Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магнитный и квадрупольный моменты ядер

    Наряду с энергией связи и стабильностью ядер больщое значение в химических процессах имеют также магнитный и электрический моменты ядра. Спин ядра складывается из спинов нуклонов С/2Й) таким образом, что составляет четное или нечетное число, кратное исходному спину /гй. Поэтому спин ядра может для разных элементов меняться от О до 4,5. Он проявляется в сверхтонкой структуре атомных спектров и является основой метода ядерного магнитного резонанса. Так называемый квадрупольный момент ядра Q отражает асимметрию распределения заряда в ядре. Он особенно важен при взаимодействии между неполярными молекулами (например, молекулами СОг в газовой фазе). Q дает также информацию об отклонении ядра от сферической формы. [c.35]


    Электронное окружение квадрупольного ядра в молекуле, не обладающее сферической симметрией, создает неоднородное электрическое поле, которое характеризуется градиентом напряженности электрического поля на ядре (рис. IУ.2). Имеет место взаимодействие ядра, обладающего электрическим квадрупольный моментом eQ с градиентом поля ед. Энергия этого взаимодействия зависит от ориентации эллипсоидального квадрупольного ядра относительно системы главных осей тензора градиента электрического поля, а ее мерой является константа квадрупольного взаимодействия Аналогично тому как квантуется энергия вращающегося электрона в поле положительного ядра, квантуется и энергия квадрупольного взаимодействия. Иными словами, возможны различные квантованные ориентации ядерного квадрупольного момента и соответствующие квадруполь-ные уровни энергии. Эти уровни присущи данной молекулярной системе, т. е. являются ее свойством, в отличие от зеемановских уровней ядер и электронов в спектроскопии ЯМР и ЭПР, которые появляются при воздействии внешнего магнитного поля. Разности энергий, как и сами энергии квадрупольного взаимодействия, зависящие от электрического квадрупольного момента ядра eQ и градиента неоднородного электрического поля е , невелики, и переходы соответствуют радиочастотному диапазону 1(И, 10 Гц, Прямые [c.90]

    Следует заметить, что хотя сами квадрупольные энергетические уровни обусловлены взаимодействием электрического квадрупольного момента ядра с неоднородным электрическим полем, индуцированные переходы между ними связаны с взаимодействием магнитного момента ядра с переменным (радиочастотным) магнитным полем, так как энергия взаимодействия квадрупольного момента с электрическим полем в 10 раз меньше энергии магнитного дипольного взаимодействия. [c.97]

    При описании парамагнитной релаксации мы не принимали во внимание квадрупольный момент ядра, который порождается отклонением распределения ядерного заряда от сферической симметрии. Ядра со спиновым числом У, большим 1/2, обычно обладают квадрупольным моментом. Такие ядра взаимодействуют с неоднородным внутрикристаллическим полем, магнитные подуровни энергии возмущены этим взаимодействием неодинаково (рис. 159), и в результате ядерная магнитная резонансная линия для кристаллического образца расщепляется на ряд составляющих линий [10—13]. [c.378]


    Изотопные эффекты, несмотря на их малость, отчётливо проявляются и в оптических спектрах атомов и молекул. Причинами их возникновения являются, с одной стороны, влияние на волновые функции атома его массы, практически полностью обусловленной массой ядра, что приводит к смещению спектральных линий при изменении числа нейтронов в ядре изотопа (возникновению так называемого изотопического сдвига), а с другой — взаимодействие атомных электронов с магнитным дипольным и электрическим квадрупольным моментами ядра, определяющее характер сверхтонкого рас- [c.29]

    Помимо смещения спектральных линий, для атомов многих элементов изотопные эффекты проявляются и в характере сверхтонкого расщепления, обусловленного, как известно, взаимодействием оптических электронов с магнитным и квадрупольным моментами ядра, величина которых зависит от количества нейтронов в ядре при данном его заряде Z. Только для изотопов с чётно-чётными ядрами изотопные эффекты в спектрах ограничиваются изотопическим сдвигом, поскольку для них сверхтонкое расщепление, как правило, отсутствует из-за равенства нулю дипольного и квадрупольного моментов. Рассматриваемое взаимодействие приводит к расщеплению электронных уровней на несколько компонент, каждая из которых соответствует определённому значению полного момента атома Г, складывающегося из углового момента электрона Л и спина ядра I Г = Л +1. В случае чисто магнитного взаимодействия, когда влиянием квадрупольным моментом можно пренебречь, уровни энергии расщепляются на несколько подуровней с разными проекциями полного момента  [c.31]

    Изотопические эффекты в твёрдых телах, являясь чисто квантовыми эффектами, обусловлены почти исключительно различием в массах изотопов. Именно они и будут рассмотрены в настоящем обзоре. Другие физические величины, которые имеют разные значения у разных изотопов, такие как магнитный и квадрупольный моменты ядра, сечения поглощения и рассеяния нейтронов, практически не оказывают влияния на свойства твёрдого тела как такового [1]. Твёрдые изотопы гелия Не и Не — квантовые кристаллы — практически не рассматриваются в этом разделе, поскольку имеется достаточное количество литературы обзорного характера на эту тему (см., например, [c.63]

    В статическом магнитном поле напряженностью Н помимо ядерного квадрупольного взаимодействия 5 появляется еще один эффект — магнитное взаимодействие с магнитным дипольным моментом ядра л Рл . Гамильтониан этого магнитного взаимодействия определяется выражением [c.209]

    Гамильтониан описывает взаимодействие спина ядра с орбитальным и спиновым моментами электронов, а также контактное взаимодействие Ферми, приводящее к появлению эффективного магнитного поля, которое проявляется в эффекте Мессбауэра. м включает в себя также электростатическое взаимодействие с электрическим квадрупольным моментом ядра несмотря на то что это взаимодействие вносит лишь небольшое возмущение в собственные функции основного состояния, оно играет важную роль в спектре Мессбауэра, поскольку связано с градиентом электрического поля. [c.261]

    Чтобы понять спектроскопию ядерного магнитного резонанса, нужно познакомиться с двумя свойствами ядер — их результирующим спином, обусловленным протонами и нейтронами (обе эти частицы имеют спиновое квантовое число, равное 7г), и распределением положительного заряда. Несколько различных типов ядер изображено на рис. 8-1. Если спины всех частиц спарены, то результирующего спина нет и квантовое число ядерного спина I равно нулю. Распределение положительного заряда при этом сферическое, и, как говорят, квадрупольный момент ядра eQ (где е — единица электростатического заряда, а Q — мера отклонения распределения заряда от сферической симметрии в данном случае Р=0) равен нулю. Сферическое бесспиновое ядро, изображенное на рис. 8-1, а, является примером случая, когда [c.262]

    Когда ядро, имеющее ядерный квадрупольный момент (ядро со спиновым квантовым числом />1 см. второй раздел гл. 8 и рис. 8-1), находится в неоднородном электрическом поле, обусловленном асимметрией электронного распределения, такое квадрупольное ядро взаимодействует с электрическим полем, причем энергия взаимодействия различна для разных возможных ориентаций эллиптического квадрупольного ядра. Поскольку квадрупольный момент возникает вследствие несимметричного распределения электрического заряда в ядре, он является электрическим, а не магнитным моментом. Разрешенные ориентации момента квантованы, так же как квантуется энергия вращающегося электрона в положительном поле ядра. Ядро может иметь 21 + 1 ориентаций, которые описываются ядерным магнитным квантовым числом т, причем т может принимать значения /, /—1,. .., О,. .., —1 + 1, —Квадрупольный уровень энергии с наименьшей энергией соответствует ориентации, при которой наибольшая доля положительного заряда ядра находится ближе всего к наибольшему отрицательному заряду электронного окружения. Разность энергий при различных ориентациях не очень велика, и при комнатной температуре у группы молекул имеется распределение ориентаций. Если ядро сферическое (/=0 или /г) или если электронное окружение данного ядра является сферическим (как в С1 ), все ядерные ориентации эквивалентны и соответствующие квадрупольные состояния энергии вырождены. [c.340]


    Следует отметить, что наличие энергетических уровней квадрупольного взаимодействия обусловлено взаимодействием неоднородного электрического поля с электрическим квадрупольным моментом ядра, но индуцированные переходы связаны с взаимодействием магнитного момента (х ядра с магнитным вектором радиочастотного поля. Энергия взаимодействия электрического квадрупольного момента с электрической компонентой электромагнитной волны в 101 раз меньше энергии магнитного дипольного взаимодействия. [c.12]

    Заметим, что спин ядра в основном состоянии равен 1/2, и это состояние не расщепляется, возбужденное мессбауэров-ское состояние со спином 3/2 расщепляется на два подуровня с абсолютными значениями магнитных чисел 3/2 и 1/2. Естественно, что теперь простая одиночная резонансная линия заменяется дублетом. Собственные значения оператора взаимодействия квадрупольного момента ядра Q с градиентом электрического поля на ядре могут быть записаны в виде [c.234]

    Итак, к числу характеристик атомных ядер относятся заряд ядра Е, массовое число А, средняя энергия связи нуклона в ядре г, радиус ядра R, спин 5, магнитный момент 1 и квадрупольный момент ядра Q. Все эти характеристики были в той или иной мере использованы для построения различных теорий строения ядер, различных, как принято говорить, ядерных моделей. Сейчас ещ6 не существует такой модели, которая была бы способна объяснить всю совокупность свойств ядер, но различные теории не исключают, а скорее дополняют друг друга. Прежде чем рассмотреть вкратце некоторые из ядерных моделей, остановимся на столь важном свойстве атомных ядер, как радиоактивность. [c.30]

    Во многих случаях эффект Мессбауэра позволяет изучать сверхтонкие структуры, возникающие при взаимодействии магнитных полей и градиентов электрического поля с магнитным дипольным и электрическим квадрупольным моментами ядра. В этом разделе рассматривается теория сверхтонких взаимодействий в редкоземельных элементах. [c.345]

    Кроме магнитного дипольного момента, ядро может обладать электрическим квадрупольным моментом. Можно полагать, что это свойство обусловлено эллиптическим распределением заряда в некоторых ядрах. Квадрупольный момент q определяется выражением q — 1 X а — Ъ ), где а — полуось вращения эллипсоида и Ь — полуось, перпендикулярная а д имеет размерность площади. У дейтрона q — 4-2,74-10 см и распределение заряда — сигарообразное. Квадрупольные моменты, как положительные, так и отрицательные, известны для ряда других ядер [c.45]

    Из всего сказанного видно, что для определения магнитного и квадрупольного моментов ядра необходимо по экспериментально изученной сверхтонкой структуре спектральных линий определить постоянные А и В. [c.554]

    Если ядро с квадрупольным электрическим моментом (ядерный спин 7 1 см. разд. 7.2 и рис. 7.1) находится в неоднородном электрическом поле, являющемся следствием асимметрии электронного распределения, то может возникнуть градиент электрического поля (см. ниже). Квадрупольное ядро будет взаимодействовать с этим градиентом электрического поля в различной степени в зависимости от различных возможных ориентаций эллиптического квадрупольного ядра. Поскольку квадрупольный момент возникает в результате несимметричного распределения электрического заряда в ядре, нас будет больше интересовать электрический квадрупольный момент, нежели магнитный момент. Число разрешенных ядерных ориентаций определяется ядерным магнитным квантовым числом т, которое принимает значения от -(- / до — 1 (всего 27 -Ь 1). Низший по энергии уровень квадруполя соответствует ориентации, для которой наибольшая величина положительного ядерного заряда располагается ближе всего к наибольшей плотности отрицательного заряда в электронном окружении. Разности энергий различных ориентаций не очень велики, и при комнатной температуре в группе молекул существует распределение ориентаций. Если электронное окружение ядра является сферическим (как в С1 ), то все ядерные ориентации эквивалентны и соответствующие энергетические состояния квадруполя вырождены. Если сферическим является ядро (/ = О или 1/2), то энергетических состояний квадруполя не существует. В спектроскопии ЯКР мы изучаем разности энергий невырожденных ядерных ориентаций. Эти разности энергии обычно соответствуют радиочастотному диапазону спектра, т.е. от 0,1 до 700 МГц. [c.260]

    В таблице приведены основные характеристики ядер, обладающих магнитным моментом. Величина сигнала относится к наблюдению ядерного магнитного резонанса (ЯМР) данного ядра в сферически симметричном электрическом поле. При наличии квадрупольного момента и тех случаях, когда симметрия поля ближайшего окружения ядра отличается от указанной, интенсивность сигнала резко падает за счет сильного расширения линии ЯМР. [c.317]

    Следует отметить, что для ЯКР не нужно создавать внешнего магнитного поля, что упрощает экспериментальную установку (можно обойтись вообще без магнита). Однако необходимо, чтобы электрическое поле, в котором находится ядро, было достаточно неоднородно, а резонансная частота была пропорциональна градиенту этого поля. Вместе с тем обстоятельством, что ядра С и Н не обладают квадрупольным моментом, это весьма ограничивает применение ЯКР к полимерам. [c.230]

    Следует отметить, что метод ЭПР дает возможность изучения кинетики радикальной полимеризации и радикалов, образовавшихся в результате тех или иных воздействий. ЭПР является основным средством изучения полимеров, обладающих полупроводниковыми и магнитными свойствами. ЯКР имеет ограниченную применимость для полимеров, так как в них редко встречаются ядра, обладающие электрическим квадрупольным моментом. Однако введение в полимеры кристаллических порошков, содержащих такие ядра, дает возможность оценивать их внутренние напряжения. [c.230]

    Состояния мол. систем, переходы между к-рыми проявляются в виде тех или иных М. с., имеют разную природу и сильно различаются по энергии. Уровни энергии иек-рых видов расположены далеко друг от друга, так что при переходах молекула поглощает или испускает высокочастотное излучение. Расстояние между уровнями др. природы бывает мало, а в нек-рых случаях в отсутствие внеш. поля уровни сливаются (вырождаются). При малых разностях энергий переходы наблюдаются в низкочастотной области. Напр., ядра атомов нек-рых элементов обладают собств. магн. моментом и электрич. квадрупольным моментом, связанным со спином. Электроны также имеют магн. момент, связанный с их спином. В отсутствие внеш. поля ориентации магн. моментов произвольны, т.е. они не квантуются и соответствующие энергетич. состояния вырождены. При наложении внеш. постоянного магн. поля происходит снятие вырождения и возможны переходы между уровнями энергии, наблюдаемые в радиочастотной области спектра. Так возникают спектры ЯМР и ЭПР (см. Ядерный магнитный резонанс. Электронный парамагнитный резонанс). [c.119]

    Ядра, имеющие спин, равный О, имеют одно энергетическое состояние в магнитном поле (2-0+1). Они не являются объектами исследования ЯМР-спектроскопии. Ядра со спином 1 и больше, кроме магнитного момента, обладают электрическим квадрупольным моментом. Их свойства могут быть исследованы при помощи ядерного квадрупольного резонанса ( Н, С1, Вг, 1). [c.96]

    Спектроскопия ядерного квадрупольного резонанса (ЯКР) применяется в химии несколько реже методов магнитной радиоспектроскопии. Метод ЯКР основан на поглощении радиоволн за счет изменения ориентации электрических квадрупольных моментов некоторых ядер (С , и др.) в неоднородных внутримолекулярных электрических полях, создаваемых валентными электронами. Положение линий ЯКР чрезвычайно сильно зависит от тонких деталей структуры исследуемого вещества, но недостаточная чувствительность метода ограничивает его применение чистыми кристаллами с относительно высоким содержанием атомов, ядра которых обладают квадрупольным моментом. В настоящее время разрабатываются импульсные спектрометры ЖР повышенной чувствительности, которые уже в последние годы привели к более широкому распространению метода ЯКР в химических исследованиях. [c.294]

    Все ядра, спин которых / 1, кроме магнитного момента обладают еще и электрическим квадрупольным моментом е Q, который характеризует то, насколько сильно распределение положительного заряда ядра отличается от [c.33]

    К настоящему времени чаще всего изучаемым в экспериментах по ЯМР ядром является протон (спин 1/2). Большинство других ядер, обычно изучаемых в таких экспериментах, тоже имеют спин 1/2, — это ядра С, и Р. Они обладают только магнитным дипольным моментом. Исследования методом ЯМР проводятся также на ядрах с более высоким спином, однако все ядра со спином больше 1/2 имеют еще квадрупольный, а возможно, и высшие моменты. Наличие квадрупольного момента обычно вызывает сильное уширение спектра ЯМР, затрудняющее наблюдение его тонких деталей. В экспериментах по ЭПР исследуется электрон, тоже обладающий спином 1/2. По этим причинам большая часть теории магнитного резонанса посвящена частицам со спином 1/2. Здесь мы обсудим подробно только частицы со спином 1/2, однако наше рассмотрение будет достаточно общим, чтобы его можно было при необходимости распространить на частицы с более высоким спином, [c.352]

    Можно показать в общем виде, исходя из квантово-механического рассмотрения симметрии, что ядра со спином / > /г, как правило, не обладают точно сферическим распределением заряда [89]. У всех ядер спиновая ось является осью симметрии и распределение заряда представляет эллипсоид вращения, который может быть вытянутым или сплюснутым. Это отклонение от сферической симметрии, которое характерно для ядер с / > >/2, количественно выражается электрическим квадрупольным моментом ядер. Квадрупольный момент является тензором, но его можно охарактеризовать единичной скалярной величиной Q, называемой электрическим квадрупольным моментом. Важность ядерного квадрупольного момента в явлении магнитного резо нанса связана с тем, что он в заметной степени взаимодействует с неоднородным атомным электрическим полем и это взаимодействие обычно приводит к резким изменениям спектра ЯМР особенно в твердых веществах. [c.35]

    Наблюдение резонанса С связано с рядом трудностей, которые, в основном, удалось преодолеть в процессе непрерывного совершенствования экспериментальной методики и аппаратуры. ЯМР С имеет низкую чувствительность, что обусловлено, во-первых, относительно малым магнитным моментом этого ядра (- 74 магнитного момента протона, см. табл. 1.1) и, во-вторых, низким естественным содержанием данного изотопа (1,1%)- Для С, как правило, характерны сравнительно большие времена спин-решеточной релаксации, так что эти слабые сигналы насыщаются при меньших ВЧ-полях, чем сигналы Н или Р. Ядро С имеет спин 72, поэтому у него нет квадрупольного момента и резонансные сигналы должны быть узкими. В ранее применявшихся методах регистрации спектров для того, чтобы снять насыщение, регистрировали сигнал дисперсии при быстром прохождении. При этом происходило настолько сильное уширение сигналов, что наблюдать тонкую структуру можно было только для прямого взаимодействия С— Н (7=120- 250 Гц), а взаимодействие через две или более связи (около 5 Гц) было уже неразличимо на фоне широкой регистрируемой линии. Позже благодаря применению накопителей (см. разд. 1.18.3) стало возможным наблюдать сигналы поглощения С в этих условиях могут быть получены линии ши- [c.51]

    Как ядро так и ядро имеют магнитные моменты и могут давать спектры ядерного магнитного резонанса. Правда, ядро имеет спин 1 (см. табл. 1.1) и, следовательно, квадрупольный момент. Связанная с этим быстрая спин-решеточная релаксация (см. разд. 1.5) уширяет сигналы и делает их наблюдение затруднительным. Этих осложнений нет при наблюдении спектра имеющего спин /2, но интенсивность резонансного сигнала и естественное содержание изотопа еще ниже, чем в случае С. Обычно проводят обогащение образцов, хотя известны примеры наблюдения сигналов от необогащенных образцов [29]. [c.52]

    Ядра со спиновым квантовым числом / > кроме магнитного дипольного момента, имеют еще электрический квадрупольный момент. У этих ядер возможен быстрый перенос энергии — время релаксации очень мало. К сожалению, слишком малое время релаксации вызывает уши-рение сигналов поглощения, что нежелательно в спектрах высокого разрешения. [c.13]

    В табл. 13.3 приведены магнитные характеристики атомных ядер, представляющих наибольший интерес для химии. Два самых важных ядра, и 0, имеют нулевой магнитный момент и, следовательно, не активны в ядерном резонансе. Из активных ядер для ядерного магнитного резонанса наибольший интерес представляют изотопы Н, с, и Р, имеющие нулевой квадрупольный момент последнее обстоятельство приводит к тому, что эти ядра дают особенно резкие резонансные сигналы. Для ядерного квадрупольного резонанса наибольшее значение имеют [c.352]

    Ядерный квадрупольный резонанс. Квадрупольный момент характеризует отклонение распределения электрического заряда ядра от сферической симметрии. Ядерный квадрупольный резонанс (ЯКР) можно наблюдать, если ядро находится в неоднородном электрическом поле. Тогда при взаимодействии градиента электрического поля с квадрупольным моментом ядра уровни энергии ядра будут расщеплены. Величина расщепления зависит от величины квадру-польного момента ядра и градиента поля. Если теперь на образец наложить переменное магнитное поле соответствующей частоты (перпендикулярное градиенту электрического поля), то под его воздействием магнитные моменты ядра будут изменяться и вещесл во станет поглощать энергию этого поля. [c.63]

    Р. изучает неск. типов переходов переходы между уровнями энергии, соответствующими вращат. движению молекул с постоянным электрич. моментом (см. Микроволновая спектроскопия), переходы, обусловленные взаимодействием электрич. квадрупольного момента ядра с внутр. электрич. полем в твердых телах (см. Ядерный квадрупо.пчый резонанс) и взаимодействием электронов проводимости с внеш. магн. полем (см. Циклотронный резонанс) переходы, обусловленные взаимодействием магн. моментов электронов или ядер с внеш. магн. полем в газах, жидкостях и твердых телах (см. Электронный парамагнитный резонанс, Ядерный магнитный резонанс). [c.171]

    Здесь Q — велг1чина квадрупольного момента ядра в систсме отсчета, в которой за ось г принято направление момента / компонента тензора в направлении магнитного поля Н, взятая на данном ядре. [c.189]

    Ядерный электрический квадрупольный момент eQ является мерой отклонения распределения электрического заряда в ядре от сферической симметрии. Качественно можно представить четыре возможных типа ядра (рис. IV.1). Если суммарный спин ядра /а и, следовательно, его магнитный момент fin равны нулю (рис. IV.1, а), то распределение заряда в ядре характеризуется сферической симметрией, и квадрупольный момент eQ отсутствует. Распределение заряда остается сферическим, т. е. eQ==0, и при спине ядра 1а= /2, когда ЦпфО (рис. IV.I, б). Если / 1 (цп О), то сферическая симметрия распределения заряда нарушается, и появляется электрический квадрупольный момент eQ= 0. На рис. [c.89]

    При значении спина > /2 ядро помимо магнитного обладает квадрупольным моментом, а ширина линии ЯМР проявляет высокую чувствительность к симметрии ближайшего окружения При понижении симметрии линии ЯМР квадрупольных ядер, как правило, сильно уширяются, ухудшая соотношение сигнал/ Ушум, и при прочих равных условиях хуже детектируются. По этой причине, а также из-за низкого природного содержания спектроскопия ЯМР не получила большого развития. Низ- [c.416]

    Привлекательная особенность ЯМР-спектроскопии состоит в том, что исследуемая молекула в целом прозрачна это позволяет беспрепятственно исследовать выбранный простой класс ядер, обладающих магнитными свойствами. Область протонного резонанса не будет содержать пиков, обусловленных какими-либо другими атомами в молекуле, так как, даже когда эти атомы магнитны, их линии поглощения смещены на расстояния, огромные по сравнению с диапазоном спектра протонного резонанса. Атомы углерода и кислорода, образующие скелет молекулы, вообще не дают самостоятельного эффекта. Присутствие других магнитных ядер (например, азота, фтора, фосфора, дейтерия) иногда сказывается на спектрах протонного резонанса, но только в виде нарушения положений пиков нли их множественности, но эти эффекты, как правило, носят предсказуемый Зсарактер. Ядра других галогенов (хлора, брома и иоДа), хотя и обладают магнитными свойствами, не оказывают влияния на множественность пиков протонного резонанса, так как электрическое поле, обусловленное ядерным квадрупольным моментом, взаимодействует с окружающими полями и изменяет ориентацию ядерного спина настолько быстро, что суммарный эффект его действия на соседние протоны сводится к нулю. Таким образом, ЯМР-спектроскопию чаще всего применяют в органической химии в тех случаях, когда требуются данные о числе водородных атомов различных типов в молекуле, а также об их взаимодействии между собой и с другими атомами, входящими в состав молекулы. Как и следовало ожидать, самые простые спектры обычно дают соединения с небольшим числом типов водородных атомов. Большие молекулы, обладающие низкой симметрией, как правило, дaюt довольно сложные спектры, но даже в этом случае удается получить ценные данные, не проводя полного анализа спектра ЯМР и не идентифицируя все пики. [c.257]

    Ядра со спином / = О не имеют магнитного момента и не чувствительны к методу ЯМР. Ядра со спицом Va наиболее удобны для исследования методом ЯМР. Особенно большой чувствительностью к методу обладают протоны и ядра i F. Ядра со спинами, большими i/g, обладают также электрическим квадрупольным моментом. Наличие квадрупольного момента сильно усложняет наблюдение сигналов ЯМР, однако такие ядра могут быть изучены методом ядерного квадрупольного резонанса (ЯКР). Метод ЯКР имеет меньшее значение для органической химии и здесь не рассматривается. Для исследования с помощью ЯМР используются, главным образом, протоны, поскольку они присутствуют почти в каждой органической молекуле, а также в связи с особой чувствительностью протонов к этому методу. В дальнейшем речь будет идти почти исключительно о протонном магнитном резонансе (ПМР). [c.596]

    Ядра со спином / 1 называют квадрупольными. Такие ядра наряду с магнитным моментом обладают электрическим квадру-тюльным моментом, что приводит к взаимодействию этих ядер с электрическими полями. Данные о спиновых числах важнейших ядер приведены в табл. 1.1. [c.10]

    Изотоп Спин ч Естеств. содержание, % Магнитный момент в ядерных магнетонах Мд Квадрупольный момент, приведенный к моменту ядра 35С1 [c.10]

    Спин ядра. При этом разделяют магнитные дипольные ядра (/=1/2) и квадрупольные ядра (/>1). Наличие квадрупольного момента приводит к резкому уменьшению времени ядерной релаксации и, как следствие, к смазыванию мультиплетной структуры спектров. Спектры ЯМР квадрупольиых ядер существенно уширены, так что для их регистрации можно использовать спектрометры широких линий. [c.34]

    Магнитный момент ядра F лишь ненамного меньше, чем для Н (см. табл. 1.1), поэтому ЯМР фтора сравнительно высоко чувствителен. (При одной и той же напряженности магнитного поля относительная чувствительность ЯМР различных ядер приблизительно пропорциональна кубу отношения их магнитных моментов). Спин ядра F равен /2 и потому нет необходимости учитывать эффекты, связанные с квадрупольной релаксацией. Благодаря большей поляризуемости электронного облака атома фтора ядро F, как и большинство других ядер, дает сигналы в гораздо большем диапазоне химических сдвигов, чем ядро Н почти 400 м. д. для зр по сравнению с 10—12 м. д. для Н. Это часто позволяет выявлять довольно тонкие различия структуры полимерных цепей (см. гл. 5). Для ЯМР эр нет общепринятой шкалы химических сдвигов. Филипович и Тирс [25] предложили шкалу, в которой в качестве нуля принято положение сигнала летучего СС1зР, используемого как растворитель. Химические сдвиги в этой шкале обозначаются буквой Ф (м. д.), если они экстраполированы к нулевой концентрации, или Ф, если они даются без экстраполяции чаще приводят Ф.  [c.50]


Смотреть страницы где упоминается термин Магнитный и квадрупольный моменты ядер: [c.521]    [c.45]    [c.714]    [c.168]    [c.726]    [c.159]   
Смотреть главы в:

Курс общей и неорганической химии -> Магнитный и квадрупольный моменты ядер




ПОИСК





Смотрите так же термины и статьи:

Магнитный момент



© 2025 chem21.info Реклама на сайте