Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пропан жидкий, применение

    Каталитическое окисление в жидкой фазе имеет то преимущество перед газофазным процессом, что позволяет более точно регулировать состав конечных продуктов [60]. Та1 , при окислепии н-бутана в жидкой фазе образуется в первую очередь уксусная кислота при полном отсутствии формальдегида. При окислепии же пропана в газовой фазе, напротив, образуются главным образом пропионовый альдегид, пропиловый спирт, ацетон, уксусный альдегид, уксусная кислота, формальдегид, метиловый спирт, окись пропилена, окись этилена. При окислении н-гексана теоретически можно получить около 60 различных продуктов окисления, не считая вторичных продуктов, образующихся за счет дальнейших реакций кислородсодержащих компонентов. Метан и этан не только содержатся в значительно больших количествах в природном газе, чем пропан или бутан, но они представляют интерес и для применения в качестве исходного сырья, так как нри окислении дают продукты более простого состава. Именно сложный состав продуктов газофазного окисления был причиной того, что внедрение этого процесса в промышленную практику сильно задержалось. [c.151]


    В результате специфических свойств сжиженных газов, их нельзя сливать из железнодорожных цистерн в стационарные газохранилища обычными способами. Это обусловлено, например, тем, что при температуре —15°С в емкости со сжиженным пропаном создается давление насыщенных паров 190 кПа (1,9 кгс/см2), а при 1 °С — 350 кПа (3,5 кгс/см ). Следовательно, пропан, привезенный зимой в железнодорожной цистерне при температуре наружного воздуха —15°С нельзя самотеком переливать в подземное стационарное газохранилище, расположенное ниже глубины промерзания грунта, даже при расположении цистерны на 8—10 м выше газохранилища. Поэтому для слива сжиженных газов приходится создавать в цистерне избыточное давление по отношению к давлению в газохранилище. Цистерну соединяют с газохранилищем жидкостным трубопроводом, а в паровое пространство цистерны подают газ под давлением, превышающим давление насыщенных паров не менее чем на 120—200 кПа (1,2—2 кгс/см ), Избыточное давление можно создавать инертным газом или парами перекачиваемого продукта. На рис. 28.1 показана схема слива жидкого аммиака из железнодорожной цистерны с применением в качестве транспортирующего агента газообразного аммиака, подаваемого по трубопроводу 6. Имеются и другие способы слива сжиженных газов. При [c.360]

    Предложено использовать газовые гидраты для опреснения морской воды. Например, жидкий пропан при перемешивании с морской водой образует гидраты, а растворенные в воде соли в гидратную решетку не проникают. Другое возможное применение газовых гидратов состоит в хранении в виде гидратов природных, а также инертных газов. [c.118]

    Основные требования безопасности и безаварийной работы установок очистки светлых нефтепродуктов те же, что и для первичной деструктивной переработки нефти. В ПТБ НП-73 определены дополнительные требования, связанные с применением щелочей и кислот, которые не способствуют взрывам и пожарам, но могут привести к травмированию людей. Ниже рассмотрены дополнительные требования к эксплуатации установок очистки масляных дистиллятов и деасфальтизации гудрона жидким пропаном. [c.91]

    Очевидно, что действие метана и этана слишком жестко, высокое давление, необходимое для применения их в жидкой фазе, также не способствует их использованию. Бутан и частично пропан являются лучшими реагентами с обеих точек зрения. Не нужно специальных затрат для применения жидкого пропана, а умеренное содержание в нем этана и бутана уравновешивает действие [c.286]


    В качестве моторных топлив находят применение различные нефтепродукты те, что обычно называются бензин , жидкие газы как правило, пропан и бутан), керосин и легкий газойль — топливо турбореактивных двигателей и автомобильных дизелей. Некоторые реактивные двигатели используют в качестве топлива широкую фракцию, в состав которой входит бензин и керосин. [c.385]

    Сложность применения газовых топлив в дизельных двигателях связана с их плохой воспламеняемостью. Для преодоления этой проблемы известны следующие подходы добавление в топливо активирующих присадок или дизельного топлива с высоким цетановым числом использование искрового зажигания применение запальной дозы дизельного топлива. При этом первый способ может использоваться только для жидкого пропан-бутана, а для организации работы автомобильных дизелей на газовом метановом топливе наибольшее распространение получил так называемый газожидкостный процесс -воспламенение основной газовоздушной смеси от запальной дозы дизельного топлива, что характеризуется относительной простотой переоборудования дизеля без изменения конструкции двигателя. [c.157]

    Широкое использование природного газа в качестве топлива породило проблему компенсации пиковых нагрузок — суточных и сезонных. Высокая экономическая эффективность применения сжижепиого газа для этих целей вызвала рост их производства. Сжижению стали подвергаться природные газы разнообразного состава вплоть до метана. Это потребовало применения криогенных температур. Теперь термин сжиженный углеводородный газ стал неоднозначным для его конкретизации используются термины жидкий пропан , жидкий пропан-бутан , сжиженный метан , сжиженный природный газ (СПГ) . В состав СП Г могут входить углеводородные компоненты от метана до бутана, иногда до пентана включительно. Здесь следует заметить, что углеводороды тяжелее пропана затвердевают при температурах выше—160 °С, чт(J может вызвать осложнения в [ци -цессе сжижения. [c.203]

    В зависимости от примененного давления и температуры из газа может выпасть не только бензин, но и жидкие бутан и пропан. Полученная углеводородная смесь затем разделяется путем фракционировки. [c.291]

    В настоящее время в СССР, где значительная часть нефти используется в качестве котельного топлива, наиболее целесообразно расширять ресурсы моторных топлив за счет глубокой переработки мазута. Вторым по эффективности этапом должно стать расширение производства сжиженного пропан-бутана на основе переработки природного и нефтяного попутного газов, а также организация производства грет-бутилметилового эфира. Применение сжатого природного газа можно рассматривать в качестве ресурса, замыкающего баланс моторных топлив. Должны быть также расширены и углублены экспериментальные и проектно-конструкторские работы по производству и применению на транспорте сжиженного природного газа, синтетических жидких топлив из угля, тяжелых нефтей и природных битумов, запасы которых в СССР достаточны для надежного энергообеспечения народного хозяйства. [c.264]

    В большинстве случаев многие углеводороды могут быть подвергнуты обработке такого рода, как расщепление на молекулярные составляющие (например, производство водорода в процессе риформинга). Однако есть и другие нефтехимические процессы, которые требуют применения совершенно однородного сырья. Чтобы произвести такие материалы из СНГ, необходимо разделить исходное сырье на составляющие его компоненты, среди которых основными являются этан, пропан, нормальный бутан, изобутан и пентаны. Наиболее экономичный способ отделения этих углеводородов друг от друга — фракционная дистилляция жидкой фазы. Однако для того чтобы избежать значительных капитальных затрат на сооружение сложной рефрижераторной системы, фракционную разгонку обычно проводят при повышенном давлении. Например, чтобы применять воду при температуре 25 °С для конденсирующего охлаждения пропана, требуется рабочее давление 1013,25—1519,8 кПа. Это означает, что все углеводороды до [c.233]

    Очистка легких нефтепродуктов. Очистка и осушка легких жидких нефтепродуктов, как пропан, бутан и сжиженные нефтяные газы, с использованием молекулярных сит уже осуществляется в промышленном масштабе. Например, в промышленности природного газа в США более 50% мощностей по обессериванию жидкого пропана переведено на применение молекулярных сит. Этот процесс описан в литературе [5]. Схема его представлена на рис. 12. [c.219]

    Повышение четкости избирательного растворения может быть достигнуто не только подбором состава смешанных растворителей, но и применением в дополнение к этому так называемых парных растворителей. Парные растворители взаимно нерастворимы, и действие их на сырье взаимно противоположно. Парные растворители вводятся в поток обрабатываемого сырья самостоятельно в различных точках системы. В процессе избирательного растворения один из двух парных растворителей растворяет преимущественно рафинат. Основная масса этого растворителя уходит из системы с рафинатным потоком, тогда как другой парный растворитель растворяет преимушественно экстракт и большая его часть уходит из системы с экстрактным потоком. Такими процессами, в которых осуществляется обработка сырья парными растворителями, являются очистка масляного сырья фенол-крезоловой смесью и пропаном и экстрагирование бензола, толуола и ксилола из ароматизированных бен-зино-лигроиновых фракций жидким сернистым ангидридом и деароматизированным керосином .  [c.6]


    Для этой цели был применен метод фракционировки концентратов нефти жидким пропаном, разработанный автором совместно с А. Г. Мартыненко [23]. Полученные данные расхода пропана на растворение отдельных компонентов масла имеют приближенное значение, так как они проведены без строгого соблюдения одинаковых условий, но они позволяют сделать следующие выводы  [c.174]

    Пропан-пропиленовая фракция может содержать пропилена от 30 до 85%. Концентрация серной кислоты, применяемой для поглощения пропилена, колеблется от 70 до 93% чаще всего пользуются 75—80%-ной кислотой. Процесс всегда проводят в жидкой фазе, что вызывает необходимость в применении давления, но одновременно облегчает эффективный контакт реагирующих веществ и регулировку температуры. Последняя не должна превышать 40°, причем применение давления и хорошее перемешивание благоприятно влияют на ход процесса. На 1 кг затраченной серной кислоты можно получить до 0,6 кг изопропилового спирта. [c.149]

    При одновременном применении двух. противоположных по свойствам растворителей один служит для растворения экстрактной, нежелательной, части масла, а другой — для растворения рафинатной части, т. е. основной, полезной части масла. Наибольшее развитие получил процесс, в котором в качестве первого растворителя использованы смесь фенола с крезоловыми кислотами, в качестве второго — жидкий пропан. [c.357]

    Растворители. Из большого числа испытанных растворителей практическое применение нашли жидкий пропан, смесь бензола, кетона и толуола, смесь дихлорэтана с бензолом (табл. 40). В более ранних установках для депарафинизации применяли также нафту, не обладающую, однако, достаточно выраженными избирательными свойствами. [c.368]

    Как было указано выше, при работе абсорбционной установки под средним и высоким давлениями наряду с пропаном и высшими углеводородами абсорбентом поглощается также значительное количество метана и этана. Это усложняет схему десорбции. Из-за большого давления насыщенных паров продуктов верха колонны (рис. 7.13) затрудняется их конденсация, так как требуются низкие температуры. В емкости орошения Е-1 продукты находятся в двух фазах. Жидкая фракция в основном состоит из смеси целевых компонентов, она направляется на газофракционирующую установку. Газовая фракция состоит практически из всех компонентов исходного газа. Выделение из этой смеси целевых компонентов является одним из путей повышения эффективности абсорбционной установки. Для этой цели остаточный газ из емкости Е-1 можно повторно перерабатывать в отдельной колонне, либо произвести рециркуляцию этого потока в основной абсорбер К-1. Экономическая целесообразность применения той или иной схемы определяется конкретными условиями производства, в первую очередь составом и количеством газовых потоков и давлением процесса. [c.214]

    Проблему производства и использования моторных топлив и топливных нефтепродуктов нельзя рассматривать в отрыве от возможностей альтернативных топлив, а именно, сжиженных нефтяных газов (пропан, бутан) и природного газа (СПГ), компримированного природного газа (КПГ), смеси спиртов, в т.ч. получаемых из возобновляемого (растительного) сырья, метанола, диметилового эфира (ДМЭ), синтетических топлив, водорода, а также электродвигателей. Пока альтернативные виды топлив находят применение на региональном уровне, но со временем их значимость может существенно возрасти и привычная нам картина преобладания традиционных нефтяных топлив может измениться. В заключительном разделе выполнено исследование производства и использования синтетических жидких топлив из природного газа. [c.251]

    При кристаллизации дистиллятных продуктов из растворов в пропане создаются условия для образования большого числа центров кристаллизации, что приводит к более мелкой кристаллической структуре выделяющегося парафина по сравнению со структурой, образующейся при использовании в качестве растворителя более высокомолекулярных углеводородных продуктов. Данное обстоятельство снижает при фильтрации в значительной мере эффект от уменьшения вязкости жидкой среды, достигаемый за счет применения в качестве растворителя пропана. [c.158]

    Ректификацию газа на медной колонке производят согласно вышеприведенному описанию (стр. 169). В качестве охлаждающих агентов применяют жидкий азот или твердую углекислоту. Применение жидкого азота позволяет проводить технический анализ газов различного состава, с разделением газа на фракции 1) метан — водородную, 2) этан — этиленовую, 3) пропан — пропиле- [c.187]

    При том температурном режиме, который имеет место на установках очистки фенол-крезоловой смесью и пропаном, в последнем полностью растворяются масла и значительная часть парафинов. Применение двух совершенно различных по характеру растворителей а) жидкого пропана, в котором хорошо растворяются углеводороды парафинового основания (рафинат), и б) смеси крезола и фенола, хорошо растворяющей полициклические углеводороды и асфальтово-смолистые соединения (экстракт), позволяет осуществить сравнительно четкое разделение сырья на желательные и нежелательные компоненты. Это дает возможность получения высоких выходов качественных масел. Однако такие результаты очистки достигаются лишь при применении сравнительно больших соотношений растворителей и сырья. Количество смеси крезола и фенола составляет для некоторых видов сырья до 600%, а пропана, —до 400%. по весу. [c.131]

    Денарафинизация смазочных масел осуществляется в настоящее время большей частью при помощи растворителей [151- Принцип этого метода заключается в том, что фракция смазочного масла растворяется в подходящем растворителе и из этого раствора посредством охлаждения выкристаллизовываются парафины, которые отделяются. После фильтрации раствор освобождается от растворителя, последний возвращается в процесс. Остаток перерабатывается на смазочные масла. Оставшийся на фильтре осадок — парафин — подвергается дальнейшей очистке, заключающейся в обезмасли-вании парафина при помощи растворителей. В большинстве случаев вспомогательный растворитель, применяемый при депарафинизации, является смесью метилэтилкетопа и технического бензола. Применяется такн е смесь ацетон-бензол. Превосходным растворителем для денарафинизации является жидкий пропан, применение которого позволяет решить одновременно две задачи [16]. С одной стороны, он служит растворителем, а с другой вследствие низкой температуры кипения является охлаждающим агентом. Так как при этом имеет место внутреннее охлаждение кристаллизующейся массы, то потери тепла за счет теплопередачи полностью отсутствуют. Содержащее парафин смазочное масло и пропан совместно нагреваются под давлением до температуры, необходимой для полного растворения масла в пропане. Для нагревания берут 1—3 объема жидкого пропана на 1 объем масла. Затем вследствие испарения пропана смесь постепенно охлаждается до температуры около —35°, причем, как правило, температура охлаждения и фильтрации должна лежать примерно на 20°пил е желаемой температуры застывания масла. Выделившийся парафин фильтруют под давлением и остаток на фильтре промывают пропаном. [c.25]

    Как уже указывалось, мо/кпо также крекировать пропан в этилен и дегидрировать этан. Можно вестп процесс при условиях, обеспечивающих максимальный выход олефинов при только частичной ароматизации исходного сырья, но можно также путем применения особо кестких условий (высокая температура, продолжительное пребыванне продукта в печи) осуществить полную ароматизацию жидких продуктов реакции. [c.61]

    При процессах депарафинизации с применением углеводородных разбавителей выкристаллизовавшийся парафин от депара-фйнированного раствора отделяют центрифугированием или фильтрацией. Центрифугирование обычно применяют при переработке остаточного сырья и при использовании растворителей жидких при атмосферном давлении таких, как нафта, гептан и др. При депарафинизации же обрабатываемого сырья в растворе сжиженных газов (в жидком пропане) парафин отделяют фильтрацией в основном на барабанных фильтрах непрерывного действия. [c.97]

    Дальнейшее совершенствование промышленных систем гидрокрекинга тяжелого жидкого сырья пошло по двум технологическим путям. Первый путь заключался в применении высокоактивных и селективно действующих гранулированных катализаторов, способствующих образованию газов деструкции, в которых преобладают пропан и бутаны. Это позволяет уменьшить расход водорода на образование газа и процесс гидрокрекинга в целом. Первый путь привел к модернизации блока реакторов со стационарным катализатором — от многореакторных систем перешли к одному или двум реакторам значительно большего диаметра. Предусматривалась также возможность периодической регенерации катализаторов в реакторах установки. Указанные [c.273]

    Экстрактивная кристаллизация грнменяетея для депарафинизации масляных фракций. Удаление нормальных алканов, имеющих сравнительно высокую температуру кристаллизации, необходимо для обеспечения хорощей текучести масел и для устранения возможности выпадения твердого парафина. Растворитель для этого процесса должен быть достаточно селективным, т. е. должен иметь низкую растворяющую способность по отнощению к алканам и высокую — к остальным компонентам масляной фракции. В качестве растворителей применяю смеси кетонов (ацетона, ме-тилэтилкетона) с аренами, например толуолом, добавление которого повыщает растворимость масляных компонентов н выход очищенного масла. На некоторых установках за рубежом используют менее селективный растворитель — жидкий пропан в этом случае для повышения селективности процесс проводят при более низких температурах. В последние годы получила применение смесь пропилена с ацетоном, обеспечивающая больщую селективность и в связи с этим более низкую температуру застывания масел. [c.76]

    К таким промышленно-технологическим процессам относятся производство остаточных смазочных масел и процесс глубокой вакуумной перегонки. В первом случае смолисто-асфальтеновые вещества осаждаются из вакуумного гудрона прп обработке последнего жидким пропаном. Получаемый при этом углеводородный рафпнат обрабатывается селективно действующими растворителя-лш, в результате чего из него удаляются нолпядерпые конденсированные ароматические углеводороды и некоторые другие группы соединений, присутствие которых ухудшает физико-химические и эксплуатационные свойства смазочных масел. Применение высокого вакуума при перегонке нефтей позволяет выделить из смеси высокомолекулярных соединений нефти углеводороды, выкипающие выше 500° С. Использование этих углеводородов в качестве сырья в процессах каталитического крекинга и гидрокре-кпнга позволяет значительно повысить выходы из нефти автомобильных бензинов, авиационных керосинов и дизельных топлив и значительно повысить степень использования потенциально содержащихся в нефти углеводородов. [c.244]

    В технике производства масел широкое применение получил сжиженный пропан как растворитель, способствующий выделению из лУТ удронОИ И гуДрЬнов асфальто-смолистых веществ и твердых углеводородов. Растворяющие свойства пропана меняются в пределах температур ст весьма низких до критической температуры растворителя. При низких температурах (—42°) до примерно 20° пропан растворяет жид1 ие углеводороды и смолы И не растворяет твердые углеводороды и часть жидких высокомолекулярных углеводородов. Выше 30° растворяющие свойства пропана падают по мере повышения температуры, и при. температуре выше критической пропан вовсе не растворяет составные компоненты масел. Такой характер изменения растворяющей способности пропана при изменении температуры в условиях относительно большой кратности к сырью наблюдается при давлениях, соответствующих упругостям паров пропана при данных температурах. В условиях температур, очень близких к критической, создание давлений сверх упругости паров пропана, позволяющих повысить плотность пропана растворяющая способность его возрастает. [c.173]

    Кристаллизация. Этот метод применяется для отделения веществ с высокими температурами плавления, т. е. твердых углеводородов, растворенных в нефти. Нанлучшие результаты получаются при работе с узкими фракциями и при значительной концентрации твердых веществ. Кристаллизацию проводят путем вымораживания из растворов в подходящем растворителе. Растворитель по возможности должен являться одновременно и осадите-лем для отделяемых кристаллизацией веществ. Во всяком случае, он должен па СТВОРЯТЬ высокоплавкие компоненты значительно хуже, чем низкоплавкие Г Применение растворителя снижает вяз-Й< ть продукта, которая при низких температурах может оказаться настолько большой, что это будет препятствовать кристаллизации. В качестве растворителей применяются жидкий пропан, хлорпроизводные углеводородов, этиловый эфир, смесь спирта и эфира, смесь этилового и изоамилового спирта, ацетоно-толуольная смесь и др. Путем многократной перекристаллизации из растворителя удается достичь высокой степени чистоты твердых веществ. [c.60]

    Если пропускать такие газообразные алифатические углеводороды, как этан, этилен, пропан, пропен, а так ке бутаны и бутены, через нагретые до высокой температуры трубки иЗ кварца или легирован ной стали, например стали У2А, то при определенной продолжительности пребывания в зоне пиролиза, в отсутствии катализатора и без применения давления образуются жидкие конденсаты. Это так называемые смол].г пиролиза, которые в зависимости от длительности нагрева и температуры н бб. плнем или меньшем количестве содержат жидкие и твердые составные части. [c.99]

    Примером разделения систем этого типа служит экстрагирование растворителями, впервые примененное в нефтеперерабатывающей промышленности для очистки керосина и смазочных масел от ароматических углеводородов. Этот метод можно использовать с успехом и в случае низкомолекулярных углеводородов, присутствующих в бензине, поскольку его применение почти не зависит от молекулярного веса и температуры кипения обрабатываемых смесей. Однако, чтобы в последнем случае образовались две жидкие фазы, надо работать при низкой температуре. Из применяемых растворителей следует назвать жидкую двуокись серы, нитробензол, хлорекс ( , б-ди-хлордиэтиловый эфир), фурфурол, фенол, а также жидкий пропан, В результате получают экстракт (раствор извлекаемых углеводородов в данном растворителе) и раффинат (углеводороды, нерастворимые в данном растворителе) в первом продукте отношение углерода к водороду высокое, во втором — низкое. Иначе говоря, с помощью этого метода можно экстрагировать ароматические углеводороды из их смесей с парафинами и нафтенами. Экстракция растворителями является сейчас распространенным техническим приемом. [c.38]

    В табл. 24.1 перечислен ряд простейших алканов. Многие из этих веществ находят широкое применение и поэтому хорошо всем известны. Метан является главной составной частью природного газа, идущего на отопление домов, приготовление пипш и другие бытовые нужды. Пропан используется в тех же целях в местностях, где нет сетевого газа его транспортируют и хранят в жидком виде в переносных баллонах. Бутан находит применение в газовых зажигалках и баллонах для приготовления пиида и освещения в походных условиях. Алканы с числом атомов углерода от пяти до двенадцати входят в состав бензина. В табл. 24.1 даны формулы алканов в варианте записи, называемом сокращенной структурной формулой. Эта запись указывает, каким образом атомы связаны друг с другом в молекуле, но не требует изображения всех [c.409]

    Примечания. 1. Соотношение пропана и бутана в смеси этих газов устанавливается по соглашению между потребителем и поставщиком газа, а жидкий остаток и давление насыщенных паров при температуре -20° С в зависимости от соотношения пропана и бутана в смеси. 2. Допускается по требованию потребителя в зимнее время поставлять для газобаллонных автомобилей технический пропан с повышенным содержанием атак — втилена (с соответствующим уменьшением содержания пропан — пропилена) с таким расчетом, чтобы избыточное давление насыщенных паров газа было не менее 1 кгс/см при температуре его применения. Для коммунально-бытовых и других целей такой газ не должен поставляться. [c.6]

    Алкилирование пропиленом. Алкилирование изобутана пропиленом при комнатной температуре с применением хлористого алюминия, промотированного хлористым водородом, в качестве катализатора сопровождается весьма интенсивно протекающими побочными реакциями, в частности деструктивным алкилированием. Эту реакцию можно подавить, проводя алкилирование при низкой температуре или изменив активность катализатора. Нанример, проведение реакции при —30° дает жидкий продукт, содержащий 42% гептанов (главным образом 2,3-диметилиентан с небольшим количеством 2,4-диметилпен-тана) и 20% деканов [27]. Реакция при 63° в присутствии монометанолата хлористого алюминия, промотированного хлористым водородом, ведет к образованию гептанов (состоявших из приблизительно равных количеств 2,3-и 2,4-диметиппентанов) с выходом 40% пропан и триметилпентаны (продукты побочной реакции перераспределения водорода) образовались с выходами всего соответственно 4 и 5% [28в]. Аналогично раствор хлористого алюминия в нитрометане нри 75° давал выход 44% гептанов (главным образом 2,3- и [c.191]

    С другой стороны, нри алкилировании хлористым изопропилом, применяя раствор хлористого алюминия в нитрометане в качестве катализатора, удается достигнуть преобладания первичной реакции алкилирования [30]. Нанример, взаимодействие изобутана с хлористылг изопропилом при 60—70° в присутствии раствора катализатора ведет к восстановлению менее 30% хлорида в пропан. Гептаны и октаны образуются при этом с выходами соответственно 15-16 и 7—15%. По-видимому, нри применении жидкого катализатора протекает дегидрогалоидированпе хлористого иропнла в пропилен. [c.195]

    Из параллельного образца мазута готовят также путем вакуумной разгонки фракции основных масляных дистиллятов, кипящих в пределах 350—420° и 420—500°, и остаточный гудрон. Масляные дистилляты подвергают депарафинизации в растворе метилэтилкетон—бензола при —25° с получением депарафиниро-ванпого масла с температурой застывания от —15° до —20°. Депарафинированное масло анализируется адсорбционным методом с определением свойств и кольцевого состава основных его компонентов. Гудрон обрабатывают жидким пропаном как без применения адсорбента, так и с адсорбционным разделением. [c.125]

    Согласно уравнению (111. 101), равновесное фазовое отношение ki определяется лишь по давлению и температуре и совершенно не зависит от природы и числа других компонентов -системы. Однако так дело обстоит только для идеальных и практически идеальных растворов. Для растворов же реальных, отклоняющихся в своем поведении от закона Рауля, равновесное фазовое отношение зависит еще и от состава, и в этом приближенность и ограниченная точность определения летучестей неидеальных растворов по уравнению (III. 100). Есть еще и другая причина, известным образом ограничивающая применение правила летучести. При определенной температуре любое чистое вещество, находящееся под давлением, отличающимся от упругости его паров, может существовать лишь в однофазном состоянии. Если, например, давление системы больше упругости паров рассматриваемого компонента, то в чистом виде этот компонент может существовать лишь в конденсированной фазе если же давление системы меньше его упругости паров при данной температуре, то чистый компонент этих -условиях ож и-си.пествовать лишь в паровой фазе. Однако то же самое вещество, рассматриваемое как компонент раствора, может вести себя совершенно по-другому. Так, компонент раствора может находиться в паровой фазе, когда упругость его паров меньше общего давления системы, и, наоборот, присутствовать в конденсированной фазе, когда упругость его насыщенных паров при данной температуре выше общего давления системы. Между тем использование правила летучести предполагает определение летучести или чистого рассматриваемого компонента при Тир раствора обязательно в том же фазовом состоянии, что и сам раствор. При этом может оказаться (и часто так и бывает), что данный компонент в чистом виде не может устойчиво существовать при температуре II давлении раствора в том же агрегатном состоянии, в котором он находится в растворе. Так, например, если давление системы р = 0 ama, температура / = 70° и требуется определить летучесть / пропана в жидкой фазе, то это определение приходится вести в таких условиях, при которых чистый пропан как жидкость не может устойчиво существовать, ибо его упругость паров при этой температуре равна 28 ama. Решение этой задачи состоит в экстраполяции изотермических кривых, дающих коэффициент активности в функции приведенного давления, в неустойчивую область. [c.125]


Смотреть страницы где упоминается термин Пропан жидкий, применение: [c.253]    [c.17]    [c.161]    [c.217]    [c.181]    [c.115]    [c.479]    [c.29]    [c.48]    [c.4]   
Синтетические каучуки (1949) -- [ c.60 ]




ПОИСК





Смотрите так же термины и статьи:

Пропан

Пропан применение

Пропанои



© 2025 chem21.info Реклама на сайте