Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионы липофильные

    Следует отметить, что, как и можно было ожидать, диэтиловый эфир и этилацетат имеют низкую экстракционную способность. Менее понятны плохие характеристики хлорбензола и о-дихлорбензола. Эти растворители часто используют в тех случаях, когда существует опасность побочных реакций с хлороформом или дихлор мета ном. Вовсе не обязательно исключать, растворитель с низкой константой экстракции как неподходящий, однако его применение означает, что в любой данный момент во время реакции лишь небольшая часть теоретически возможного количества ионных пар присутствует в органической фазе, и, следовательно, реакция будет идти в таких растворителях медленнее. Впрочем при использовании более крупных, более липофильных катионов (см. следующий раздел),, этот эффект в некоторой степени нейтрализуется. [c.26]


    Примечателен широкий диапазон величин констант экстракции в ряду галогенидов. Очевидно, иодид, так же как и перхлорат, экстрагируется предпочтительнее. Отсюда непосредственно следует, что, если присутствуют небольшие количества катионов, они будут экстрагироваться в виде ионных пар в основном с очень липофильными анионами. Этот эффект, вероятно, будет мешать желаемой реакции МФК, особенно если в процессе реакции образуются иодид-ионы. Поэтому иодиды (и в меньшей степени бромиды), как правило, не следует использовать в качестве катализаторов МФК. [c.33]

    В принципе можно рассчитать из известных значений дх, как показано на с. 23. Для грубой оценки можно считать, что относительные константы экстракции для различных катионов и неполярных растворителей очень близки между собой. Это справедливо лишь в редких случаях только как первое приближение и является слишком большим упрощением в других случаях. Часто реагент или одна из ионных пар, участвующих в истинной реакции, присутствуют в концентрации, близкой к насыщению. Тогда следует ожидать отклонений от идеального поведения. Более того, полярность и способность растворителя к образованию водородных связей по-разному влияет на различные анионы. Известны константы селективности /Сх— для конкурентной экстракции хлорида по отношению к бромиду, иодиду и перхлорату из воды в 11 растворителях [121] и для хлорида относительно цианида в 8 растворителях [122]. Как ожидалось, /Сс1—>ск изменяется незначительно, причем максимальный интервал изменения от 0,9 (вода/г ыс-1,2-дихлорэтан) до 3,1 (вода/бензонитрил). Специфичное влияние растворителя более ярко выражено для серий анионов, сильно различающихся по липофильности [121]. Следует особо отметить, что гидроксилсодержащие растворители выравнивают различия  [c.34]

    Однако против этой схемы было выдвинуто много возражений. Мы уже видели, что гидроксид по своей природе экстрагируется с трудом. Это связано как с его низкой растворимостью, так и с малой константой экстракции. Эти трудности увеличиваются еще больше, если в конкуренцию за каталитическое количество имеющегося четвертичного аммониевого катиона вступает какой-либо более липофильный анион, например галоген. По мере образования иона галогена в ходе реакции экстракция гидроксида будет все больше и больше ингибироваться. Правда, это рассуждение не имеет общего характера , например, оно, по-видимому, не пригодно для хлорид-иона. Кроме того, равновесие депротонирования между Н—Sub и гидроксидом четвертичного аммония в органической фазе сильно сдвинуто влево из-за большой разницы в кислотности (субстрата и воды). [c.58]


    Это равновесие в целом сдвинуто в нужную сторону, поскольку типичные анионы органических субстратов более липофильны, чем ионы галогенидов. [c.59]

    Надо заметить, что возможность протекания реакции между алкилгалогенидами и основаниями внутри мицелл в качестве реакционной среды исключается на том основании, что эффективные МФ-катализаторы, как правило, представляют собой липофильные ониевые соли с объемистыми, большей частью симметричными заместителями [23]. Типичные мицеллообразующие агенты имеют небольшую полярную группу [например, ( Hз)зN+—] и длинный липофильный хвост. Хотя некоторые симметричные тетраалкиламмониевые соли могут до некоторой степени агрегироваться в воде [36], вопрос о том, является ли этот процесс следствием мицеллообразования, остается открытым [37]. Кроме того, симметричные ониевые ионы имеют более низкую степень агрегирования, чем типичные мицеллообразующие агенты, и хуже растворяют органические субстраты >[38]. Однако еще более важен тот факт, что типичные мицел-лярные реакции проводят в гомогенных водных или органи- [c.65]

    Основные факторы, которые влияют на поведение катализаторов, уже обсуждались в разд. 1.3.1—1.3.4 и 2.1. Катион катализатора должен быть достаточно липофильным, чтобы обеспечить как достаточную растворимость экстрагируемой ионной пары, так и высокую степень экстрагируемости ее в органиче- [c.67]

    Бумажную хроматографию применяют в основном для определения гидрофильных веществ. При проведении разделения на импрегнированной бумаге метод можно использовать для разделения липофильных веществ. При получении неудовлетворительных результатов разделения методом фракционного распределения даже с большим числом ступеней разделения применяют сочетание метода бумажной хроматографии с методами, основанными на других принципах разделения (адсорбции, ионного обмена). Область применения бумажной хроматографии можно расширить, применяя бумагу специальных сортов или импрегнируя обычную бумагу. [c.359]

    Изменение смачиваемости зависит от химического состава породы, первоначального состояния поверхности и от массового соотношения гидрофильно-липофильного баланса [23]. По характеристике смачиваемости карбонатные породы более гидрофобны, чем терригенные, что связано с ионным типом связей в кристаллической решетке, способствующих активному взаимодействию полярных компонентов нефти с породой и ее гидрофобизации [71, 72, 73]. При этом углы смачивания данных пород достигают 140—150°. Изменение смачиваемости твердой поверхности с гидрофобной на гидрофильную для карбонатных пород способствует улучшению отрыва пленок и капель нефти, увеличению их подвижности, активизации капиллярного впитывания. [c.70]

    В случае двухфазных систем это должно приводить к тому, что ионы О" " стремятся находиться на поверхности раздела фаз при этом малые радикалы (особенно Ме, Е1) будут входить в водный слой, а длинноцепочечные радикалы и другие липофильные группы будут выталкиваться в органическую фазу. Этому способствует также тетраэдрическая конфигурация четвертичного атома азота [24]. [c.21]

    Следует напомнить структуру и свойства наиболее употребительных детергентов. Это — всегда довольно крупные молекулы, и в каждой из них можно обнарун ить более или менее разнесенные пространственно липофильные и гидрофильные участки или химические группы. В так называемых ионных детергентах гидрофильную функцию выполняют заряженные группы (остатки кислот, аммониевая группа), в неионных — полиэтиленгликоль (ПЭГ) и остаток сорбитола. Липофильные участки представлены алифатическими цепями, фенильным остатком или полициклической структурой. Торговые наименования и структурные формулы наиболее часто используемых детергентов представлены ниже. [c.183]

    Попытки разделения сильных кислот и оснований методом подавления ионов оказываются неудачными из-за плохого удерживания веществ и асимметрии пиков. Соединения, остающиеся ионизированными в интервале рН=2—8, удовлетворительно разделяются методом ион-парной хроматографии, когда в подвижную фазу добавляют противоион, заряд которого противоположен заряду молекулы, и создается ион-парный комплекс, обладающий свойствами неполярного вещества. Если к ионному соединению, растворимому только в воде, добавить противоион, то образуется ионная пара, которая, обладая свойством растворяться в органической фазе, распределится между водным и органическим слоем. Возможна также адсорбция липофильной части противоиона в углеводородной фазе наполнительного материала. Очевидно, что катионы будут хорошо экстрагироваться анионами, и наоборот. [c.74]

    Величина стехиометрической константы экстракции зависит не только от органического растворителя, но и от размеров и структуры аниона и катиона. Эти факторы рассматриваются в следующих разделах. Нужно отметить, что экстракция возможна при очень большом разнообразии величин констант экстракции благодаря правильному выбору ионов даже наиболее гидрофильные анионы (например, ОН ) экстрагируются при использовании очень липофильных катионов, а наиболее гидрофильные катионы, такие, как Ме4Ы+, переносятся в [c.23]


    Брендстрём [46, 112] определил большое число кажущихся констант экстракции между водой и различными растворителями для стандартной четвертичной аммониевой соли — бромида тетра -н-бутиламмония (табл. 1.1). Растворитель, используемый в работе по МФК, должен быть не смешивающимся с водой так как в противном случае будут образовываться сильно гидратированные экранированные ионные пары с низкой реакционной способностью. Чтобы избежать образования водородных связей с анионами ионных пар, растворитель, кроме того, должен быть апротонным. Приведенные в табл. 1.1 данные показывают, что величины констант экстракции очень сильно изменяются. Растворители из последней колонки таблицы в целом не подходят для МФК некоторые из них частично смешиваются с водой, другие слишком активны и могут мешать многим процессам. Однако для рассматриваемой стандартной соли, которая обладает средней липофильностью, все эти растворители являются хорошими или отличными экстрагентами. Родственные по структуре, несколько более полярные соединения (например, гомологи) должны иметь сходную способность к экстрагированию ионных пар. Это позволяет сделать важный вывод если в качестве реагентов в реакциях в условиях МФК, например в алкилировании, используются соединения типа приведенных в последней колонке табл. 1.1, то органический растворитель не требуется, так как экстракция ионных пар в чистую органическую фазу будет вполне удовлетворительной. [c.24]

    Из последней таблицы видно, что даже для несимметричных катионов совсем в другом растворителе IgEqx увеличивается на 0,54—0,61 единицы на атом С, если одна из цепей удлиняется. Однако, как и ожидалось, число атомов С не является единственным фактором, контролирующим константу экстракции поэтому расчет неизвестных констант экстракции окажется надежным только для симметричных ионов, если R — гомологи, или при изменении длины лишь одной из четырех углеродных цепей. Например, бензильные группы значительно менее липофильны, чем н-гентильные, и их вклад в экстракци- [c.28]

    Частичный или полный обмен аниона неоднократно проводился путем эквилибрирования органического раствора четвертичной аммониевой соли [Q+X ] с водным раствором Ыа . На основе этих исследований можно построить щкалу липофильности. Клиффорд и Ирвинг [63] установили следующий порядок экстракционной способности ионов, начиная с липофиль-ного иона С1О4 и кончая гидрофильным ионом Р04 , для системы хлороформ/вода  [c.30]

    В узкий цилиндр, наполненный водным раствором 4-(2,4-динитрофенил азо)феноксида натрия, ниже верхнего уровня жидкости вводили по каплям раствор бромида четвертичного аммония в дихлорметане [12]. В воде этот индикатор имеет красный цвет, соответствующий его анионной форме, а в дихлорметане — голубой, характерный для его ионной пары с Q+. При падении капли в цилиндре она становится голубой, что указывает на обмен анионами. Если бы одновременно в водную фазу экстрагировался и Q+, то он не смог бы вернуть- ся обратно в покинутую им быстро падающую каплю. В другом эксперименте использовали й-образную трубку, содержащую две независимые органические фазы, разделенные водным раствором неорганической соли [13]. Применяемые катализаторы сильно различались по липофильности — от очень липофильных, которые на 100% находились в органической фазе, до таких, которые частично растворялись в водном слое. В одну из органических фаз прибавляли н-октилметансульфо-нат, а в другую — один из катализаторов. [c.53]

    Другие реакции МФК требуют, очевидно, экстракции гидроксид-иона. Среди них отметим реакции гидролиза и омыления. Как было показано при использовании в качестве модельного субстрата дихлорметана и Bu4NHS04 как катализатора, гидролиз проходит довольно быстро, поскольку в отсутствие более липофильного, чем 0Н , аниона [Ви4М+0Н ] может экстрагироваться в органическую фазу [30]. Скорость реакции постепенно снижается до очень низкой из-за того, что образующийся хлорид-ион дает ионную пару с катализатором в органической фазе. [c.64]

    Этот анион, по-видимому, легко обменивается через поверхность раздела фаз с 0Н . При наличии других, более липофильных неорганических ионов экстракция ОН , а также экстракция и транспорт НООС (СН2)4СОО частично ингибируются. [c.65]

    Однако следует помнить, что при работе в неполярных средах даже с самыми липофильными катионами их растворимость и способность к экстракции являются только предварительно необходимым условием успешного проведения химической реакции. Как было показано в гл. 1, при сравнении различных катализаторов видно, что прямая связь между их растворимостью, экстрактивными свойствами и анионной активностью или скоростью реакции отсутствует. Следует учитывать наряду с равновесиями, предшествующими реакции, также и другие факторы. Особенно важными среди них являются взаимодействие аниона и катиона в ионной паре и количество гидратной воды, переносимое в органический слой. Поэтому неудивительно, что в гомологическом ряду, например для симметричных тетраалкиламмо-нийных солей, при переходе от очень гидрофильных к липофиль-ны-м ионам активность возрастает чрезвычайно резко, а затем, когда начинают сказываться эти другие факторы , она медленно уменьшается. [c.68]

    Часто в качестве органической фазы применяется сам исходный жидкий субстрат. В принципе для этой цели можно использовать многие органические растворители. Однако они не должны даже частично смешиваться с водой, чтобы избежать сильной гидратации ионных пар. Следует иметь в виду, что в малополярных растворителях таких, как гептан или бензол, ионные пары из водной фазы в органическую переходят лишь в незначительной степени, если только сочетание аниона с катионом не является очень липофильным. Так, например, ТЭБА весьма неэффективен как катализатор в системе бензол/вода [28] и даже в такой системе, как дихлорметан/вода [2]. При использовании этих растворителей рекомендуют соли тетрабутиламмония или соли даже с еще большими катионами, такими, как тетра-н-пен-тиламмоний, тетра-н-гексиламмоний или аликват 336. [c.88]

    Более липофильные катализаторы (например, Hep N l) позволяют экстрагировать соляную кислоту даже в бензол. Аналогично из концентрированного водного KHFa экстрагируется Bu4N+HF2 . По-видимому, некоторое количество хлорид-ионов остается ассоциированным с четвертичным катионом, однако титрование кислоты в органическом слое постоянно дает завышенные результаты по сравнению с теорией. В то же время из системы HBr/Bu4N+Br экстрагируется меньше эквивалента Щт [57]. [c.117]

    Эрссон [108] использовал этот метод для газохроматографического определения карбоновых кислот и фенолов. Метод включает экстракцию кислоты в форме ионной пары в метиленхлорид и получение производного с пентафторбензилбромидом. Скорость реакции увеличивается в зависимости от структуры противоиона и при увеличении его концентрации. Для повышения скорости реакции гораздо лучше использовать вместо тетрабутиламмониевых солей более липофильные соли тетра-н-пен-тиламмония. Имеется обзор, посвященный применению экстрактивного алкилирования для анализа фармацевтических препаратов [1052], а недавно описана микромодификация этого метода с твердофазной системой МФК и использованием в каче- стве щелочи карбоната натрия [1053]. [c.128]

    Наибольшее влияние на скорость реакции оказывает липофильность аниона и катиона. Поскольку скорость стадии алкилирования, протекающей в органической фазе, очень велика, то общая скорость реакции зависит главным образом от равновесия процесса экстракции ионных пар. В случае фенобарбитона (V, К = СбН5) при проведении реакции в системе фосфатный буфер (pH 10)/С82 и 25 °С с тетрабутиламмонием в качестве ката- [c.170]

    Поглощение ионов эмульгатора заполнителем изменяет природу его поверхности с переходом от гидрофильной к липофильной, в результате чего высвобождаемый в процессе разрушения эмульсии битум может легко прилипать к поверхности заполнителя. Элементы дисперсной фазы с разрушенным адсорбционно-сольватным слоем начинают слипаться друг с другом. Этот процесс называется флокуляцией (рис. 8). Очень часто при этом имеется большая центральная капля, окруженная маленькими капельками. Такой агломерат называют флокулой. За флокуляцией следует процесс коалесценции, т,е. слияние капель с образованием капель большего размера (рис. 9). Коалесценция проходит в ходе разрушения эмульсии на поверхности и зависит от типа и природы заполнителя. Итогом этого процесса является выделение битума в виде сплошной, недискретной фазы. [c.30]

    Как уже отмечалось выше, возможность идентификации форм существования элементов в воде является преимуществом вольтамперометрии. При этом цель исследования состоит в определении содержания различных форм металлов, которые и составляют в сумме общую концентрацию. Обычно наибольшую токсичность имеют гидратированные ионы и их лабильные комплексы, диссоциация которых протекает относительно легко. Наименее токсичными являются устойчивые комплексы металлов и ионы, адсорбированные на коллоидных частицах (69]. Высокой токсичностью обладают и комплексы металлов с липофильными лигандами, поскольку они способны проникать в организм через клеточные мембра- [c.280]

    Способностью к мицеллообразо-ванию обладают не все ПАВ, а только те, которые имеют оптимальные соотношения между гидрофобной (углеводородный радикал) и гидрофильной (полярная группа) частями, что определяется величиной гидрофильно-липофильного баланса (ГЛБ) (см. гл. X, 3). К мицеллообразующим ПАВ отно сятся натриевые, калиевые и аммониевые соли жирных кислот с для-ной цепи С12-20, алкилсульфаты, алкилбензосульфонаты и другие синтетические ионогенные и неионо-тенные ПАВ. Истинная растворимость, т. е. равновесная концентрация вещества, находящегося в водном растворе в молекулярной (или ионной) форме, для таких ПАВ невелика и составляет для ионогенных ПАВ сотые или тысячные доли кмоль/м (моль/л), а для неионогенных — может быть еще на один-два порядка ниже. [c.224]

    Соотношение между липофильной углеводородной частью и гидрофильной ионной группировкой в амидных солях типа I таково, что эти соли являются поверхностно-активными агентами, способными в водной среде переводить липиды в коллоидные дисперсии. Желчь, поступающая в кишечник, Эмульгирует нейтральные -жиры и липоидные витамины пищи и тем самым облегчает их проникновение через стенки кишечника в кровь. Исследования, проведенные с использованием изотопной метки, показали, что холестерин яв1яется предшественником в биосинтезе желчных кислот и стероидных гормонов, однако желчь в нормальном организме содержит лишь следы свободного холестерина. В организме человека, а также некоторых животных, запас желчи накапливается в желчном пузыре, связанном с печенью (человек, овцы, крупный рогатый скот) или расположенном внутри печени (акула). [c.639]

    Скорость реакции в этом случае зависит как от скорости диффузии через поверхность раздела фаз, так и от скорости гомогенной реакции в органической фазе. Важными факторами являются энергия разрушения водной оболочки аниона и энергия пересольватации органическим растворителем. Следует отметить, что при переходе аниона нз водной в органическую фазу наблюдается кардинальное изменение сольватации оние-вых ионов. Анион перешедшей в органическую фазу ионной пары 0+ V крайне мало сольватирован, что даже дало повод называть реакции таких ионных пар реакциями голых анионов (см. обзор [2]). Очевидно, что для таких реакций выгоднее всего использовать возможно более липофильные катионы и малополярные растворители. Классическим примером переноса анионов из водной фазы в органическую является окрашивание бензольного слоя в малиновый цвет в системе водный раствор КМЛО4 — бензол при добавлении метилтриок-тиламмонийхлорида [3]. В настояш,ее время такой малиновый бензол используют для окисления многих органических соединений. [c.13]

    Главной отличительной чертой такого механизма будет успешное действие катализатора 0+ X с ониевым катионом при очень малом коэффициенте его распределения и практической нерастворимости в органической фазе образовавшейся ионной пары Р+ А . Это возможно в тех случаях, когда аммониевый катион несимметричен. Так, например, бензилтриэтил-аммониевый катион (ТЭБА+) имеет сравнительно мало гидрофобные этильные группы, которые не мешают (а может быть, и помогают) катиону удерживаться на водной поверхности, и липофильную бензильную группу, которая, однако, при добавлении ароматических растворителей сольватируется и становится практически нерастворимой в органической фазе [17]. [c.19]

    С менее липофильными катионами эти значения могут быть существенно иными. Так, при аналогичной обработке 0,014 моль BU4N+ С1 в 1 л бензола в органической фазе остается только 52% аммониевого иона и только 4,25% из этого количества находится в ОН-форме. [c.31]

    Выше был рассмотрен вопрос о переносе гидроксильного нона нз водной фазы в органическую и отмечено, что даже такие липофильные катионы, как ТЭБА+, в паре с гидроксильным ионом очень плохо растворимы в органических растворителях, и, как правило, то незначительное количество 0Н, которое переходит в органическую фазу, не определяет кинетику реакций в двухфазной системе (например, реакций алки-лпрования ацетона). Однако существуют реакции, при которых гидроксильный ион может регенерироваться в органической фазе. Примером такой реакцпи является реакция альдольной конденсации. [c.44]

    Биологическая активность фермента в ходе хроматографии может измениться (как уменьшиться, так иногда в возрасти) в силу ряда дополнительных причин. Например, кажущееся увеличение активности фермента может быть результатом его отделения от протеаз. Снизиться активность может как в результате истинной денатурации илп окисления 8Н-групп белка, так и при отделении апофермепта от кофакторов. Иногда инактивация обусловлена разъединением двух или нескольких последовательно работающих ферментов. Такого рода кажущиеся инактивации могут быть обнаружены при объединении хроматографических фракций, когда активность фермента восстанавливается. Для сохранения биологической активности липофильных белков мембран в элюент иногда приходится добавлять спирт или ацетон. При этом может возникнуть определенная неравномерность распределения органического растворителя между жидкостью внутри и снаружи гранул — ионы сорбента, гидратируясь, оттягивают на себя воду. Следствие этой неравномерности — наложение на ионный обмен эффекта распределетельной хроматографии. Для сохранения биологической активности ферментов в элюент часто добавляют глицерин (до 25%) или этиленгликоль (до 5%). [c.292]

    Ион-парную хроматографию используют для разделения образцов, содержащих как ионные, так и неионные соединения. Ее применяют в тех случаях, когда трудно или невозможно получить приемлемое разделение образца методом ионообменной хроматографии адсорбционной или обращенно-фазной. В некоторых случаях ионные соединения можно разделить на обращенной фазе, придавая им свойства неионных соединений (подавление ионов) с помощью буферного раствора с соответствующим pH, при котором равновесие смещается в сторону образования неионизированной формы. Полярные вещества, обладающие липофильными свойствами, делятся при этом на обращенной фазе как неполярные. Однако большинство наполнительных материалов колонок надежно работает только при рН=1,5—7,5. Исключение составляет партисил 5 ОДС, работающий при рН=1—8,5. В этом диапазоне pH сильные кислоты и основания ионизированы. [c.74]


Смотреть страницы где упоминается термин Ионы липофильные: [c.24]    [c.29]    [c.36]    [c.57]    [c.71]    [c.94]    [c.126]    [c.171]    [c.295]    [c.356]    [c.107]    [c.474]    [c.128]    [c.161]    [c.302]    [c.183]   
Биофизика Т.2 (1998) -- [ c.103 ]




ПОИСК





Смотрите так же термины и статьи:

Липофильность



© 2025 chem21.info Реклама на сайте