Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Промышленные процессы сульфировани

    В книге описываются методы и способы получения маслорастворимых сульфонатов сульфированием олеумом, газообразным серным ангидридом и серным ангидридом в жидком сернистом ангидриде. Дана схема нового, непрерывного промышленного процесса сульфирования масел серным ангидридом в жидком сернистом ангидриде. Объясняется механизм действия и способы получения сульфонатных присадок к моторным маслам. Показано применение маслорастворимых сульфонатов в качестве ингибиторов коррозии и антикоррозионных присадок к маслам, топливам и системам нефтепродукт — вода. [c.2]


    Среди этих кислот серная кислота обладает следующими недостатками она вызывает нежелательные побочные реакции, обусловленные сильной окисляющей способностью ее, а также способностью к сульфированию. Однако дешевизна серной кислоты и простота обращения с ней способствовали широкому применению ее для алхгилирования ароматических углеводородов, несмотря па ее недостатки. Легкость регенерации фтористого водорода также благоприятствовала использованию его для некоторых промышленных процессов алкилирования [см. гл. LVII]. [c.429]

    На более высокой основности лг-ксилола по сравнению с другими аренами Се был основан также применявшийся в промышленности процесс селективного сульфирования и ступенчатого гидролиза сульфокислот ж-ксилол сульфируется с наибольшей скоростью, а образуюш,аяся лг-ксилолсульфокислота гидролизуется легче, чем сульфокислоты других аренов Сд [366]. [c.80]

    Изменение концентрации серной кислоты в пределах 93,5— 95,5% в случае применения наиболее активных непредельных соединений практически мало отражается на скорости алкилирования тиофена, что важно для промышленного процесса. Как видно из рис. 48, на скорость алкилирования не влияет и довольно значительное изменение расхода кислоты, тогда как на сульфировании тиофена оно отражается очень заметно. Важно также, что в отличие от сульфирования алкилирование в таких условиях необратимо. [c.219]

    ПРОМЫШЛЕННЫЕ ПРОЦЕССЫ СУЛЬФИРОВАНИЯ [c.325]

    Промышленные процессы сульфирования могут быть оформлены в виде схем периодического и непрерывного действия. Второй, более прогрессивный метод значительное распространение получил для летучих ароматических углеводородов под названием сульфирование в парах . Схема процесса сульфирования бензола в парах приведена на рис. 13.3. [c.434]

    В промышленности процесс сульфирования осуществляется обычно в стальных или чугунных котлах сульфура-торах), снабженных крышкой, механической мешалкой, рубашкой для охлаждения или для нагревания паром (рис. 78), а иногда и перегретой водой. [c.217]

    В процессах сульфирования и щелочного плавления перерабатываются, кроме жидкостей и газов, различные твердые материалы — порошкообразные, чешуйчатые, кусковые, пастообразные вещества, шламы, суспензии. Эти материалы выгружают из крытых вагонов и платформ, перевозят по территории завода, транспортируют на верхние этажи производственных зданий, загружают в аппараты.. Готовые материалы и отходы также транспортируют внутри зданий и по территории цехов и завода, укупоривают в тару, грузят в вагоны. В ходе производственного. процесса суспензии и, пасты фильтруют и высушивают. До сего времени. при транспортировке, погрузке, выгрузке и других. операциях применяется ручной труд. Так, в производстве Аш-кислоты затраты ручного труда составляют около 50— 60% общих трудозатрат, в производстве фенола—до 40%. Поэтому механизация трудоемких операций в промышленных процессах сульфирования и щелочного плавления имеет перво.степенное значение, особенно если учесть, что материальный индекс этих производств достигает 25 г па 1 г готовой. продукции. [c.227]


    В промышленности процесс сульфирования чаще всего проводят периодическим методом в жидкой гетерогенной системе. Иногда применяют метод, когда один из реагентов находится в газовой фазе, например при сульфировании летучих углеводородов (так, бензол можно сульфировать, пропуская его пары через серную кислоту при 160 °С) или в том случае, когда агенты сульфирования находятся в парообразном состоянии. [c.288]

    В современных промышленных процессах производства синтетического каучука пользуются бутадиеном, получаемым из этилового спирта, хлоре-преном, получаемым из ацетилена, и реже изопреном, синтезируемым также из ацетилена, который в свою очередь получают из угля или газообразных побочных продуктов нефтяной промышленности. Полимеризацию диолефинов большей частью ведут эмульсионным методом, например изопрен полимери-зуют в коллоидном растворе (применяют альбумин, олеат натрия или сульфированное касторовое масло), точно контролируя кислотность реагирующей смеси. Полимеры вальцуют с серой и вулканизируют обычным способом. Прочность и эластичность — главные свойства полимеров, которые надо принимать во внимание. [c.656]

    Опубликованы также детальные указания по применению других сульфирующих агентов, включая серные кислоты (98 и 100%) и серный ангидрид, растворенный в сернистом ангидриде [81]. В одном промышленном процессе используется моногидрат кислоты с последующим добавлением 20%-пого олеума до концентрации олеума переднем 13%[53]. Имеются также технические данные и патенты по сульфированию алкилированных [c.534]

    Рассмотренные промышленные процессы выделения л-ксилола сульфированием серной кислотой и экстракцией НГ -Ь ВГд сложны и поэтому не нашли широкого распространения. Кроме того, себестоимость л-ксилола получается значительно выше, чем других изомеров ароматических углеводородов С . Поэтому л-ксилол, получаемый указанными методами, ограниченно используется для производства продуктов органического синтеза. [c.145]

    Для получения проектных показателей непрерывного процесса сульфирования газообразным SOs в роторном пленочном сульфураторе были проведены опыты на пилотном аппарате, установленном на Щелковском химическом заводе, и на опытно-промышленном аппарате в Горловке. На основании проведенной работы были рекомендованы следующие условия сульфирования масла типа ДС-11 для получения сульфонатных присадок. [c.159]

    Разработка промышленного процесса выделения мезитилена из его смесей с ароматическими углеводородами Сд методами ректификации, кристаллизации, сульфирования и др. связана со значительными трудностями, и технико-экономические показатели такого производства могут быть на низком уровне. Поэтому были проведены исследования по синтезу мезитилена изомеризацией псевдокумола и дегидроконденсацией ацетона. При изомеризации псевдокумола в присутствии гетерогенных катализаторов получают смесь метил-производных бензола с концентрацией мезитилена, близкой к термодинамически возможной. Этилтолуолы, особенно о-этилтолуол, которые затрудняют выделение мезитилена из продуктов реакции ректификацией, в этих условиях не образуются. [c.218]

    Сульфураторами называются реакционные аппараты, предназначенные для проведения процессов сульфирования. Конструкции этих аппаратов разнообразны, что обусловлено разнообразием методов сульфирования, применяемых в промышленности. В настоящее время наиболее распространены следующие методы  [c.170]

    Несомненно, большой оныт, накопившийся в нефтеперерабатывающей промышленности США в области производства компонентов высокооктановых бензинов, и наличие необходимого углеводородного сырья позволили быстро организовать и развить производство тетрамеров пропилена и использовать бензол риформинг-бензина для получения додецилбензола методом каталитического алкилирования. Процесс сульфирования додецилбензолов также был быстро разработан на основе богатого опыта сернокислотной очистки и сульфирования нефтепродуктов. [c.396]

    Итоги изучения процесса сульфирования углеводородов парами ЗОз на опытной установке опубликованы но литературным данным этот метод нашел промышленное применение [54]. [c.413]

    В различных промышленных процессах в качестве побочного продукта образуется отработанная серная кислота разной концентрации, содержащая органические и неорганические примеси. Отработанная кислота, содержащая органические примеси, получается, например из серной кислоты, используемой в процессах алкилирования при нефтепереработке, а также из серной кислоты, применяемой для сульфирования, сульфонирования и нитрования. [c.355]

    Сульфирование антрахинона (промышленный процесс) Ртуть и ее соли 282 [c.395]

    Наиболее эффективный путь ускорения обновления нроизводственного аппарата — техническое перевооружение и реконструкция действующих установок на основе внедрения более прогрессивной технологии и использования современной высокопроизводительной техники [170, 171]. Эти вопросы важны и для вновь строящихся установок. В связи с этим обоснована необходимость осуществления глубоких качественных сдвигов в структуре производства машин и оборудования для вновь строящихся и реконструируемых установок по выпуску присадок. Так, для улучшения процесса алкилирования, уменьшения удельного расхода катализатора, снижения металлоемкости и энергоемкости необходимо применять более совершенной конструкции реакторы алкилирования и использовать катализатор нового типа. Это позволит существенно снизить трудоемкость загрузки свежего и выгрузки отработанного катализаторов, облегчить ремонт встроенного тенлообменного элемента, повысить эффективность работы фильтров на входе и выходе продукта, а также снизить удельный расход катализатора. Улучшение процесса сульфирования будет зависеть от выпуска разработанного отечественной промышленностью сульфуратора, обладающего преимуществами скребковых и гидродинамических сульфураторов. Для снижения металлоемкости и энергоемкости необходимо разработать и освоить выпуск стандартной колонной аппаратуры для условий технологических процессов получения нрисадок, в том числе работоспособной при повышенной температуре (до 100 °С) в щелочных средах. Повышение эффективности работы малотоннажных установок объясняется обеспечением серийного выпуска конденсаторов с диаметром кожуха 159, 273, 400 мм, холодильников кожухотрубчатых с большой допустимой разностью температур кожуха и труб, расширением номенклатуры эмалированных теплообменников. Целесообразно также расширить номенклатуру выпускаемых химических насосов для малотоннажных установок [c.140]


    На заводе анилинокрасочной промышленности процесс сульфирования должен был производиться при температуре 115 С. Сменщик принял аппаратуру при нормальной температуре процесса, однако когда он подал в аппарат очередную порцию олеума, начался бурный процесс с быстрым нарастанием температуры, и только энергично принятыми мерами с трудом удалось предотвратить аварию. При расследовании выяснилось, что аппаратчик предыдущей смены допустил перегрев сульфомассы до 125 °С, перед концом смены снизил температуру до нормы, но не предупредил своего сменщика о том, что сульфомасса была перегрета. Между тем в сульфомассе уже произошли ненормальные изменения вследствие побочных реакций, возникших от перегрева, и требовалось нх устраг нить прежде чем вести работу по регламенту. [c.153]

    Побочный продукт — дибензилсульфон (20%). Сульфирование полиалкилбензолов проходит с хорошими выходами. На основе этого метода разработан непрерывный промышленный процесс сульфирования бензола в паровой фазе. [c.387]

    Методами титрования в среде неводных растворителей определяют содержание серной и других кислот в смесях, применяемых для ацетнлированпя, сульфирования, сульфохлорирования, нитрования п т. п. [76, 77]. Советские исследователи Е. А. Грибова и Э. С. Левин [78] разработали метод титрования серной кислоты и сульфокислот в среде ацетонитрила и ацетона. Метод применим для определения серной кислоты, моно- и дисульфокислот антрахинона, моносульфокислот нафталина и бензосульфокислот при контроле различных стадий промышленного процесса сульфирования. Ими же разработан метод анализа производственной смеси ЦИКЛО-, дициклогексиламинов и анилина, основанный на двух титрованиях в среде ацетона [79]. Первое титрование позволяет определять содерн ание анилина и сумму цикл о- и дициклогексиламинов, а второе титрование после предварительной обработки салициловым альдегидом позволяет определить содержание дициклогексиламина. Содержанпе циклогексиламина хтаиавли-вают по разности. [c.303]

    Наиболее часто применяемым реагентом является свободный серный ангидрид. Расплавы кислот, таких, как пеларгоновая [477] или пальмитиновая [171], можно обрабатывать парами SOg при 75—100° С. Этот метод дает окрашенные побочные продукты, которые, однако, легко удалить перекристаллизацией мононатриевых солей из воды [477]. Тем не менее реакцию предпочитают проводить в среде растворителя для получения светлоокрашенных продуктов. Лауриновую кислоту сульфирова.ли в кипящем бутане [39], а стеариновую кислоту в жидком SO., [90, 272]. Тетрахлорэтилен [169] и четыреххлористый углерод (97, 201, 477] были применены при сульфировании пеларгоновой, лауриновой, миристиновой, пальмитиновой, стеариновой и бегеновой кислот выход сульфокислот 60—97 %. В этих реакциях добавляли жидкий SOg, хотя пары серного ангидрида дают более светлые продукты [477]. Промышленный процесс сульфирования технической смеси пальмитиновой и стеариновой кислот, растворенной в пятикратном количестве (по весу) четыреххлористого углерода, состоял в прибавлении испаренного серного ангидрида [169] при 25—30° С с последующим повышением те.мпературы до 60° С для завершения реакции. Аналогичный метод был применен для сульфирования монтановой кислоты [97] (кислоты из пальмоядрового масла [201]), а также жирных кислот С- — g, полученных окисление.ч твердого парафина [198]. Нафтеновые кислоты из нефти были просульфированы с выходом 66 % парами SOg [319]. [c.43]

    Многие промышленные процессы, такие, как сульфирование п нитрование, зависят от взаимной растворимости двух фаз. В некоторых случаях можно добиться значительных преимуществ, введя в реактор вторую фазу, экстрагирующую продукт реакции и таким образом подавляющую обратную реакцию. Мы не пытаемся дать полное математическое онисанне такого рода процессов, так как эта проблема трудна п еще не вполне исследована, а лишь обсудим основные идеи расчета. [c.207]

    Катализаторы О — алкилирования. Из предложенных гомогенных (серная, фосфорная, борная кислоты) и гетерогенных (оксиды алюминия, цеолиты, сульфоугли и др.) кислотных катализаторов в промышленных процессах синтеза МТБЭ наибольшее распространение получили сульфированные ионообменные смолы. В качестве полимерной матрицы сульфокатионов используются полимеры различного типа поликонденсационные (фенол — формальдегидные), полимеризационные (сополимер стирола с ди — винилбензолом), фторированный полиэтилен, активированное стекловолокно и некоторые другие. Самыми распространенными являются сульфокатиониты со стиролдивинилбензольной матрицей двух типов с невысокой удельной поверхностью около 1 м /г [c.149]

    Оптимальными условиями для данного процесса является 88%-ная серная кислота при 40°. Эти условия и были рекомендованы для промышленных процессов. 92%-ную кислоту нельзя применять, так как при охлалодении водой идет реакция сульфирования. [c.502]

    Окисление является следующей побочной реакцией, более часто наблюдающейся при сульфировании полициклических углеводородов и.пи полиалкилированных производных бензола, особенно нри повышенных температурах. Этому типу реакции отдавалось предпочтение на более ранней стадии развития промышленного процесса окисления нафталина олеумом до фталевого ангидрида в присутствии ртути в качестве катализатора. [c.525]

    Вторая сульфогрунпа значительно труднее вводится в бензольное кольцо, чем первая, поэтому реакция осуществляется ступенчато, причем моносульфокислота получается стандартными методами. Если для второй ступени иснользуется 98 %-ная серная кислота, то требуется применять высокие температуры (200°) и относительно длительное время реакции [100]. В этих условиях образуется нежелательный п-изомер, причем при 209° и продолжительности реакции 48 час. его образуется 22,7% вероятным механизмом образования его является гидролиз t-изомера с последующим повторным сульфированием в и-изомер. С другой стороны, дисульфирование олеумом происходит при значительно более низкой температуре и в сравнительно непродолжительное время нежелательный и-изомер [100] образуется лишь в небольших количествах или не образуется совсем. Как уже рассматривалось выше, в промышленном процессе, в котором применялся олеум, получается до 95% требуемых дисульфокислот. Сообщают также, что выходы часто падают ниже этой цифры из другого источника [76] известно образование сульфонов как [c.530]

    В описанном выше промышленном процессе [37] расходуется 2,2 m моногидрата кислоты и 3,1 т 65 %-ного олеума на 1 тп получаемого резорцина при нейтрализации отработанной кислоты образуется 6,5 т гипса. В противоположность этим данным при теоретически совершенном процессе должно было бы расходоваться только 1,45 тп SO3 на 1 /п резорцина и совсем не должно бы получаться гипса. С точки зрения более эффективного использования сырья несколько исследователей изучали возможность использования более концентрированных сульфирующих агентов. В одном усовершенствованном процессе [41] первая сульфогруппа вводится при помощи кислоты, использованной во второй ступени процесса, а введение второй группы осуществляется путем сульфирования реакционной смесью из первой ступени, предварительно укрепленной SO3. В других случаях SO3 реагирует с бепзолсульфокислотой, полученной различными методами [16, 34, 64, 76], включая процесс Тайрера и реакцию бензола с SO3 в жидкой SOj как растворителе выходы составляют 82% или выше [34, 64]. [c.531]

    Энгланд с сотрудниками [29], отмечая практически полное отсутствие литературных данных о влиянии условий процесса на выходы и соотношение изомеров при таком сульфировании, провел обширное исследование в лабораторных условиях в этом направлепии как основы для возможного развития промышленного процесса. Они пришли к выводу, что наилучшие результаты (суммарный выход изомеров 92—95 Уа) получались при B03M05KH0 быстром прибавлении 96 %-ной кислоты к углеводороду с последующим удалением образовавшейся в реакции воды перегонкой с избытком толуола на основе использования парциального давления компонентов. Конечная температура реакции поддерживалась ниже 150°. Большое влияпие температуры сульфирования па распределение изомеров показано в табл. 7 данные были получены на основании определения содержания изомерных крезолов, образовавшихся при щелочном плавлении. [c.531]

    Разработаны схема непрерывного, полностью автоматизированного процесса сульфирования масел газообразным серным ангидридом в жидком сернистом ангидриде [а. с. СССР 138615 2, с. 141 21, с. 139] пособ получения эффективных сульфонатных присадок при использовании водного раствора нитрата кальция для нейтрализации. сульфокислот промышленная технология высокощелочных присадок НГ-102 и НГ-104 с большей моющей способностью и предложен способ получения присадки НГ-104, обладающей высокими моющими и диспергирующими свойствами и хорошей стабильностью при длительном хранении масла [15, с. 69]. Во ВНИИ НП разработан высокозольный сульфонат (присадка ПМС) с 3,5—5-кратным избытком металла против стехио-метрического количества [1, с. 158 с. 145], создан процесс сульфирования масла газообразным серным ангидридом в пленочном роторном сульфураторе непрерывного действия, ранее применявшемся для сульфирования синтетических алкилбензолов. Бутков, Филиппов и Барабанов [1, с. 95] разработали способ получения магнийсульфоносульфонатной присадки ВНИИ НП-121 путем предварительного окисления масла М-11 из сернистых нефтей. Авторами составлен ряд товарных композиций с использованием этой присадки такие композиции можно добавлять к маслам различных групп для карбюраторных и дизельных двигателей. [c.68]

    Использование парообразного триоксида серы для сульфирования легкой (200-300°С) и тяжелой (350-450°С) фракций разгонки мазута позволяет получать основы гидравлических масел с выходами 50-60 % и белое медицинское масло с выходом 32,7%. С целью расширения сырьевой базы процесса проведены поисковые исследования и показана возможность получения белых масел и сульфонатных присадок на основе базового индустриального масла. Использование в процессе сульфирования масляных дистиллятов фиоксида серы позволяет избежать образования трудно утилизируемых кислотных отходов, сопутствующих другим способам кислотной очистки на имеющихся промышленных установках. [c.64]

    Методы разделения ксиленолов основаны на различной растворимости их в 25%-ном растворе NaOH [68] и на процессах сульфирования — десуль-фированпя [69]. Преобладаюш им изомером является л -5-ксиленол. Он представляет большой интерес для промышленности пластмасс, так как имеет незанятыми пара- и орто-положения по отношению к гидроксильной группе и легко вступает в реакцию конденсации с формальдегидом. В настоящее время ж-5-ксиленол предложено выделять алкилированием ксиленоль-ной фракции изобутиленом [70]. [c.519]

    В последние годы промышленное значение при получении нитросо единений приобретает трехфтористый бор, являющийся активным ускорителем и обезвоживающим средством при процессах сульфирование и нитрованяя [15]. [c.16]

    Случаи равновесия в процессе сульфирования, подобные описанному и обусловленные участием воды, вызывающей гидролиз (десульфмро-вание) менее устойчивой формы, были установлены при сульфировании а-пафтиламина и в ряде других случаев р-нафтилампн оказался канцерогеном и потому промышленное сульфирование его больше не производится. [c.102]

    MOHO- и дисульфокислот фенольных соединений из кубового остатка производства дифенилолпропана и отработанной серной кислоты производства хло-рамина-Б. Разработанная технологическая схема сульфирования кубовых остатков производства дифенилолпропана отработанной серной кислотой производства хлорамина-Б (рис 4.3) была апробирована на опытнопромышленной установке на ОАО Уфахимпром . Сульфирование кубового остатка производства дифенилолпропана осуш,ествлялось в реакторе с мешалкой Р1, в который через мерники М1 и М2 загружалось необходимое сырье. Процесс сульфирования протекал в условиях, приведенных в табл. 4.1., при интенсивном перемешивания реакционной массы, которое обеспечивалось циркуляционным насосом Н1. Хлористый водород, выделяюш,ийся из отработанной серной кислоты в составе паров воды, нейтрализовывался в щелочной ловушке Л1 раствором гидроксида натрия. Партия смесей дисульфокислот, наработанная на этой установке успешно прошла опытно-промышленные испытания на ЗАО ТЗП в качестве заменителя дорогостоящей бензол-сульфокислоты при получении химически стойкой замазки Арзамит-5 . [c.20]

    Разработана технологическая схема процесса сульфирования кубового остатка производства дифенилолпропана, апробированная на опытнопромышленной установке на ОАО Уфахимпром . Результаты исследований использованы производственно-конструкторским отделом ОАО Уфахимпром при проектировании промышленной установки по переработке отходов производств дифенилолпропана и хлорамина-Б мощностью 2500 тонн по смесям моно- и дисульфокислот фенольных соединений. Ожидаемый экономический эффект при реализации промышленной установки составляет в 7,0 млн рублей в год (в ценах 2003 г.). [c.22]

    Процесс сульфирования ароматических соединений является одним из первых среди реализованных в промышленности методов органического синтеза. Будучи одной из важнейших реакций органического синтеза, сульфирование широко используется как промежуточная стадия синтеза для получения фенолов (Р-нафтол, резорцин и др.), поверхностно-активных и текстильно-вспомогательных веществ, красителей и других соединений. Однако в наиболее крупных масштабах сульфирование применяют для производства линейных алкилбензолсульфонатов (Н——ЗОгОМа), обладающих поверхностно-активными свойствами. [c.466]

    По указанным причинам реакторы перемешивания обычно используют для непрерывных процессов сульфирования, нитрования, полимеризации и др. Эти реакторы широко применяют в промышленности органического синтеза, при производстве пластических масс, взрывчатых веществ, синтетического каучука и т. п. Реакторы перемешивания применяют также там, где перемешивание предусматри- [c.156]

    Обычно под этим термином понимают а-сульфированные метиловые эфиры жирных кислот, но в этот раздел, учитывая их растущее промышленное значение, включены и изотионаты жирных кислот. Альфа-сульфированные метиловые эфиры жирных кислот были открыты в начале 1970 гг. [ 107] и сейчас являются значимыми промышленно производимыми продуктами. Они получаются из жирных кислот кокосового ореха, пальмового ядра и таллового масла. Промышленный процесс состоит из непрерывного сульфирования смесью воздух/50з тонких пленок сырья при высоких температурах (70-90 °С) и длительной выдержке, порядка 30 минут, при температуре 95 °С [ 108]. Данный тип сульфирования отличается от других тем, что в этом случае необходим избыток (20-30%) SO3. Изначально для протекания реакции необходимо 2 моля SO3 один моль отщепляется в ходе последней стадии реакции. В ходе исследования кинетики этой реакции [109] установлено, что сложные эфиры расщепляются и образуются ке-теновые промежуточные соединения (уравн. 1.39). Предлагается и альтернативный механизм (без расщепления сложных эфиров), приведенный в уравнении (1.40). [c.50]

    Из ванадиевых катализаторов промышленное применение нашли четыре катализатора. Катализатор Слейма-Уолф , который использовался Баденской компанией и компанией Дженерал Кемикэл , готовится пропитыванием кизельгура метаванадатом аммония и гидроокисью калия с последующим таблетированием и прокаливанием в присутствии воздуха. Несомненно, что часть КОН взаимодействует с кизельгуром, образуя силикат калия, а другая часть вступает в реакцию с ЗОз и образует КгЗО4 или К2З2О, в процессе сульфирования и прокаливания. [c.344]

    Процесс сульфоокисления отличается от процессов сульфирования и сульфонирования, применяемых в производстве алкилбензолсульфонатов, сульфатов спиртов, олефинсульфонатов. Непрерывное сульфоокисление н-парафинов ведут в фотохимическом реакторе, внутри которого вмонтированы ртутные лампы — источник УФ-излучения. Газообразную смесь 502 и кислорода вводят в нижнюю часть реактора, а в верхнюю непрерывно подают м-парафин и воду. Смесь ЗОг и кислорода циркулирует в реакторе, часть газа при этом отдувается. После разделения реакционной смеси в сепараторе верхний слой, содержащий непрореагировавшие н-парафины, возвращают в реактор, а нижний—-водный раствор алкансульфокислоты и серной кислоты — концентрируют упариванием, отделяют в сепараторе и нейтрализуют раствором каустической соды. Водный раствор алкансульфоната натрия последовательно упаривают в двух колоннах, причем во второй колонне при 200—300 °С происходит отгонка непрореагировавшего н-парафина, который возвращают в раствор. Готовый продукт представляет собой плав алкансульфоната натрия, который поступает в продажу в виде 30%-ного водного раствора, либо 60%-ной водной пасты. Существует несколько промышленных модификаций синтеза к-ал- [c.227]

    Изучение процесса нитрования нефтяных масел в отличие от других процессов нефтехимического синтеза на основе минеральных масел, например процесса сульфирования, началось только в последние годы. Поэтому в отечественной и зарубежной литературе отсутствуют обобщающие работы по нитрованию и применению нитрованных нефтепродуктов. Значительный вклад в разработку процесса нитрования нефтепродуктов и организацию промышленного производства и использования нитрованных продуктов внесли коллективы Московского завода Нефте-газ , МИНХиГП им. И. М. Губкина и других институтов. [c.5]


Смотреть страницы где упоминается термин Промышленные процессы сульфировани: [c.323]    [c.190]    [c.41]    [c.34]   
Смотреть главы в:

Технология нефтехимических производств -> Промышленные процессы сульфировани




ПОИСК





Смотрите так же термины и статьи:

Промышленные процессы

Промышленные процессы сульфирования



© 2025 chem21.info Реклама на сайте