар (к ) живых анионов полистирола на стадии роста цепи при полимеризации стирола в различных растворителях. Разделенные ионные пары и свободные карбанионы реагируют приблизительно с одинаковыми скоростями, однако реакционная способность тесных ионных пар значительно ниже одновременно наблюдается сложная зависимость от противоиона и от растворителя. Стереохимия анионной полимеризации также изменчива. Так, метилметакрилат в присутствии литийорганических инициаторов в растворителях с низкой диэлектрической проницаемостью, например в толуоле, полимеризуется с образованием изотактического полимера. Однако добавление небольших количеств тетрагидрофурана или диметоксиэтана при низких температурах приводит к преимущественному образованию синдиотакти-ческого полимера. [c.560]

    Многие MOHO- и 1,1-Дизамещенные производные этилена, например винилхлорид, винилацетат, стирол, 1,1-дихлорэтилен, бутадиен-1,3, акрилонитрил, акриламид, метилакрилат и метилметакри-лат, могут полимеризоваться по радикальному механизму. Заместители стабилизируют радикалы, образующиеся при росте цепи, протекающем согласно уравнению (6). Вследствие этого все или почти все мономерные звенья включаются в растущую цепь указанным в схеме (6) путем, а не по реакции (7). Из-за пространственных препятствий 1,2-ди-, три- и тетразамещенные этилены обычно полнмеризуются с трудом или вообще не полимеризуются. Исключением из этого правила являются тетрафторэтилен и некоторые циклические ненасыщенные мономеры. [c.302]

    Свободные радикалы — частицы с очень высокой реакционной способностью, и присутствие в реакционной смеси небольших количеств иных веществ кроме инициатора и мономера может резко изменить ход полимеризации. Для получения полимеров с большой молекулярной массой необходимо использовать тщательно очищенные мономеры. Влияние примесей может осуществляться по двум основным направлениям. Примером первого из них служит полимеризация стирола в присутствии небольшого количества тетрахлорида углерода. Полимеризация происходит с такой же скоростью, что и в отсутствие ССЦ, но образующийся полистирол имеет меньшую среднюю молекулярную массу и содержит следы хлора. Это обусловлено явлением передачи цепи , когда обрыв цепи приводит к образованию радикала, способного инициировать цепную полимеризацию находящегося в системе мономера (схемы 10, 11). Число растущих цепей и, следовательно, скорость полимеризации не изменяются, но число элементарных актов на стадии роста цепи до ее обрыва уменьшается. Особенно важен тот случай, когда сами макромолекулы выступают в роли передатчиков цепн. Это приводит к появлению разветвлении (схема 12), причем образующиеся боковые цепн могут быть очень длинными. В тех случаях, когда растущий радикал атакует свою собственную цепь (схема 13), образуются более короткие боковые цепи. Типичными агентами передачи цепи являются тетрахлорид углерода, толуол и тиолы. [c.303]

    Анионная полимеризация. Диены-1,3, винильные производные с электроноакцепторными заместителями, такие как акрилонитрил, эфиры акриловой кислоты или стирол, а также лактамы и другие соединения можно полимернзовать по анионному типу. В качестве инициаторов используют основания (включая основания Льюиса), например алкоголяты, щелочные металлы, кетилы, реактивы Гриньяра и др. Рост цепи, например при анионной полимеризации стирола под действием амида патрия, протекает через растущий анион цепи  [c.717]

    Уоллинг и Пеллон [362] изучали полимеризацию стирола прп 40° и давлениях до 6000 кГ см . Эти исследователи определяли влияние давления на константу скорости роста цепей, измеряя скорость полимеризации эмульсии стирола, содержавшей около 40% полимера и около 60% незаполимеризовав-шегося стирола. Ниже приведены полученные в этой работе результаты  [c.205]

    Относительная реакцнонноспособность представляет собой отношение константы скорости реакции мономера с макрораднкалом к константе скорости роста для стирола, принятой за 1 константы скорости реакции макрорадикала с чужим мономером рассчитывались, исходя нз значений констант сополимеризации и констант скорости роста цепи для соответствующих мономеров. [c.8]

    При термодинамической оценке способности мономера полимеризоваться большое знацение имеет так называемая предельная температура полимеризации (см. с. 633), т. е. температура, при которой константы скорости роста цепи и деполимеризации равны. Изобутилен, например, не дает высокомолекулярного соединения в условиях, обычных для радикальной полимеризации, так как существенно ниже нуля. Однако подобная реакция легко протекает при —100°С по катионному механизму . Термодинамическая возможность осуществления радикальной полимеризации этилена, стирола, винилхлорида и метилметакрилата при более высоких температурах, характерных для таких процессов, обусловлена тем, что Т р. этих мономеров равна соответственно 407, 225, 312 и 200 0. [c.232]

    Бутадиеновые каучуки могут быть получены полимеризацией бутадиена и сополимеризацней его со стиролом или акри-лонитрилом. Для ускорения полимеризации процесс проводят в присутствии катализаторов. Катализаторами служат преимущественно металлический натрий или его соединения, хлористый алюминий, фтористый бор и др. Качество полимера зависит от температуры и давления. Применяются также инициирующие вещества (перекиси), которые распадаются с образованием свободных радикалов, дающих начало росту цепей полимера. [c.261]

    Это, попятно, приводит к остановке роста цепи. Данные говорят о том, что остановка происходит гораздо скорее при высоких температурах, чем при низких. Повидимому, это связано с тем, что при высоких температурах молекулы стирола дальше друг от друга в среднем на величину, соответствующую меньшей плотности укидкости. [c.441]

    Следует иметь в виду, что приведенные в таблице кинетические константы роста цепи определены далеко не с одинаковой точностью. С наибольшей точностью константы Ар определены для винилацетата, метилакрилата, метилметакрилата и стирола. Однако и для этих мономеров определено с точностью, не большей чем +1 ккалЫолъ. Сомнительны данные для винилхлорида. Все же таблица 34 позволяет сделать некоторые интересные выводы. [c.206]

    Реакции ограничения роста цепей отличаются при катионной полимеризации больше энергие активации, чем реа ции роста, и поэтому пе грают заметной роли в низкотемпературных процессах. В этих условиях часто наблюдается полное отсутствие обрыва (/ 3=0). При к >к это приводит к быстро устанавливающемуся постоянству концентрации активных центров, т. е. к стационарной скорости. Переход в другую температурную область способен вызвать появление реакций обрыва и тем самым изменить всю кинетику процесса. Существуют, одпако, и такие катионные системы, в которых процесс протекает с относительно малой скоростью, лишь постепенно достигающей постоянного значеш1я (например, полимеризация стирола или изобутилена под влиянием омплексов четыреххлор Стого олова). В этих случаях, по-ви-димому, [c.301]

    В работе [6] исследовали сополимеризацию стирола с бис-(4-метакрил-оксибензилидеп)этилендиамином и бг с-(4-метакрилоксибензилиден)-1,4-фени-лендиамином (до мол. %). Было показано, что константа скорости присоединения к подвешенной группе практически не отличается от константы роста цепи на свободном бифункциональном мономере. В то же время методом деструкции найдено, что вероятность циклизации сначала растет с увеличением глубины реакции, а потом достигает предельного значения, достигая значения 0,4 при выходе свыше 10%. Предельная величина вероятности циклизации меняется в зависимости от природы сшивающего сомономера и для систем на основе стирола составляет [5] [c.94]

    Известно, что для регулирования процесса образования полИ мерных молекул применяются модификаторы (меркаптаны, дисульфиды и т. д.), являющиеся реакционноактивными агентами передачи цепи. Модификатор, взаимодействуя с растущей молекулой полимера, дезактивирует ее, и рост цепи прекращается. Однако при этом образуется реакционноактивная молекула модификатора, которая дает начало новой цепи, в результате чего остаток модификатора внедряется в полимер. Правильность этих представлений была подтверждена на примере полимеризации стирола при использовании в качестве модификатора бутилмеркаптана, меченного радиоактивной серой [500], Изучение ббразовавшихся полимерных молекул (полистирола) показало, что в их составе действительно обнаруживаются составные части модификатора, содержащие радиоактивную серу. [c.275]


Смотреть страницы где упоминается термин Стирол роста цепи: [c.276]    [c.472]    [c.404]    [c.260]    [c.210]    [c.225]    [c.77]    [c.360]    [c.276]    [c.263]    [c.323]    [c.446]    [c.41]   
Катионная полимеризация (1966) -- [ c.236 , c.239 ]




ПОИСК





Смотрите так же термины и статьи:

Рост цепи

Стирол кинетика и механизм инициирования и роста цепи

Стирол на свету, рост цепи, абсолютная константа скорости

Стирол ограничения роста цепи

Стирол реакция роста цепи

Стирол рост цепи, абсолютная константа

Стирол энергия роста цепи



© 2025 chem21.info Реклама на сайте